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ALGEBRAIC K-THEORY OF THE TWO-PERIODIC FIRST

MORAVA K-THEORY

HALDUN ÖZGÜR BAYINDIR

Abstract. Using the root adjunction formalism developed in an earlier work and
logarithmic THH, we obtain a simplified computation of T (2)∗K(ku) for p > 3. Our
computational methods also provide T (2)∗K(ku/p), where ku/p is the 2-periodic
Morava K-theory spectrum of height 1.

1. Introduction

One of the central problems in homotopy theory is the computation of the algebraic
K-theory of the sphere spectrum, K(S). This is due to the fact that K(S) contains
the smooth Whitehead spectrum of the point as a summand which approximates the
concordance spaces of highly connected compact smooth manifolds c.f. [WJR13]. A
program initiated by Waldhausen [Wal84] and later carried forward by Ausoni and
Rognes [AR02] aims at studying K(S) via étale descent through K(En) where En is the
Morava E-theory spectrum of height n. This turns our attention to the computation
of K(En).

Motivated by this plan, Ausoni and Rognes compute V (1)∗K(ℓp) in [AR02] for
p > 3. Here, ℓp is the Adams summand of the connective cover kup of the p-completed
complex K-theory spectrum KUp ≃ E1. Later, Ausoni improves this to a computa-
tion of the V (1)-homotopy of K(kup) [Aus10]. Another interest in K(ku) stems from
the fact that it classifies virtual 2-vector bundles, a 2-categorical analogue of ordinary
complex vector bundles [BDRR11].

As an outcome of his computations, Ausoni observes that the relationship between
V (1)∗K(ℓp) and V (1)∗K(kup) through the map V (1)∗K(ℓp) ! V (1)∗K(kup) resem-
bles a height 2 analogue of K∗(Zp;Z/p) ! K∗(Zp[ζp];Z/p) for the cyclotomic extension
Z ! Zp[ζp] where ζp is a primitive pth root of unity; the computation of the former
is due to Hesselholt and Madsen [HM03, Theorem D]. For instance, K(Zp[ζp];Z/p) is
essentially given by adjoining a p − 1-root to v1 in K(Zp;Z/p). On the other hand,
Ausoni proves the following for ℓp ! kup.

Theorem 1.1 ([Aus10], Theorem 7.18). Let p > 3 be a prime. There is an isomor-
phism of graded abelian groups:

T (2)∗K(ku) ∼= T (2)∗K(ℓ)[b]/(bp−1 + v2).

where |b| = 2p+ 2.

Remark 1.2. Indeed, this isomorphism can be improved to that of Fp[b]-algebras. We
discuss this in Remark 7.20.

Remark 1.3. Since T (2)∗K(ℓ) is known due to Ausoni and Rognes [AR02, Theorem
0.3], the theorem above provides an explicit description of T (2)∗K(ku).
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Following this comparison, Ausoni, the author and Moulinos construct a root ad-
junction method for ring spectra and study the algebraic K-theory, THH and log-
arithmic THH of ring spectra obtained via root adjunction [ABM22]. Let A be an
E1-ring spectrum and let a ∈ πmkA. Under suitable hypothesis, this construction
provides another E1-ring A( m

√
a) for which the homotopy ring of A( m

√
a) is precisely

given by a root adjunction:

π∗A(
m
√
a) ∼= π∗A[z]/(z

m − a).

Furthermore, A( m
√
a) is an E1-algebra in Fun(Z/(m)ds, Sp) equipped with the

Day convolution symmetric monoidal structure; we say A( m
√
a) is an m-graded E1-

ring. Roughly speaking, this structure may be considered as a splitting A( m
√
a) ≃

∨i∈Z/mA( m
√
a)i, which we call the weight grading on A( m

√
a), for which the multipli-

cation on A( m
√
a) is given by maps respecting this grading over Z/m:

A( m
√
a)i ∧A( m

√
a)j ! A( m

√
a)i+j.

