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ABSTRACT:
The energetic properties of an acoustic field can be quantified through the potential (Ep) and kinetic (Ek) energies.

This article derives broadband properties of Ep and Ek in an oceanic waveguide, with restriction to a far-field context

under which the acoustic field can be described by a set of propagating trapped modes. Using a set of reasonable

assumptions, it is analytically demonstrated that, when integrated over a wide enough frequency-band, Ep¼Ek

everywhere in the waveguide, except at four specific depths: z¼ 0 (sea surface), z¼D (seafloor), z¼ zs (source

depth), and z ¼ D� zs (mirrored source depth). Several realistic simulations are also presented to show the relevance

of the analytical derivation. It is notably illustrated that, when integrated over third-octave bands, Ep ’ Ek within

1 dB everywhere in the far-field waveguide, except in the first few meters of the water column (on a dB scale, no sig-

nificant difference is found between Ep and Ek for z¼D, z¼ zs, and z ¼ D� zs).
VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
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I. INTRODUCTION

Historically, ocean acoustics relies on the measure and

use of underwater sound pressure p, with a wide variety of

applications, from marine ecology to underwater warfare.

However, it is well known that the acoustic field can also be

described using other quantities, such as the particle velocity

v. The pressure p and velocity v are usually derived in the

linear acoustic regime; as such, they represent small oscilla-

tions around their background values. In a static fluid (an

accepted approximation in ocean acoustics), they are related

through

@v

@t
¼ �1

q
rp; (1)

with q the ocean density and t the time. Further noting c as

the sound speed in the oceanic waveguide, the energetic

properties of the associated acoustic field are usually

described through the potential (Ep) and kinetic (Ek) energy

densities, with

Ep ¼
1

2

1

qc2
jpj2 (2)

interpreted as the sound pressure level and

Ek ¼
1

2
qjjvjj2 (3)

as the particle motion level. The main objective of this arti-

cle is to derive and illustrate broadband properties of Ep and

Ek in an oceanic waveguide. The scope is restricted to the

context of a single sound source and propagation over

ranges that exceed twice the water depth. In such a context,

the acoustic field can be described as a sum of propagating

trapped modes, and a fundamental result is that, when inte-
grated over a wide enough frequency band, Ep ’ Ek. This

result opens the door to simple broadband underwater mea-

surements of Ek through Ep. Note that a similar topic,

restricted to the narrowband case, is discussed in Nedelec

et al. (2021). In short, if the field behaves like a plane wave,

then Ek can be obtained through Ep. The present article

extends the comparison to broadband measure in complex

oceanic waveguides.

Further, the article provides a theoretical justification of

previous empirical observations, e.g., Ep¼Ek (within cali-

bration uncertainty) for ship noise measured in third octave

bands (Dahl and Bonnel, 2022), for broadband explosive

sounds (Dahl and Dall’Osto, 2020), or for pile driving

sounds (Dahl et al., 2023). In other words, if one is inter-

ested into broadband particle motion level (PML) from an

acoustic source in an ocean waveguide, one can make a

pressure measurement, compute the broadband sound pres-

sure level (SPL), and infer PML from SPL. This is important

because making a pressure measurement with a hydrophone

is significantly simpler than making a particle motion mea-

surement with a vector sensor. This result is useful for prac-

titioners that are exclusively interested in the energetic

properties of the particle motion field, such as researchersa)Electronic mail: julien.flamant@cnrs.fr
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studying the impact of noise pollution on fish and crusta-

ceans (Nedelec et al., 2016; Popper and Hawkins, 2018).

However, it is important to remember that this result is

obtained by describing the acoustic field using a finite set of

propagating modes (i.e., the source/receiver range exceeds

’ 2 water depth). An interesting counterexample is pro-

vided in Dahl and Dall’Osto (2022): if a ship transits

directly over a vector sensor, then the modal assumption

does not hold, and Ep can be drastically different from Ek.

The remainder of the article is organized as follows.

Section II formalizes the problem, presents the physical

background and basic equations required for the article, and

introduces the simulated scenarios that will be used through

the article. Section III introduces a non-stationary phase

approximation that drastically simplifies the formulas for Ek

and Ep. The final relationship between Ep and Ek obtained

after frequency integration [i.e., the demonstration of Eq.

(7)] is derived in Sec. IV. Numerical simulations that illus-

trate the relevance and generality of the proposed derivation

are given in Sec. V. Last, Sec. VI concludes the article.

II. PRELIMINARIES

A. Problem definition

The scope of this paper is restricted to azimuthally sym-

metric waveguides, i.e., propagation occurs in a 2D r – z
plan, where r is the range and z the depth. The particle

velocity is thus a 2D vector: v ¼ ½vr; vz�, with vr and vz the

horizontal and vertical components. The pressure and parti-

cle velocity field depend on range r, depth z and frequency f,
and so do the potential and kinetic energy densities. Further

assuming a range-independent waveguide, these are prop-

erly defined as

Epðr; z; f Þ¢
1

4qðzÞc2ðzÞ jpðr; z; f Þj
2; (4)

Ekðr; z; f Þ¢
1

4
qðzÞ jvrðr; z; f Þj2 þ jvzðr; z; f Þj2

� �
; (5)

with qðzÞ and c(z) the density and sound speed profiles.

Compared to Eqs. (2) and (3), the definitions (4) and (5)

include an extra 1/2 prefactor to account that Ep and Ek will

be computed using complex harmonic quantities in the sub-

sequent sections.

In such a context, it is known that for any range r and

frequency f,ð1
0

Epðr; z; f Þdz ¼
ð1

0

Ekðr; z; f Þdz: (6)

A succinct demonstration of this result can be found in

Pierce (1985). In short, the key idea to derive this property

is to expand the acoustic field into normal modes (see Sec.

II B), and to use the mode orthonormality to simplifies the

expression. A full derivation of Eq. (6) is provided in

Appendix A for completeness. Although Eq. (6) is very ele-

gant, it has no simple practical application. Since integration

is over depth, using this property to infer Ek from Ep

requires the use of a dense vertical line array (VLA) span-

ning the whole water column (and, in theory, the upper part

of the seafloor). VLAs are traditional assets for acoustical

oceanographers, but their deployment is cumbersome, and

their price prohibitive for many.

In this study, we instead investigate the relationship

between Ep and Ek when integrated along the frequency
axis. As stated in the introduction, empirical observations by

Dahl and Dall’Osto (2020) and Dahl and Bonnel (2022) sug-

gest that, at a given (r, z) location,ðf2

f1

Epðr; z; f Þdf �
ðf2

f1

Ekðr; z; f Þdf ; (7)

where f1 and f2 define the frequency band on which the aver-

aging is performed. This approximation is easily verified

using numerical simulations (a few will be presented in

Sec. V). This article studies the relation (7) from a theoreti-

cal viewpoint. It notably provides a good understanding of

its validity conditions (without resorting to the numerical

evaluation of Ek and Ep).