Furthermore, we have A( m
√
a)i = ΣikA for 0 ≤ i < m. This results in a canonical

splitting of THH(A m
√
a) into a coproduct of m-cofactors as an S1-equivariant spec-

trum. It follows by [ABM22, Theorem 1.9] that at the level of algebraic K-theory,
the map

K(A) ! K(A( m
√
a))

is the inclusion of a wedge summand whenever A is p-local and p ∤ m.
The authors prove in [ABM22] that there is an equivalence of E1-rings kup ≃

ℓp( p−1
√
v1). This equips kup with the structure of a p − 1-graded E1-ring through

kup ≃ ∨0≤i<p−1Σ
2iℓp and one obtains that THH(kup) and the logarithmic THH of

kup in the sense of [ABM22] admit S1-equivariant splittings into p − 1 summands.
In this work, our first objective is to obtain a simplified computation of T (2)∗K(ku),
i.e. a simplified proof of Theorem 1.1, by showing that these splittings carry over to
TC(kup) in a way that provides the graded abelian group T (2)∗K(ku) as a p − 1-
fold coproduct of shifted copies of T (2)∗K(ℓ) as given in Theorem 1.1. For this, we
work with the logarithmic THH (in the sense of Rognes [Rog09]) of kup computed in
[RSS18].

In [Aus10, Sections 3 and 4], Ausoni constructs what he calls the higher bott ele-
ment b ∈ V (1)2p+2K(kup) and identifies the image of this element in V (1)∗THH(kup)
under the trace map. These are the only results that we take from Ausoni’s work as
input. In particular, our computation avoids the low dimensional computations and
the infinite spectral sequence argument of [Aus10, Sections 5, 6 and 7]. We provide
an outline of our computation in Section 2 below.

Remark 1.4. Currently, Christian Ausoni, the author, Tommy Lundemo and Steffen
Sagave are working on generalizing the methods of this work and [ABM22] to obtain
a higher height analogue of Theorem 1.1 that relates the algebraic K-theory of En to
that of the truncated Brown-Peterson spectrum BP 〈n〉.

In a later work [AR12], Ausoni and Rognes compute V (1)∗K(ℓ/p) where ℓ/p is
the connective Morava K-theory spectrum k(1) of height one. Our computational
approach to T (2)∗K(kup) naturally provides a computation of T (2)∗K(ku/p); see
Section 2 for an outline. Namely, we obtain the first computation of T (2)∗K(ku/p).
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Note that, ku/p is also called the connective 2-periodic Morava K-theory of height
one.

Theorem 1.5 (Theorem 7.21). Let p > 3 be a prime. There is an isomorphism of
graded abelian groups:

T (2)∗K(ku/p) ∼= T (2)∗K(ℓ/p)⊗Fp[v2] Fp[b]

with |b| = 2p+ 2 and in the tensor product above, we take v2 = −bp−1.

Together with [AR12, Theorem 1.1], the theorem above provides a complete de-
scription of T (2)∗K(ku/p). In particular, similar to Theorem 1.1, T (2)∗K(ku/p) is
given by a p− 1-fold coproduct of shifted copies of T (2)∗K(ℓ/p).

Indeed, Ausoni and Rognes compute V (1)∗K(ℓ/p) with the goal of investigating
how localization and Galois descent techniques that have been used for (local) number
rings or fields can be applied in studying the algebraic K-theory of ring-spectra, in
particular ℓp and kup. For this, they define K(ff (ℓp)), what they call the algebraic K-
theory of the fraction field of ℓp, as the cofiber of the transfer map K(L/p) ! K(Lp),
i.e. there is a cofiber sequence

K(L/p) ! K(Lp) ! K(ff (ℓp)).

Note that K(ff (ℓp)) is not claimed to be the algebraic K-theory of an E1-ring. Ausoni
and Rognes continue their discussion in [AR09] where they state a conjectural formula
[AR09, Section 3]:

(1.6) T (2)∗K(ff (kup)) ∼= T (2)∗K(ff (ℓp))⊗Fp[v2] Fp[b],

here, K(ff (kup)) is defined to be the cofiber of the transfer map below.

K(KU/p) ! K(KUp) ! K(ff (kup))

In Theorem 7.23, we verify the conjectural formula in (1.6) under a suitable hypoth-
esis.

Notation 1.7. For p > 3, we let V (1) denote the spectrum given by S/(p, v1). Due
to [Oka84], this is a homotopy commutative ring spectrum. Inverting the self map v2
of V (1), we obtain T (2) := V (1)[v±1

2 ]. Since LT (2)V (1) ≃ T (2) [Hov97, Section 1.5],
we obtain that T (2) is also a homotopy commutative ring spectrum and V (1) ! T (2)
is a map of a homotopy commutative ring spectra.

We let CycSp denote the ∞-category of cyclotomic spectra as in [AMMN22, Defini-
tion 2.1]; this is a slight variation of what is called p-cyclotomic spectra in [NS18]. In
particular, an object of CycSp is an S1-equivariant spectrum E with an S1-equivariant
map E ! EtCp .