B. Normal modes in shallow water acoustic
propagation

The theory of normal modes enables a convenient

modelling of low-frequency acoustic propagation in shallow

water. Consider a broadband point source signal Xðf Þ emit-

ted at depth zs, the pressure field p received at distance

r � 1, depth z and frequency f reads [Jensen et al. (2011),

Chap. 5]

pðr; z; f Þ ¼ Xðf Þ eip=4

qðzsÞ
ffiffiffiffiffiffiffiffi
8pr
p

�
XM
m¼1

Wmðzs; f ÞWmðz; f Þ
eikrmðf Þrffiffiffiffiffiffiffiffiffiffiffiffi

krmðf Þ
p ; (8)

where M is the number of propagating modes, Wm and krm

are, respectively, the modal depth function and horizontal

wavenumber associated with mode m. For theoretical deri-

vations, it is also assumed that there is no attenuation in the

waveguide, i.e., the wavenumbers are real numbers.

However, numerical simulations that account for seafloor

attenuation will be presented later in the article (see Sec. V).

To shorten notations, the modal amplitude

Amðzs; f Þ¢Xðf Þ eip=4

qðzsÞ
ffiffiffiffiffiffi
8p
p Wmðzs; f Þ (9)

is introduced. As a result, Eq. (8) becomes

pðr; z; f Þ ¼ r�1=2
XM

m¼1

Amðzs; f ÞWmðz; f Þ
eikrmðf Þrffiffiffiffiffiffiffiffiffiffiffiffi

krmðf Þ
p : (10)

Plugging Eq. (10) into Eq. (1) gives the radial and vertical

components of the particle velocity,
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vrðr;z;f Þ�r�1=2
XM

m¼1

Amðzs;f ÞWmðz;f Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
krmðf Þ

p eikrmðf Þr

2pfqðzÞ; (11)

vzðr;z;f Þ¼r�1=2
XM

m¼1

Amðzs;f ÞW0mðz;f Þ
1ffiffiffiffiffiffiffiffiffiffiffiffi

krmðf Þ
p eikrmðf Þr

2pfqðzÞ; (12)

where for simplicity W0m ¼ @Wm=@z. Note that the approxi-

mation in Eq. (11) arises from neglecting higher order terms

that decrease faster than r�1, which is justified in our normal

mode context.

C. Potential and kinetic energies

We now fix r and drop the range dependence in the

sequel. Combining Eqs. (10) and (4), gives the expression of

the potential energy in terms of normal modes,

Epðz; f Þ ¼
1

4rqðzÞc2ðzÞ

�XM

m¼1

jAmðzs; f Þj2

krmðf Þ
W2

mðz; f Þ

þ
XM

m; n ¼ 1

m 6¼ n

Amðzs; f ÞA�nðzs; f Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
krmðf Þkrnðf Þ

p

�Wmðz; f ÞWnðz; f ÞeiDkmnðf Þr
�
; (13)

where Dkmnðf Þ¢krmðf Þ � krnðf Þ. Similarly, the kinetic

energy is obtained by combining the radial (11) and vertical

(12) particle velocity components with Eq. (5), leading to

Ekðz; f Þ ¼
1

16rp2f 2qðzÞ

 XM

m¼1

jAmðzs; f Þj2

� W2
mðz; f Þ krmðf Þ þ

W02mðz; f Þ
krmðf Þ

" #

þ
XM

m; n ¼ 1

m 6¼ n

Amðzs; f ÞA�nðzs; f ÞeiDkmnðf Þr

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
krmðf Þkrnðf Þ

p
Wmðz; f ÞWnðz; f Þ

þ
XM

m; n ¼ 1

m 6¼ n

Amðzs; f ÞA�nðzs; f ÞeiDkmnðf Þr

�W0mðz; f ÞW0nðz; f Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
krmðf Þkrnðf Þ

p
!
: (14)

Equations (13) and (14) are valid for any shallow water

acoustic propagation scenario conveniently described by

Eqs. (10)–(12). Moreover, Eqs. (13) and (14) show that

energies are comprised of two terms: one gathering the sum

of energies of each mode, and a second term that encodes

the sum of energies due to interferences between a mode

pair (m, n). This second term complicates the analysis of the

properties of Epðz; f Þ and Ekðz; f Þ. Fortunately, we will show

in Sec. III that integrating over a sufficiently large frequency

band permits to get rid of this cumbersome term, therefore

enabling the analysis of the properties of frequency-

integrated potential and kinetic energies.

D. Benchmark scenarios

The aim of this study is to provide closed-form expres-

sions to relate Ep and Ek. Still, the article will rely on numer-

ical simulations to illustrate the mathematical derivations. In

practice, two scenarios will be considered: an ideal isoveloc-

ity waveguide, and a realistic range-independent waveguide

with a non-constant sound-speed profile in the water column

and a layered seafloor.

The first ideal waveguide consists of an isovelocity (sound

speed c(z)¼ 1500 m s�1) isodensity (qðzÞ ¼ 1000 kg m�3)

water column (depth D¼ 100 m) with an upper pressure

release sea-surface and a bottom rigid seafloor. In this simple

waveguide, the modal quantities (Wm and krm) have closed-

form expression. This environment will be used as a proxy to

establish some theoretical properties and to obtain simple phys-

ical insights.

The second layered waveguide also has water depth

D¼ 100 m with an upper pressure release sea-surface. In the

water column, the sound speed profile has respective values of

1525, 1525, 1485 and 1495 m/s for depths 0, 10, 30 and 100 m

(the square of the index of refraction is linearly interpolated

between those points). The seafloor consists of a sediment layer

(thickness h¼ 10, constant sound speed c1 ¼ 1650 m/s, density

q1 ¼ 1600 kg m�3, attenuation a1 ¼ 0:1 dB/k) over a semi-

infinite basement (constant sound speed cb¼ 2000 m/s, density

qb ¼ 2000 kg m�3, attenuation ab ¼ 0:25 dB/k). This realistic

waveguide will be used to confirm the insights obtained with

the isovelocity approximation. Note that the waveguide param-

eters have been arbitrarily chosen. They can be seen as a nomi-

nal model for the New England shelf, as characterized during

the Shallow Water 2006 (SW06) experiment (Ballard et al.,
2010; Bonnel and Chapman, 2011; Tang et al., 2007).

Numerical simulations in this SW06 waveguide are run using

the normal mode code ORCA (Westwood et al., 1996).

Most numerical simulations will be run for frequencies

below 500 Hz. Various frequency bands will be considered

to assess the influence of bandwidth on the results. In Sec.