For a given small symmetric monoidal ∞-category C and a presentably symmet-
ric monoidal ∞-category D, we let Fun(C,D) denote the corresponding functor ∞-
category equipped with the symmetric monoidal structure given by Day convolution
[Gla16, Day70]. For a simplicial set K, we let DK denote the symmetric monoidal ∞-
category given by the simplicial set of maps from K to D equipped with the levelwise
symmetric monoidal structure [Lur16, Remark 2.1.3.4].

For m ≥ 0, we when we mention the abelian group Z/m as a symmetric monoidal
monoidal ∞-category, we mean the corresponding discrete symmetric monoidal ∞-
category. This is often denoted by (Z/m)ds in the literature.
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2. Outline

Here, we provide an outline of the proofs of Theorems 1.1 and 1.5. In Section 4, we
use the Sp-linear Fourier transform developed in [CSY21] to show that the action of
the p-adic Adams operations on kup equips kup with the structure of a p− 1-graded
E∞-ring, i.e. an E∞-algebra in Fun(Z/(p− 1), Sp), compatible with the splitting

kup ≃ ∨0≤i<p−1Σ
2iℓp.

Furthermore, we show that the resulting p−1-graded E1-ring structure on kup agrees
with that provided by the root adjunction methods of [ABM22], i.e. that provided by
the equivalence kup ≃ ℓp( p−1

√
v1).

In Section 5, we discuss the resulting grading on THH(kup) and TC(kup) with
further details provided in Appendix A where we show that TC(−) is a lax symmetric
monoidal functor from the ∞-category of p− 1-graded E1-rings to the ∞-category of
p − 1-graded spectra. We deduce that THH(kup) is an E∞-algebra in p − 1-graded
cyclotomic spectra and that TC(kup) and TC-(kup) are p− 1-graded E∞-rings.

Since kup ≃ ℓp( p−1
√
v1), it follows from the results of [ABM22] that

TC(kup)0 ≃ TC(ℓp) and TC-(kup)0 ≃ TC-(ℓp).

Therefore, to obtain Theorem 1.1, it suffices to show that there is a unit

b ∈ T (2)2p+2TC(kup)

of weight 1. For this, we use the element b ∈ V (1)2p+2K(kup) constructed in [Aus10,
Section 3].

We show in Section 6 that logarithmic THH of kup (as in [RSS18]) also admits
an S1-equivariant splitting compatible with that on THH(kup). After this, we obtain
that b represents a unit in T (2)∗TC

-(kup) by using the logarithmic THH computations
of Rognes, Sagave and Schlichtkrull [RSS18], see Section 7. From this, it follows easily
that b is indeed a unit of weight 1 in T (2)∗TC(kup). This provides T (2)∗TC(kup),
i.e. Theorem 1.1, since

T (2)∗TC(kup)0 ∼= T (2)∗TC(ℓp)

and that T (2)∗TC(kup) is periodic in the weight direction due to the unit b of weight
1 in T (2)∗TC(kup).

To compute T (2)∗K(ku/p), i.e. to prove Theorem 1.5, we construct ku/p as an
algebra over kup in the ∞-category of p− 1-graded spectra in Section 4, i.e. ku/p is
a p− 1-graded kup-algebra. Furthermore, we show that

ku/p ≃ ℓ/p( p−1
√
v1)
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as p − 1-graded E1-rings. As a result, we obtain that TC(ku/p) is a p − 1-graded
TC(kup)-module (i.e. a module over TC(kup) in Fun(Z/(p− 1), Sp)) and that

TC(ku/p)0 ≃ TC(ℓ/p).

After this, Theorem 1.5 follows by noting that T (2)∗TC(kup) contains a unit of weight
1 and therefore, every p−1-graded module over it, such as T (2)∗TC(ku/p), is periodic
in the weight direction, see Section 7.

3. Graded ring spectra

Here, we set our conventions for graded objects in a presentably symmetric monoidal
stable ∞-category C. We start by noting that there is an equivalence of ∞-categories

Fun(Z/m,C) ≃
∏

i∈Z/m

C.

We call an object C of Fun(Z/m,C) an m-graded object of C and let Ci denote C(i).
If C is an Ek-algebra in Fun(Z/m,C), we say C is an m-graded Ek-algebra in C. If
C ′ is an Ek−1 C-algebra in Fun(Z/m,C), we say C ′ is an m-graded C-algebra. For
an M ∈ Fun(Z/m, Sp), we say M is an m-graded spectrum and an Ek-algebra in
Fun(Z/m, Sp) is called an m-graded Ek-ring. For m = 0, we drop m and talk about
graded spectra, graded Ek-rings and so on.