V, third octave bands centered on 63 and 125 Hz will be

considered. Those have been chosen because they are the

ones monitored in the European Union to assess noise pollu-

tion (Erbe, 2013). All the simulations assume flat source

spectrum over the frequency bands of interest.

III. RELATION BETWEEN POTENTIAL AND KINETIC
ENERGIES: A NONSTATIONARY PHASE
APPROXIMATION

A. Frequency integration of potential and kinetic
energies

Let us introduce the potential and kinetic energies inte-

grated over the frequency band ½f1; f2� with f1 < f2,
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E f1;f2½ �
p ðzÞ¢

ðf2

f1

Epðz; f Þdf ; (15)

E
f1;f2½ �

k ðzÞ¢
ðf2

f1

Ekðz; f Þdf ; (16)

where Epðz; f Þ and Ekðf ; zÞ are given by Eqs. (13) and (14),

respectively. Note that the integrals are defined on ½f1; f2�
even if the integrand only exists on a smaller interval, e.g.,

if the source spectrum is contained in a smaller bandwidth.

This mathematical trick will be useful later on.

Separating the contributions of the sum of energies of

each mode and the sum of energies of interferences, the

frequency-integrated pressure can be decomposed as

E f1;f2½ �
p ðzÞ ¼ 1

4rqðzÞc2ðzÞ

 XM

m¼1

I f1;f2½ �
p;m ðzÞ þ

XM

m; n ¼ 1

m 6¼ n

J f1;f2½ �
p;mn ðzÞ

!
;

(17)

where

I f1;f2½ �
p;m ðzÞ ¼

ðf2

f1

jAmðzs; f Þj2

krmðf Þ
W2

mðz; f Þdf ; (18)

J f1;f2½ �
p;mn ðzÞ ¼

ðf2

f1

Amðzs; f ÞA�nðzs; f Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
krmðf Þkrnðf Þ

p
�Wmðz; f ÞWnðz; f ÞeiDkmnðf Þrdf : (19)

Remark that the cross-terms satisfy the symmetry J ½f1;f2�p;mn ðzÞ
¼ ðJ ½f1;f2�p;nm ðzÞÞ

�
, which guarantees that the integrated poten-

tial energy is real-valued. A similar decomposition can be

obtained for the kinetic energy integrated over the frequency

band ½f1; f2�, i.e.,

E
f1;f2½ �

k ðzÞ ¼ 1

16rp2f 2qðzÞ

 XM

m¼1

I f1;f2½ �
k;m ðzÞ þ

XM
m; n ¼ 1

m 6¼ n

J f1;f2½ �
k;mn ðzÞ

!
;

(20)

with definitions and properties of I½f1;f2�k;m ðzÞ and J ½f1;f2�k;mn ðzÞ fol-

lowing directly from Eq. (14). They are omitted here for

convenience.

B. Nonstationary phase approximation

Explicit expressions of integrated energies (17) and

(20) are somewhat cumbersome. Therefore, it is crucial to

simplify those expressions to make amenable further analy-

sis and understanding of the properties of E
½f1;f2�
p ðzÞ and

E
½f1;f2�
k ðzÞ. Fortunately, the use of a nonstationary phase argu-

ment enables to neglect cross-terms J ½f1;f2�p;mn ðzÞ and J ½f1;f2�k;mn ðzÞ,
so that frequency integrated potential and kinetic energies

are very well approximated by the sum of (integrated)

energies of their individual modes. It is essential to remark

that this approximation is made possible by integrating out

over a given frequency range: hence, it is not valid for

Epðz; f Þ and Ekðz; f Þ defined in Eqs. (13) and (14),

respectively.

The approach relies on the far-field assumption (r � 1)

that makes integrals J ½f1;f2�p;mn ðzÞ and J ½f1;f2�k;mn ðzÞ oscillatory inte-

grals of the form, for z and zs being fixed,

JðrÞ ¼
ðf2

f1

gmnðf ÞeiDkmnðf Þrdf ; (21)

where gmn can be expressed in terms of modal amplitudes,

modal functions, radial wavenumbers, and source spec-

trum. The term oscillatory integral refers to the fact that

Eq. (21) consists in the integral of a smooth, slowly vary-

ing function gmnðf Þ multiplied by a rapidly oscillating com-

plex exponential exp ðiDkmnðf ÞrÞ. Intuitively, as r
increases, the complex exponential oscillates faster. As a

result, the integrand gmnðf ÞeiDkmnðf Þr successively takes posi-

tive and negative values, which tend to cancel each other

after integration. As a result, the overall behavior of J(r) is

to decrease with r.

Formally, the principle of non-stationary phase can be

stated as follows [Stein and Murphy (1993), Chap. 8, Prop.

1]:1 if gmnðf Þ is a smooth function compactly supported on

½f1; f2� [i.e., gmnðf1Þ ¼ gmnðf2Þ ¼ 0] and that ðDkmnðf ÞÞ0 6¼ 0

for every f 2 ½f1; f2�, then the integral J(r) decreases faster

than r�c for any c > 1 as r !1. In particular, JðrÞ ! 0 as

r !1.

In practice, if one makes the following assumptions:

• the source signal Xðf Þ vanishes outside the frequency

band ½f1; f2�, such that Xðf1Þ ¼ Xðf2Þ ¼ 0 (alternatively, f1
may be low enough to be below the waveguide cutoff fre-

quency, such that no modal energy is propagating);
• the group speeds of two distinct modes do not cross on

the frequency band, i.e., for all m 6¼ n; dkm=df 6¼ dkn=df .

This assumption is usually verified in relatively simple

shallow water waveguides. Even if crossings do some-

times appear, e.g., around Airy phase, their associated

acoustic energy will be very low2—meaning that such

cases can be neglected in a first approximation;

then one can directly apply the nonstationary phase principle

to integrals J ½f1;f2�p;mn ðzÞ and J ½f1;f2�k;mn ðzÞ, leading to

J ½f1;f2�p;mn ðzÞ;J
½f1;f2�
k;mn ðzÞ ! 0 as r !1.

Therefore, frequency integrated potential and kinetic

energies can be approximated for r � 1 as

E f1;f2½ �
p ðzÞ � 1

4rqðzÞc2ðzÞ
XM

m¼1

I f1;f2½ �
p;m ðzÞ; (22)

E
f1;f2½ �

k ðzÞ � 1

16rp2qðzÞ
XM

m¼1

I f1;f2½ �
k;m ðzÞ; (23)

i.e., they can be approximated by the sum of energies of

individual modes. This property is essential to obtain a
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closed form expression of the difference between integrated

potential and kinetic energies, as we show in the Sec. III C.

C. Numerical validation of the non-stationary phase
approximation

Starting from Eqs. (22)–(23) standard algebra manipu-

lations yield

E
f1;f2½ �

k ðzÞ � E f1;f2½ �
p ðzÞ � eðzÞ¢

XM

m¼1

emðzÞ; (24)

where emðzÞ is the energy difference per mode given by

emðzÞ¼
1

4rqðzÞ

ðf2

f1

jAmðzs;f Þj2 W02mðz;f Þ�W2
mðz;f Þk2

zmðz;f Þ
� �

4p2f 2krmðf Þ
df

(25)

with kzmðf Þ the vertical wavenumber, such that ð2pf Þ2=c2ðzÞ
¼ k2

rmðf Þ þ k2
zmðz; f Þ for m ¼ 1; 2;…;M. The quantity eðzÞ

precisely controls the difference between integrated poten-

tial and kinetic energies. It is a function of the depth z, but

also of the source depth zs (although not explicitly men-

tioned). Before going further, we illustrate the generality of

the nonstationary phase approximation on the two bench-

mark scenarios (see Sec. II D) by comparing direct computa-

tions of E
½f1;f2�
k ðzÞ � E

½f1;f2�
p ðzÞ against numerical evaluations

of eðzÞ.
Figure 1 depicts the energy difference E

½f1;f2�
k ðzÞ � E

½f1;f2�
p ðzÞ

and its nonstationary phase approximation eðzÞ for the two

benchmark scenarios (see Sec. II D) and three source depths

zs ¼ 10; 25; 40 m. Note that the energy difference is given

using an arbitrary linear unit (a.u.), proportional to J/m3, as

obtained for a unit source. We considered the frequency

band ½1; 250�Hz. Integrals over this frequency band were

computed using a standard trapezoidal approximation with

frequency step of 0.25 Hz. Moreover, the number of contrib-

uting modes was determined as M¼ 33 for the ideal isove-

locity waveguide and M¼ 24 for the realistic SW06

FIG. 1. (Color online) Comparison of the energy difference E
½f1 ;f2 �
k ðzÞ � E

½f1 ;f2 �
p ðzÞ (red lines) and its (nonstationary phase) approximation eðzÞ (black lines) for

three source depths zs ¼ 10; 25; 40 m in the two benchmark scenarios described in Sec. II D, with f1 ¼ 1 Hz and f2 ¼ 250 Hz and r¼ 7.5 km. Top row: ideal

isovelocity environment. Bottom row: realistic SW06 environment for the same three source depths. In each subplot, black horizontal lines gives source

depth z¼ zs and its water column mirrored version z ¼ D� zs.
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scenario. For both benchmark scenarios, one observes a

very good match between direct evaluations of the energy

difference E
½f1;f2�
k ðzÞ � E

½f1;f2�
p ðzÞ and its approximation eðzÞ,

especially around peaks located at interfaces (z¼ 0 and

z¼D) and mirrored source depths ðz ¼ zs and z ¼ D� zs).

The specific shape of those plots (and notably the peak posi-

tions) will be discussed later. The important point here is

that the numerical simulation validates the relevance of the

nonstationary phase approximation approach described in

Sec. III B. Notably, it makes it possible a detailed analysis

of the properties of the energy difference E
½f1;f2�
k ðzÞ

�E
½f1;f2�
p ðzÞ by studying the function eðzÞ.

IV. RELATION BETWEEN POTENTIAL AND KINETIC
ENERGIES: THE ISOVELOCITY CASE

A. Analytic derivation of eðzÞ

The examination of Fig. 1 shows that, for both scenar-

ios, E
½f1;f2�
k ðzÞ � E

½f1;f2�
p ðzÞ for almost all depths, excepted

around interfaces (z¼ 0 and z¼D) and, more interestingly,

around source depth z¼ zs and its water column mirrored

version z ¼ D� zs. To understand such behavior, this sec-

tion provides a theoretical analysis of the properties of the

function eðzÞ for the ideal isovelocity waveguide.

Remarkably, these insights translate well to the more realis-

tic SW06 case: see Sec. V for further details and numerical

experiments.

In the isovelocity case, the sound speed is constant

cðzÞ ¼ c0 as well as the water density qðzÞ ¼ q0. Moreover,

modes functions are frequency independent Wmðz; f Þ
¼ WmðzÞ and vertical wavenumbers solely depend on the

mode index m, i.e., kzmðz; f Þ ¼ kzm. Further, the simple bound-

ary conditions yield explicit expressions [Jensen et al. (2011),

Sec. 5.4],

WmðzÞ ¼
ffiffiffiffiffiffiffi
2q0

D

r
sin kzmz; kzm ¼

p
D

m� 1

2

� �
: (26)

Plugging Eq. (26) into the energy difference per mode (25)

leads to a simple closed form formula which reads

emðzÞ ¼ C f1;f2½ �
m k2

zm sin2ðkzmzsÞ cos ð2kzmzÞ; (27)

where C½f1;f2�m carries integration of frequency dependent

terms over the band ½f1; f2� such that

C f1;f2½ �
m ¢

1

8pq0rD2

ðf2

f1

jXðf Þj2

4p2f 2krmðf Þ
df : (28)

As already mentioned, the energy difference eðzÞ directly

depends on the receiver depth z and source depth zs.

Observe that emðzÞ is symmetric around z ¼ D=2 such that

emðD=2� zÞ ¼ �emðD=2þ zÞ. As a consequence, the total

energy difference is also symmetric around z ¼ D=2, i.e.,

eðD=2� zÞ ¼ �eðD=2þ zÞ. This explains why eðD=2Þ
¼ emðD=2Þ ¼ 0 for every m, meaning that the total energy

difference is always equal to 0 in the center of the water

column. Moreover, remark that cos ð2kzmzÞ has local

extrema at z¼ 0 and z¼D for any m. This implies that eðzÞ
admits local extrema at those locations—a first hint explain-

ing the large peaks (in absolute value) observed at interfa-

ces. Further properties of eðzÞ, in particular, the expected

peaks at z¼ zs and z ¼ D� zs are not directly apparent from

looking at Eq. (27). Instead, it requires to understand the

role played by the frequency integration over the frequency

band ½f1; f2�. This is discussed in Sec. IV B below.

B. Broadband modeling: Understanding the
properties of eðzÞ

First, let us rewrite Eq. (27) using standard trigonomet-

ric formulas,

emðzÞ ¼
1

4
C f1;f2½ �

m k2
zm½2 cos ð2kzmzÞ � cos ð2kzmðzþ zsÞÞ

� cos ð2kzmðz� zsÞÞ�: (29)

Summing over all M modes, we observe that the total energy

difference can be written as

eðzÞ ¼ 2e0ðzÞ þ e0ðz� zsÞ þ e0ðzþ zsÞ; (30)

i.e., eðzÞ is the sum of depth-translated versions of the same

elementary function e0ðzÞ given by

e0ðzÞ ¼
1

4

XM

m¼1

C f1;f2½ �
m k2

zm cos ð2kzmzÞ: (31)

Finding an explicit expression of e0ðzÞ is cumbersome since

computation of coefficients C½f1;f2�m given by Eq. (28) cannot

be carried without further assumptions. Recall that we have

only assumed so far that the source Xðf Þ was band limited

on ½f1; f2�, i.e., such that Xðf Þ ¼ 0 outside this frequency

interval. Indeed, the nonstationary phase argument of Sec.