The map Z/m! 0 provides a symmetric monoidal left adjoint functor

D : Fun(Z/m,C) ! Fun(0,C) ≃ C

given by left Kan extension [Nik16, Corollary 3.8]. We call D(C) the underlying
object of C and this is given by the formula

D(M) ≃
∐

i∈Z/m

Mi.

We often omit D in our notation.
We say an m-graded object C of C is concentrated in weight 0 if Ci ≃ 0 whenever

i 6= 0. The inclusion 0 ! Z/m provides another adjunction:

C ≃ Fun(0,C) Fun(Z/m,C)
F0

G0

where the left adjoint F0 is symmetric monoidal and given by left Kan extension
and G0 is given by restriction, i.e. G0(C) = C0. For C ∈ C, F0(C) provides C as
an m-graded object concentrated in weight 0. We often omit F0 and for a given
C ∈ Fun(Z/m,C), we denote the m-graded object F0(C0) by C0.

For an m-graded Ek-ring A, the counit of this adjunction provides a map A0 ! A
of m-graded Ek-rings. If A is concentrated in weight 0, the counit of F0 ⊣ G0 provides
an equivalence

(3.1) F0G0(A) ≃ A.
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4. Complex K-theory spectrum as a p− 1-graded E∞-ring

Here, we use the results of [CSY21] to obtain a p− 1-graded E∞-ring structure on
kup. Furthermore, we show that the resulting p− 1-graded E1-ring structure on kup
agrees with that provided by the root adjunction methods of [ABM22].

Similarly, we construct a 2-periodic p − 1-graded Morava K-theory spectrum of
height 1, i.e. kup/p, as a p− 1-graded E∞ kup-algebra.

4.1. Complex K-theory spectrum. Recall that Lp ! KUp is a Galois extension
with Galois group ∆ := Z/(p − 1) in the sense of [Rog08, Section 5.5.4]. Taking
connective covers, one obtains that kup is a ∆-equivariant E∞ ℓp-algebra and there
is an equivalence:

ℓp ≃ kuh∆p .

We consider ∆ as the cyclic subgroup Z/(p − 1) of Z×
p . Let δ denote a generator

of ∆ and α denote the corresponding element in Zp. On π∗kup ∼= Zp[u2], we have
π∗(δ)(u

i
2) = αiui2. Note that since |∆| = p− 1 and since kup is p-local, the homotopy

fixed points above can be computed by taking fixed points at the level of homotopy
groups.

The p − 1-graded E∞ ℓp-algebra structure on kup is a consequence of the Fourier
transform developed in [CSY21, Section 3]. Due to [CSY21, Corollary 3.9], ℓp admits
a primitive p − 1-root of unity in the sense of [CSY21, Definition 3.3] which we can
choose to be α ∈ Zp

∼= π0ℓp above. Let ∆∗ denote the Pontryagin dual

∆∗ := hom(∆,Z/(p− 1))

of ∆ for which we have ∆∗ ∼= Z/(p− 1). In this situation, [CSY21, Proposition 3.13]
provides a symmetric monoidal functor:

(4.1) F : LModB∆
ℓp ! Fun(Z/(p− 1), LModℓp)

from the ∞-category of ∆-equivariant ℓp-modules to the ∞-category of p− 1-graded
ℓp-modules. Indeed, this functor is an equivalence of ∞-categories. For the E∞-

algebra kup in LModB∆
ℓp , we will show that F(kup) provides the desired p− 1-graded

E∞ ℓp-algebra structure on kup.
First, we describe F(kup) as a p−1-graded ℓp-module. Indeed, F provides the under-

lying eigenspectrum decomposition as described in [CSY21, Remark 3.14]. Namely,
by [CSY21, Definition 3.12] we have

F(kup)i ≃ (ℓp(−ϕi) ∧ℓp kup)
h∆

where ℓp(−ϕi) is given by ℓp as an ℓp-module but δ acts through multiplication by α−i

on π∗(ℓp(−ϕi)) [CSY21, Definition 3.10]; here, ϕi is the map Z/(p− 1) ! Z/(p− 1)
that multiplies by i. Again, homotopy fixed points may be computed by taking fixed
points at the level of homotopy groups and one observes that

π∗
(

F(kup)i
) ∼= π∗

(

(ℓp(−ϕi) ∧ℓp kup)
h∆

)

is precisely given by the eigenspace corresponding to αi in π∗kup. This eigenspace is
π∗(Σ

2iℓp) ⊆ π∗kup. In particular, π∗
(

F(kup)i
)

is free of rank 1 as a π∗ℓp-module and
therefore, we obtain equivalences of ℓp-modules

F(kup)i ≃ Σ2iℓp.
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Therefore, the underlying ℓp-module of the p− 1-graded ℓp-module F(kup) is given
by

(4.2) D(F(kup)) ≃
∨

0≤i<p−1

Σ2iℓp ≃ kup

as desired. The following proposition identifies the underlying E∞ ℓp-algebra of F(kup)
with kup.