III B is valid for any choice of f1, f2 as long as the range

r � 1. To properly understand the properties of e0ðzÞ [hence

that of eðzÞ] one shall make the following (reasonable)

assumptions:

• f1 � fc1, where fc1 is the cut-off frequency of the first mode

[in an ideal isovelocity waveguide, fc1 ¼ c0kz1=ð2pÞ];
• f2 � f1, i.e., integration is performed over a sufficiently

large frequency interval;
• the source has a flat spectrum jXðf Þj ¼ 1 for f 2 ½f1; f2�.

As explained in Appendix B, these assumptions allow

to represent e0ðzÞ as the convolution of a Dirichlet-like ker-

nel DMðzÞ with a smoothing operator KðzÞ such that

e0ðzÞ ¼ K � DMð ÞðzÞ; (32)

where KðzÞ can be computed explicitly [it involves Bessel

functions; see Eq. (B19)] and

DMðzÞ ¼ cos
p
D

Mz

	 
 sin
p
D

Mz

� �
sin

p
D

z

� � : (33)
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The function KðzÞ plays the same role as data tapers in spec-

tral analysis (Percival and Walden, 1993). It does not change

the main properties (e.g., mainlobe location) of DMðzÞ but

tends to smooth out sidelobes due to the finite frequency

integration interval ½f1; f2�. Its spread diminishes as f2
increases, and asymptotically KðzÞ ! dðzÞ when f2 !1,

i.e., KðzÞ converges to Dirac’s delta function if integration

is done over a wide enough bandwidth. In essence, this

means that the general properties of e0ðzÞ can be inferred

from that of DMðzÞ.
The function DMðzÞ is similar to kernels usually

encountered in spectral analysis (Percival and Walden,

1993) when considering truncated discrete time Fourier

transforms. It has a global maximum in z¼ 0 and a global

minimum in z¼D with opposite values 6M. Away from

these (global) extrema, DMðzÞ shows oscillations of rapidly

decreasing amplitudes. Concentration around global

extrema increases with M, such that DMðzÞ tends to two

Dirac delta functions located at z¼ 0 and z¼D for

M !1. Since DMðzÞ is 2D-periodic, translation by z!
zþ zs reveals only one global extrema (a minima) on

½0;D�, located at z ¼ D� zs, with the same decaying

properties as jzþ zsj increases. Similarly, by translating

z! z� zs, we obtain a single global extrema (a maxima)

located at z¼ zs.

Having identified the key properties of DMðzÞ, one can

now analyze the behavior of the integrated energy difference

eðzÞ, which is given by

eðzÞ ¼ 2 K � DMð ÞðzÞ � K � DMð Þðzþ zsÞ
� K � DMð Þðz� zSÞ: (34)

We have the following properties:

• eðzÞ shows large deviations (i.e., peaks) at interfaces

(z¼ 0 and z¼D) and at sources mirrored locations (z¼ zs

and z ¼ D� zs);
• besides these peaks, eðzÞ tends to cancel out, with a resid-

ual ripple due to oscillations in the Dirichlet-like kernels;
• the finesse of peaks (at z¼ 0, zs, D� zs and D) increases

with the number of propagating modes M;
• for M sufficiently large, jeð0Þj ¼ jeðDÞj � 2Kð0ÞM and

jeðzsÞj ¼ jeðD� zsÞj � Kð0ÞM so that the energy differ-

ence at interfaces is twice that at mirrored source depths.

Remark that peaks properties of eðzÞ are closely related

to constructive interferences between mode energy differ-

ences, which become more and more significant as the num-

ber of propagating modes M increases. The latter is directly

linked to the choice of the upper band frequency f2: the

larger f2 is, the larger M is. In particular, in the limit f2

!1; E
½f1;1�
p ðzÞ � E

½f1;1�
k ðzÞ for almost every z, excepted for

z ¼ 0; zs;D� zs;D where the energy difference tends to

61! On the other hand, if one considers a small integration

bandwidth, it is important for f2 to be large enough for at

least 2 modes to be propagating, so that interference

between modes can occur. If less than two modes are propa-

gating, none of the discussion above applies.

C. Numerical illustration

Figure 2 displays integrated energy difference eðzÞ for

frequency bands of increasing size, i.e., ½0; 125�Hz,

½0; 250�Hz, and ½0; 500�Hz. They confirm the predictions

from the theoretical analysis presented in Sec. IV B.

Namely, eðzÞ is symmetric with respect the center of the

water column z ¼ D=2. It exhibits peaks at interfaces and

mirrored sources locations. When the integration bandwidth

increases, the peak amplitude increases and the mainlobe

width decreases, and vice versa. Indeed, when the upper

band limit f2 increases, the number of propagating modes M
also increases. This reinforces the destructive and construc-

tive interference patterns of eðzÞ, leading to the behavior

explained previously.

The peaks in Fig. 2 (as well as in Figs. 1 and 3) sug-

gest that, on a linear scale, E
½f1;f2�
p and E

½f1;f2�
k are vastly dif-

ferent when z ¼ 0; zs;D� zs;D. However, this difference

stays relatively small when frequency integration is done

over a reasonable band, particularly if results are reported

in terms of an energy ratio in dB. This will be illustrated

in Secs. V B and V C. Also, note that the peaks in Figs. 1

and 2 (and later Fig. 3) imply that the energy difference is

high at those specific depths; it does not inform about

individual Ep or Ek values. As an example, while the peak

at z¼ 0 is particularly pronounced, this should not suggest

that Ek increases around the sea surface. Rather, the oppo-

site happens: Ep drastically drops while Ek is relatively

constant.

V. SIMULATED EXAMPLE

The theoretical results presented above are now evalu-

ated on realistic simulations. All simulations are run in the

SW06 waveguide presented in Sec. II D. The objective here

is to go beyond the isovelocity case that has been used to

theoretically derive the results. This section shows the rele-

vance and illustrates the generality of the approximations

made in Sec. IV.

A. Comparison with the isovelocity waveguide

Section IV C presented a study of the energy differ-

ence eðzÞ when integrated in three different frequency

bands: ½0; 125�Hz, ½0; 250�Hz, and ½0; 500�Hz. A similar

study is performed for the SW06 simulated data, with

results presented in Fig. 3. Overall, the behavior of eðzÞ is

similar in the SW06 waveguide (Fig. 3) than in the ideal

waveguide (Fig. 2): it tends to oscillate with small values

over most of the water column, but has four strong peaks

at z¼ 0, z¼D, z¼ zs, and z ¼ D� zs. Interestingly, in the

SW06 waveguide, eðzÞ loses the symmetric property

around the center of the water column z ¼ D=2. This is

because the SW06 seafloor boundary condition is more

complex than the rigid case: sound can now penetrate in

the seafloor. This tends to complicate the behavior of eðzÞ.
However, it also decreases the amplitude of the two peaks

that are in the bottom part of the water column. Other sim-

ulations, not shown here, illustrate that the amplitude of
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those peaks decrease when the seafloor boundary condi-

tion becomes less reflective (i.e., slower sound speed and/

or smaller density).

An empirical observation of this property is shown in

Dahl and Bonnel (2022): ship noise is measured one meter

above the seafloor (zr ’ D) by a vector sensor and a hydro-

phone. Potential and kinetic energies are evaluated and inte-

grated into third octave bands. Figure 2 in Dahl and Bonnel

(2022) shows that, for this dataset, E
½f1;f2�
p ’ E

½f1;f2�
k , and thus

eðzÞ ’ 0. This may seem counter-intuitive: since measure-

ment is done with zr ’ D, one may expect a strong peak in

eðzÞ and thus E
½f1;f2�
p 6¼ E

½f1;f2�
k . However, measurements were

done in the New England Mud Patch, an area characterized

by a thick mud layer, i.e., a very soft sediment. As stated

above, this smooths the peaks of eðzÞ in the bottom part of

the water column, and leads to the empirical observation

E
½f1;f2�
p ’ E

½f1;f2�
k even with zr ’ D.

B. Energy difference: Importance of frequency
integration

The broadband behavior of Ep and Ek is now studied

through the energy ratio Ep=Ek, a quantity that is used in

practice for geoacoustic inversion (Dahl and Dall’Osto,

2022; Ren and Hermand, 2012) and/or when doing bioa-

coustic experiments in tanks (Olivier et al., 2022; Popper

and Fay, 2011).

Figure 4 shows the ratio Ep=Ek as simulated in the

SW06 waveguide for range from 5 to 10 km, with zs¼ 20 m

and zr¼ 50 m. Results computed at a single frequency are

shown as blue lines, for f¼ 63 Hz (left panel) and f¼ 125 Hz

(right panel). In such a monochromatic case, Ep=Ek drasti-

cally oscillates with range. This illustrates the importance of

frequency integration to (approximately) equate Ep and Ek.

Results obtained with integration over third-octave bands

are shown as orange lines, for central frequencies 63 and

FIG. 3. Evolution of eðzÞ in the SW06 waveguide case with r¼ 7.5 km for integration frequency bands of increasing size. As in Fig. 2, the range of values in

the right panel is twice that of left and center panels, and the horizontal gray lines give the source depth z¼ zs and its mirror location z ¼ D� zs.

FIG. 2. Evolution of eðzÞ in the isovelocity waveguide case with r¼ 7.5 km for integration frequency bands of increasing size. Note that the range of values

in the right panel is twice that of left and center panels for better readability. The horizontal gray lines give the source depth z¼ zs and its mirror location

z ¼ D� zs.
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125 Hz. Although the frequency bands are relatively narrow

(respectively, [56.1, 70.7] and [111.4, 140.3] Hz), the ratio

E
½f1;f2�
p =E

½f1;f2�
k is smooth, with values contained between 0.94

and 1.09. Last, results computed for the band [0, 250] Hz

(black line, right panel) shows a ratio E
½f1;f2�
p =E

½f1;f2�
k that is

virtually constant and equal to 1.

This illustrates that, although frequency integration is

required to obtain Ep=Ek ’ 1, one can integrate into rela-

tively small frequency bands, like the third octave bands

that are used to characterize noise pollution in the European

Union.

C. Energy difference: Influence of source position
and range

The study of the energy ratio E
½f1;f2�
p =E

½f1;f2�
k is extended

to various source/receiver configurations. As in Sec. V B,

the focus is on three frequency bands: the third octave bands

centered on 63 and 125 Hz, as well as the 0–250 Hz band.

Results will be given in dB, with 0 dB meaning that

E
½f1;f2�
p ¼ E

½f1;f2�
k .

Figure 5 shows E
½f1;f2�
p =E

½f1;f2�
k for various source and

receiver depths covering the whole water column, and a

constant range r¼ 7.5 km. Figure 6 further shows E
½f1;f2�
p =

E
½f1;f2�
k for receiver depths covering the whole water column,

range from 5 to 10 km, and a constant source depth zs

¼ 20 m. Both Figs. 5 and 6 have the same layout: the

first line shows the ratio Ep=Ek in dB with a color scale satu-

rated between –2 and 1 dB. The second line shows the same

plot but with a threshold of 1 dB: yellow color means that

jE½f1;f2�p =E
½f1;f2�
k j > 1 dB, while blue color means that

jE½f1;f2�p =E
½f1;f2�
k j � 1 dB. Note that the 1 dB threshold has been

chosen as representative of calibration uncertainty for vector

sensors, e.g., see Dahl and Bonnel (2022). Overall, the two

figures illustrate that E
½f1;f2�
p ’ E

½f1;f2�
k within 1 dB (i.e., cali-

bration uncertainty) nearly everywhere in the water column,

except for really shallow depths (z< 5 m).

VI. CONCLUSION

The paper presents a thorough theoretical derivation of

the broadband properties of Ek and Ep in a shallow-water

waveguide. In such context, the acoustic field is expended

on a finite set of propagating normal modes. Using several

assumptions, the normal mode model enables an analytical

derivation of important properties for Ek and Ep. The main

result of the paper is that, when integrated over a wide

enough frequency-band ½f1; f2�; E
½f1;f2�
k ¼ E

½f1;f2�
p nearly every-

where in the waveguide.

The assumptions required to derive the theoretical

results are as follows. First, a non-stationary phase approxi-

mation is done to cancel the cross-terms in E
½f1;f2�
k and E

½f1;f2�
p .

This requires the following hypotheses:

(1) far-field (r � 1) (see Sec. III B),

(2) the source signal Xðf Þ is flat (see Sec. III B) and van-

ishes outside of the frequency band of interest (see Sec.

IV B),

(3) modal group speeds do not cross in the frequency band

of interest (see Sec. III B).