Proposition 4.3. There is an equivalence of E∞ ℓp-algebras

D(F(kup)) ≃ kup.

Proof. Using the strong monoidality of F, one observes that there is an isomorphism
π∗
(

D(F(kup))
) ∼= π∗kup of π∗ℓp-algebras. Inverting v1 ∈ π∗ℓp, we obtain the following

commuting diagram of E∞-rings.

(4.4)

ℓp D(F(kup))

Lp D(F(kup))[v
−1
1 ]

There is an isomorphism of π∗Lp-algebras

π∗
(

D(F(kup))[v
−1
1 ]

) ∼= π∗KUp.

Since π∗Lp ! π∗KUp is an étale map of Dirac rings [HP22, Example 4.32], we deduce
by [HP22, Theorem 1.10] that the isomorphism above lifts to an equivalence of E∞

Lp-algebras

D(F(kup))[v
−1
1 ] ≃ KUp.

Alternatively, this also follows by [BR07, Proposition 2.2.3].
Since the right hand vertical arrow in Diagram (4.4) is a connective cover, the

universal property of connective covers (in E∞ ℓp-algebras) provide an equivalence

D(F(kup)) ≃ kup

of E∞ ℓp-algebras. �

Theorem 4.5. The E∞ ℓp-algebra kup admits the structure of a p − 1-graded E∞

ℓp-algebra such that

(kup)i ≃ Σ2iℓp.

Remark 4.6. From this point, when we mention kup as a p−1-graded E∞ ℓp-algebra,
we mean F(kup).

Remark 4.7. We would like to thank Tommy Lundemo for pointing out that it should
also be possible to construct a p − 1-graded E∞-algebra structure on ku(p) using
[Sag14, Proposition 4.15] which states that ku(p) can be obtained from ℓ via base
change through the polynomial like E∞-algebras of [Sag14, Construction 4.2].



8 H. Ö. BAYINDIR

4.2. Adjoining roots to ring spectra. Here, we summarize the root adjunction
method developed in [ABM22, Construction 4.6].

Let k > 0 be even and let S[zk] denote the free E1-ring spectrum on Sk (this
is denoted by S[σk] in [ABM22]). Taking zk to be of weight 1, S[zk] admits the
structure of a graded E2-algebra [ABM22, Construction 3.3]. By left Kan extending
S[zk] through Z ! Z/m, one obtains an m-graded E2-ring that we also call S[zk] with
zk in weight 1.

Let A be an E1 S[zmk]-algebra where zmk acts through a ∈ πmkA. Using F0, we
obtain a map of m-graded E2-rings concentrated in weight 0:

S[zmk] ! A.

Furthermore, [ABM22, Proposition 3.9] provides a map S[zmk] ! S[zk] ofm-graded
E2-rings carrying the weight 0 class zmk to z

m
k in homotopy. Finally, them-graded E1-

ring A( m
√
a) is defined via the following relative smash product in m-graded spectra:

(4.8) A( m
√
a) := A ∧S[zmk ] S[zk].

This comes equipped with a map A ! A( m
√
a) of m-graded E1-rings given by the

counit of the adjunction F0 ⊣ G0.
It follows by the Künneth spectral sequence that at the level of homotopy rings,

one obtains precisely the desired root adjunction:

(4.9) π∗
(

A( m
√
a)
) ∼= π∗(A)[y]/(y

m − a).

The class y above comes from zk ∈ π∗S[zk] and therefore it is of weight 1. Furthermore,
π∗A ⊆ π∗

(

A( m
√
a)
)

is the subring of weight 0 elements.

Lemma 4.10. Let k ≥ 0 be even. The m-graded E2-ring obtained from the graded E2-
ring S[zk] by left Kan extending through Z ! Z/m admits an even cell decomposition.