Second, a closed-form expression for E
½f1;f2�
k � E

½f1;f2�
p is

obtained (see Sec. IV) by assuming that the environment is

an ideal isovelocity waveguide (i.e., perfectly reflecting sur-

face and perfectly rigid seabed). This concludes the demon-

stration and shows that, if the considered frequency band is

wide enough, then E
½f1;f2�
k ¼ E

½f1;f2�
p everywhere in the

FIG. 4. (Color online) Energy ratio Ep=Ek simulated in the SW06 waveguide for zs¼ 20 m and zr¼ 50 m, as computed with a single frequency (blue lines),

in a third octave band (orange line), or from 0 to 250 Hz (black line). The left panel shows simulations centered around 63 Hz while the right panel shows

simulations centered around 125 Hz.
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waveguide, except at four specific receiver depths: z¼ 0,

z¼D, z¼ zs, and z ¼ D� zs.

The theoretical derivations are backed with numerical

simulations showing the relevance of the approach. Those

simulations also illustrate the generality of the results, dem-

onstrating that the approximations made in the theoretical

derivation do not need to be fully respected. It is notably

observed that, in a realistic waveguide with a non-constant

FIG. 6. (Color online) First line: energy ratio Ep=Ek simulated in the SW06 waveguide with zs¼ 20 m. Second line: similar plots but with a threshold of

1 dB (yellow: jEp=Ekj > 1 dB; blue: jEp=Ekj � 1 dB).

FIG. 5. (Color online) First line: energy ratio Ep=Ek simulated in the SW06 waveguide with r¼ 7.5 km. Second line: similar plots but with a threshold of

1 dB (yellow: jEp=Ekj > 1 dB; blue: jEp=Ekj � 1 dB).
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sound speed profile in the water column and a layered sea-

floor, the property E
½f1;f2�
k ’ E

½f1;f2�
p holds true within 1 dB for

the entire far-field waveguide when integration is done in

third-octave bands, except for depths around the air/water

interface.

The derivations and simulations presented in this article

demonstrate that, if one is exclusively interested in broad-

band energetic properties of the acoustic field in an oceanic

waveguide, it is possible to infer E
½f1;f2�
k from E

½f1;f2�
p , and thus

to use a hydrophone instead of a vector sensor for at-sea

measurements. However, let us remember that particle

velocity is a 3D vector field. It contains much more informa-

tion than just energetic levels, e.g., directionality (Rogers

et al., 2021; Thode et al., 2019; Zeddies et al., 2010) or

polarization (Bonnel et al., 2021; Dahl and Bonnel, 2022;

Dall’Osto et al., 2012). Measuring, understanding, and using

the vector properties of the particle motion field requires the

use of dedicated vector sensors.
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APPENDIX A: VERTICAL INTEGRATION PROPERTY
OF EP AND EK

Equation (6) states that potential and kinetic energies

are equal when vertically integrated (along the water column

and within the seafloor). To the best of our knowledge, this

elegant result first appeared in Pierce (1985). However, the

main topic in Pierce (1985) is not on Ep nor Ek, and thus the

derivation of the result is scarcely outlined. For complete-

ness, we give below a complete detailed proof of this result.

To simplify the presentation, the explicit frequency depen-

dence of quantities is removed throughout.

Recall that for a shallow-water waveguide, the poten-

tial Ep and kinetic energies Ek are given by Eqs. (13) and

(14), respectively. These are obtained by plugging the

modal expressions (10)–(12) of the pressure, radial and

vertical components of the particle velocity into their

respective definitions (2) and (3). To show the equality (6),

we will exploit the orthonormality of the modal functions

along z, i.e.,ð1
0

q�1ðzÞWmðzÞWnðzÞdz ¼ dmn; (A1)

with dmn ¼ 1 if m¼ n and dmn ¼ 0 if m 6¼ n. This property

holds since Wm are eigenfunctions (associated with distinct

eigenvalues krm) of the Sturm-Liouville problem

qðzÞ 1

qðzÞW
0
mðzÞ

	 
0
þ ð2pf Þ2

c2ðzÞ � k2
rm

" #
WmðzÞ ¼ 0 (A2)

with boundary conditions Wðz ¼ 0Þ ¼ 0 and W0ðz!1Þ ¼ 0.

Using the equations above, one can demonstrate the fol-

lowing below (whose relevance will come soon):ð1
0

q�1ðzÞW0mðzÞW0nðzÞdz

¼ q�1ðzÞW0mðzÞWnðzÞ
� �1

0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0 boundary conditionsð Þ

�
ð1

0

WnðzÞ q�1ðzÞW0mðzÞ
� �0

dz (A3)

¼
ð1

0

q�1ðzÞ ð2pf Þ2

c2ðzÞ � k2
rm

" #
WmðzÞWnðzÞdz (A4)

¼ ð2pf Þ2
ð1

0

WmðzÞWnðzÞ
qðzÞc2ðzÞ dz� k2

rmdmn; (A5)

where the second line was obtained using the expression of

½q�1W0m�
0

given by Eq. (A2) and the last line was obtained

using the modal orthonormality (A1).

One is now ready to integrate the potential and kinetic

energies over z. Grouping auto- and cross-terms in a single

double sum, one gets for the potential energy

ð1
0

EpðzÞdz ¼ 1

4r

XM

m;n¼1

AmðzsÞA�nðzsÞeiDkmnrffiffiffiffiffiffiffiffiffiffiffiffi
krmkrn

p

�
ð1

0

WmðzÞWnðzÞ
qðzÞc2ðzÞ dz: (A6)

Similarly, for the kinetic energy,ð1
0

EkðzÞdz

¼ 1

16rp2f 2

XM

m;n¼1

AmðzsÞA�nðzsÞeiDkmnr

�
ð1

0

q�1ðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
krmkrn

p
WmðzÞWnðzÞ þ

W0mðzÞW0nðzÞffiffiffiffiffiffiffiffiffiffiffiffi
krmkrn

p
" #

dz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Amn

:

(A7)

The integral Amn can be further simplified by using Eqs.

(A1) and (A5) such that

Amn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
krmkrn

p ð1
0

q�1ðzÞWmðzÞWnðzÞdz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼dmn

þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
krmkrn

p
ð1

0

q�1ðzÞW0mðzÞW0nðzÞdz (A8)
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¼
ffiffiffiffiffiffiffiffiffiffiffiffi
krmkrn

p
dmnþ

ð2pf Þ2ffiffiffiffiffiffiffiffiffiffiffiffi
krmkrn

p
ð1

0

WmðzÞWnðzÞ
qðzÞc2ðzÞ dz

� k2
rmdmnffiffiffiffiffiffiffiffiffiffiffiffi
krmkrn

p (A9)

¼ ð2pf Þ2ffiffiffiffiffiffiffiffiffiffiffiffi
krmkrn

p
ð1

0

WmðzÞWnðzÞ
qðzÞc2ðzÞ dz: (A10)

As a result, one gets

ð1
0

EkðzÞdz ¼ 1

4r

XM

m;n¼1

AmðzsÞA�nðzsÞeiDkmnrffiffiffiffiffiffiffiffiffiffiffiffi
krmkrn

p

�
ð1

0

WmðzÞWnðzÞ
qðzÞc2ðzÞ dz ¼

ð1
0

EpðzÞdz;

(A11)

which concludes the proof of Eq. (6).