Proof. This follows as in the proof of [ABM22, Lemma 3.6]. The E2-ring S[zk] admits
an even cell decomposition [ABM22, Proposition 3.4], i.e. it is given by a filtered
colimit of graded E2-rings starting with the free graded E2-algebra on Sk and the
later stages given by attaching an even E2-cell to the former. Note that left Kan
extension through Z ! Z/m is left adjoint and symmetric monoidal. Therefore, it
preserves free algebras, even cell attachments and filtered colimits. This provides the
m-graded E2-ring S[zk] with an even cell decomposition. �

4.3. Complex K-theory spectrum via root adjunction. Here, we show that the
p− 1-graded E1 ℓp-algebra structure on kup provided by Proposition 4.3 agrees with
that obtained by adjoining a root to v1 ∈ π∗ℓp.

Let S[z2] be the p− 1-graded E2-algebra with z2 in weight 1 as mentioned earlier.
Since π∗ℓp is concentrated in even degrees, Lemma 4.10 provides a p−1-graded E2-ring
map

(4.11) S[z2] ! kup

that carries z2 to u2 in homotopy. The aforementioned p−1-gradedE2-map S[z2(p−1)] !

S[z2] carrying the weight 0 class z2(p−1) to z
p−1
2 induces the second equivalence below.

S[z2(p−1)] ≃ F0G0(S[z2(p−1)]) ≃ F0G0(S[z2])
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The first equivalence follows by (3.1) and these are equivalences of p− 1-graded E2-
rings.

Similarly, the p− 1-graded E∞-ring map ℓp ! kup (with ℓp concentrated in weight
0), provides an equivalence ℓp ≃ F0G0(kup) of p − 1-graded E∞-rings concentrated
in weight 0. We obtain the following commuting diagram of p − 1-graded E2-rings
by applying the natural transformation F0G0 ! id to (4.11) and using the last two
equivalences we mentioned above.

(4.12)

S[z2(p−1)] ℓp

S[z2] kup

In particular, the map ℓp ! kup is a map of p − 1-graded S[z2(p−1)]-algebras. The
extension/restriction of scalars adjunction induced by the left hand vertical map
provides a map

ℓp ∧S[z2(p−1)] S[z2]
≃
−! kup

of p − 1-graded E1 S[z2]-algebras. Note that the left hand side above is a form of
ℓp( p−1

√
v1) as in (4.8). Considering (4.9), one observes that the map above is an

equivalence as desired. This proves the following.

Proposition 4.13. Let kup denote a p− 1-graded E1-ring provided by Theorem 4.5.
Then there is an equivalence of p− 1-graded E1-rings

kup ≃ ℓp( p−1
√
v1)

for the form of ℓp( p−1
√
v1) constructed above.

4.4. Two periodic Morava K-theory as a p−1-graded kup-algebra. Using the
even cell decomposition of S[z0], we obtain a map S[z0] ! ℓp of E2-rings that carries
z0 to p in homotopy. Through this, we define the connective first Morava K-theory
k(1) ≃ ℓ/p as an E1 ℓp-algebra as follows:

ℓ/p := S ∧S[z0] ℓp.

Here, we make use of the E∞ map S[z0] ! S sending z0 to 0; this is the weight
0-Postnikov truncation of S[z0] ([HW20, Lemma B.0.6]). Using F0, we consider ℓ/p
as a p− 1-graded ℓp-algebra concentrated in weight 0.

We define the connective two periodic first Morava K-theory ku/p as a p−1-graded
kup-algebra as follows.

ku/p := ℓ/p ∧ℓp kup

Proposition 4.14. There is an equivalence of p− 1-graded E1-rings

ku/p ≃ ℓ/p( p−1
√
vn)

for some form of ℓ/p( p−1
√
vn).

Proof. There is a map of p− 1-graded ℓp-algebras

ℓ/p! ku/p := ℓ/p ∧ℓp kup.

The target carries a p − 1-graded kup-algebra structure compatible with its p − 1-
graded ℓp-algebra structure. Forgetting through Diagram (4.12), this is a map of
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p − 1-graded S[z2(p−1)]-algebras where the target carries a compatible p − 1-graded
S[z2]-algebra structure. Extending scalars, we obtain a map of p− 1-graded E1-rings:

ℓ/p ∧S[z2(p−1)] S[z2]
≃
−! ku/p,

which can easily shown to be an equivalence.
�

5. Graded THH, TC- and TC

Let X be a p-local m-graded Ek-ring for m > 0. In [AMMN22, Appendix A],
the authors prove that in this situation, THH(X) is an m-graded Ek−1-algebra in

SpBS1

. In particular, THH(X) admits an S1-equivariant splitting into a coproduct
of m-cofactors. Since the homotopy fixed points functor and the Tate construction
commute with finite coproducts, this splits THH(X)hS

1
and (THH(X)tCp)hS

1
as well.