APPENDIX B: INTEGRATED ENERGY DIFFERENCE
COMPUTATIONS

First, we remark that the frequency domain assumptions

made in Sec. IV B allow for an explicit computation of the

coefficients C½f1;f2�m . Letting Q ¼ 1=ð8pq0rD2Þ and with our

assumption that the source has flat spectrum jXðf Þj ¼ 1, one

has

C f1;f2½ �
m ¼ Q

ðf2

f1

1

4p2f 2krmðf Þ
df : (B1)

By assumption, f1 � fc1, with fc1 the cutoff frequency of

mode 1 (more generally, the cutoff frequency of mode m is

defined as fcm). Moreover, for m> 1, fc1 < fcm, and mode m
has no energy propagating for f < fcm. Therefore, Eq. (B1)

can be recasted as

C f1;f2½ �
m ¼ Q

ðf2

fcm

1

4p2f 2krmðf Þ
df (B2)

¼ Q

ðf2

fcm

1

4p2f 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2f 2

c2
� k2

zm

r df (B3)

¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2f 2

c2
� k2

zm

r
4p2fk2

zm

2
64

3
75

f2

fcm

(B4)

¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2f 2

2

c2
� k2

zm

r
4p2f2k2

zm

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2f 2

cm

c2
� k2

zm

r
4p2fcmk2

zm|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼0 by definition of fcm

2
66664

3
77775 (B5)

¼ Q

2pck2
zm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2k2

zm

4p2f 2
2

s
: (B6)

Back to the expression (31) of e0ðzÞ, we observe that

the coefficients jm¢C½f1;f2�m k2
zm essentially play the role of

Fourier coefficients of a finite half-integer cosine Fourier

series on ½0;D�, i.e.,

e0ðzÞ ¼
XM

m¼1

jm cos
2p
D

m� 1

2

� �
z

	 

; (B7)

where we have used that kzm ¼ ðm� 1=2Þp=D for the isove-

locity waveguide. The somewhat complex explicit expres-

sion of Fourier coefficients jm makes it cumbersome to

compute the sum (B7) over the M modes in a simple manner.

However, by computing the Fourier transform of Eq. (B7)

with respect to the variable z [exploiting that e0ðzÞ can be

defined for any value of z], we will show that e0ðzÞ can be

expressed as a smoothed version of a Dirichlet-like kernel.

Let us compute the Fourier transform of Eq. (B7) and

denote by ẑ the dual variable of z,

ê0ðẑÞ¢
ð

R

e0ðzÞe�i2pzẑdz

¼
ð

R

XM

m¼1

jm cos
2p
D

m� 1

2

� �
z

	 

e�i2pzẑdz (B8)

¼
XM

m¼1

jm

2
d ẑ � 2m� 1

2D

� �
þ d ẑ þ 2m� 1

2D

� �� �
;

(B9)

where dðẑÞ are Dirac’s delta distributions. Properties of

these distributions makes it possible to rewrite Eq. (B9) as

the product of two functions such that

ê0ðẑÞ ¼ K̂ðẑÞD̂MðẑÞ; (B10)

where

K̂ðẑÞ ¼ rectaðẑÞ
Q

2pc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ẑ2

a2

s
with a ¼ 2pf2

c
; (B11)

D̂MðẑÞ ¼
XM

m¼1

1

2
d ẑ � 2m� 1

2D

� �
þ 1

2
d ẑ þ 2m� 1

2D

� �
; (B12)

and rectaðẑÞ is the rectangular function which is equal to 1

for ẑ 2 ½�a; a� and zero otherwise. Computing the inverse

Fourier transform of Eq. (B10), one obtains the following

convolution product representation for e0ðzÞ:
e0ðzÞ ¼ ðK � DMÞðzÞ; (B13)

where both functions KðzÞ and DMðzÞ can be computed

explicitly.

Start with KðzÞ. Carrying out explicit Fourier transform

computations one recognizes the integral representation of

Bessel functions of the first kind [Abramowitz and Stegun

(1972), Sec. 9.1.20]
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KðzÞ ¼ Q

2pc

ð
R

rectaðẑÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ẑ2

a2

s
ei2pzẑdẑ (B14)

¼ Q

2pc

ða

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ẑ2

a2

s
ei2pzẑdẑ (B15)

¼ Q

2pc
� 2

ða

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ẑ2

a2

s
cos ð2pzẑÞdẑ (B16)

¼ Q

2pc
� 2a

ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ẑ2

p
cos ð2pazẑÞdẑ (B17)

¼ Q

2pc
� 2a

J1ð2pazÞ
2paz

p
2

(B18)

¼ Q

2pc

J1ð2pazÞ
2z

(B19)

with J1 the first-order Bessel function of the first kind. Note

that KðzÞ is well defined for z¼ 0, since J1ðzÞ	0z=2, leading

to Kð0Þ ¼ Qa=ð4cÞ ¼ Qpf2=ð2c2Þ.
The computation of DMðzÞ follows a different line.

First, we remark that the inverse Fourier transform of D̂MðẑÞ
given by Eq. (B12) can be computed directly as

DMðzÞ ¼
XM

m¼1

cos
2p
D

m� 1

2

� �
z

	 

; (B20)

which is in essence the expression of e0ðzÞ where Fourier

series coefficients jm have been replaced by a vector of

ones. The sum (B20) can be computed by using the follow-

ing identity:

XM

m¼1

ei 2p=Dð Þ m�1
2ð Þz ¼ ei p=Dð ÞMz

sin
p
D

Mz

� �
sin

p
D

z

� � : (B21)

This property is easily recovered by observing that the left

hand side of Eq. (B21) is simply, up to a unimodular multi-

plicative constant, the sum of the first M terms of a geomet-

ric sequence. Thus, taking the real part of Eq. (B21) yields

DMðzÞ ¼ cos
p
D

Mz

	 
 sin
p
D

Mz

� �
sin

p
D

z

� � : (B22)

1It is perhaps more common to encounter the principle of stationary phase,

which allows to approximate the integral (21), for r !1, as the (dis-

crete) sum of weighted evaluations of the integrand at stationary points of

the phase [i.e., such that ðDkmnðf Þ0 ¼ 0Þ]. For more details, see, e.g.,

Bleistein and Handelsman (1975).
2This is not far from saying that the waveguide invariant b � 1.
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