However, these splittings may not carry over to TC(X) in general since the canonical

map is given by maps THH(X)hS
1

i ! (THH(X)
tCp

i )hS
1
that preserve the m-grading

whereas the Frobenius map is given by maps

THH(X)i ! THH(X)
tCp

pi .

In particular, the fiber sequence defining TC(X)

TC(X) !
∨

i∈Z/m

THH(X)hS
1

i

ϕhS1
p −can

−−−−−−!

∨

i∈Z/m

(THH(X)
tCp

i )hS
1

may not split. On the other hand, if p = 1 in Z/m, the Frobenius map also respects
the m-grading. This results in a splitting of the fiber sequence defining TC(X) and
hence a splitting of TC(X) into m-factors. Since p = 1 in Z/(p − 1), this applies to
our examples. In this section, we make this precise and deduce that TC(kup) is a
p− 1-graded E∞-ring and that TC(ku/p) is a p− 1-graded TC(kup)-module.

For a given spectrum F , we let F triv denote the cyclotomic spectrum with trivial
S1-action and the Frobenius map given by the composite F ! F hCp

! F tCp where
the first map comes from the fact that F has the trivial action and the second map
is the canonical map.

Definition 5.1. Since CycSp is a stable and presentably symmetric monoidal ∞-
category, it follows by Shipley’s theorem that there is a unique cocontinuous symmet-
ric monoidal functor

(−)triv : Sp ! CycSp

given by the trivial cyclotomic structure described above.
The right adjoint to (−)triv is the lax symmetric monoidal functor

TC: CycSp ! Sp

given by
TC(−) ≃ MapCycSp(S

triv,−).

For the rest of this section, assume that m is a positive integer such that p = 1 in
Z/m. Using the results of [AMMN22, Appendix A] we prove in Appendix A below
that there is a symmetric monoidal functor

AlgE1
(Fun(Z/m, Sp))

THH
−−−! Fun(Z/m, CycSp).
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Furthermore, it follows by [Nik16, Corollary 3.7] that the levelwise application of TC
provides a lax symmetric monoidal functor:

TC: Fun(Z/m, CycSp) ! Fun(Z/m, Sp),

that we also call TC. In Appendix A, we prove that the following diagram of lax
symmetric monoidal functors commutes.

(5.2)

AlgE1
(Fun(Z/m, Sp)) Fun(Z/m, CycSp) Fun(Z/m, Sp)

AlgE1
(Sp) CycSp Sp

THH TC

THH TC

The vertical maps above are given by left Kan extension along Z/m ! 0, i.e. they
provide the underlying objects.

Remark 5.3. The composite TC ◦THH at the bottom row above may not in general
give the correct result since we only consider one prime in CycSp. However, this is
not an issue since we only work with p-complete objects in our applications.

Construction 5.4. Since kup is a p−1-graded E∞-ring, we obtain that THH(kup) is
a p− 1-graded E∞-algebra in cyclotomic spectra and that TC(kup) is a p− 1-graded
E∞-ring.

Furthermore, in Section 4.4, we defined ku/p as a p − 1-graded kup-algebra. In
particular, this implies that ku/p is a right module over kup in the ∞-category of
p − 1-graded E1-rings, see [ABM22, Construction 4.11]. Therefore, THH(ku/p) is a
right THH(kup)-module in the ∞-category of p − 1-graded cyclotomic spectra and
that TC(ku/p) is a right TC(kup)-module in the ∞-category of p−1-graded spectra.

Remark 5.5. Furthermore, the levelwise application of the symmetric monoidal func-

tor CycSp ! SpBS1

that forgets the Frobenius map shows that THH(X) is an

m-graded Ek−1-algebra in SpBS1

whenever X is an m-graded Ek-ring. In particu-
lar, THH(X)hS

1
and (THH(X)tCp)hS

1
also admit the structures of m-graded Ek−1-

algebras.

5.1. Weight zero splitting of THH for root adjunctions. In Section 4.3, we
show that the p − 1-graded E1-ring structure on kup agrees with that given by the
root adjunction method of [ABM22]. The reason we do this is so that we can make
use of Theorem 4.17 of [ABM22] which states that for a p-local A, THH(A) !

THH(A( m
√
a))0 is an equivalence whenever p ∤ m. Furthermore, this equivalence

carries over to topological cyclic homology due to [ABM22, Theorem 5.5]. We obtain
the following.

Proposition 5.6. The canonical maps

THH(ℓp)
≃
−! THH(kup)0 and TC(ℓp)

≃
−! TC(kup)0

are equivalences.

Proposition 5.7. The canonical maps

THH(ℓ/p)
≃
−! THH(ku/p)0 and TC(ℓ/p)

≃
−! TC(ku/p)0

are equivalences.
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6. Logarithmic THH of the complex K-theory spectrum

Here, we use the p−1-grading on THH(kup) to obtain a splitting of the logarithmic
THH of ku(p) as an S1-equivariant spectrum. We identify the resulting splitting at
the level of V (1)-homotopy by using the logarithmic THH computations of Rognes,
Sagave and Schlichtkrull in [RSS18]. For the rest of this section, let p > 3.

Remark 6.1. For the rest, we consider V (1) ! T (2) as a map of commutative monoids
in the homotopy category of p − 1-graded cyclotomic spectra with the trivial cyclo-
tomic structure concentrated in weight 0 (using F0 ◦ (−)triv).

Remark 6.2. In the following, we move freely between THH(ku(p)) and THH(kup)
since ultimately, we are interested in the V (1)-homotopy of these objects for which
we have an equivalence V (1) ∧ THH(ku(p)) ≃ V (1) ∧ THH(kup). Similarly, we move
freely between V (1) ∧ THH(ℓ) and V (1) ∧ THH(ℓp).

Let THH(ku(p) | u2) denote the logarithmic THH of ku(p) with respect to the Bott
class u2 ∈ π∗(ku(p)) ∼= Z(p)[u2] in the sense of [RSS18]. In [RSS18], this is denoted
by THH(ku(p),D(u)). This is an S1-equivariant E∞-algebra and there is a cofiber
sequence of S1-equivariant spectra:

(6.3) THH(ku(p)) ! THH(ku(p) | u2) ! ΣTHH(Z(p)),

where the first map is a map of E∞-algebras in S1-equivariant spectra, see the dis-
cussion after [RSS15, Definition 4.6].

Here, our goal is to prove the following proposition where THH(ℓ | v1) denotes the
logarithmic THH of ℓ with respect to the class v1 ∈ π∗ℓ as defined in [RSS18] where
it is denoted by THH(ℓ,D(v)).

Proposition 6.4. There is an equivalence of S1-equivariant spectra:

V (1) ∧ THH(ku(p) | u2) ≃ V (1) ∧ THH(ℓ | v1) ∨
(

∨

i∈Z/(p−1)|i 6=0

V (1) ∧ THH(kup)i
)

,

given by the coproduct of the map V (1)∧THH(ℓ | v1) ! V (1)∧THH(ku(p) | u2) with
the composite:

∨

i∈Z/(p−1)|i 6=0

V (1) ∧ THH(kup)i ! V (1) ∧ THH(kup) ! V (1) ∧ THH(ku(p) | u2),

where the first map is given by the inclusion of the given summands of the p−1-graded
spectrum THH(kup) and the second one is the canonical one.

Remark 6.5. Since kup ≃ ℓp( p−1
√
v1), this is an immediate consequence of the results of

[ABM22, Section 6] if we assume that the definition of logarithmic THH in [ABM22]
agrees with that used in [RSS18]. This compatibility result is not available at the
moment, and therefore, we will not assume it. On the other hand, Devalapurkar and
Moulinos prove this compatibility result in their upcoming work.
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Proof. Due to [RSS18, Theorem 4.4], there is a map of homotopy cofiber sequences
of S1-equivariant spectra:

V (1) ∧ THH(Z(p)) V (1) ∧ THH(ℓ) V (1) ∧ THH(ℓ | v1)

V (1) ∧ THH(Z(p)) V (1) ∧ THH(kup) V (1) ∧ THH(ku(p) | u2)

as mentioned in [RSS18, Equation (8.1)]. Here, the left hand vertical map is an
equivalence. Therefore, the bottom left horizontal map factors as

V (1)∧THH(Z(p)) ! V (1)∧THH(ℓ) ! V (1)∧THH(kup) ≃
∨

i∈Z/(p−1)

V (1)∧THH(kup)i.

The second map above is the inclusion of the weight 0 summand due to Proposition
5.6. In particular, the cofiber sequence given by the bottom row splits through the
splitting of THH(kup). Namely, this cofiber sequence is given by a coproduct of the
cofiber sequence given by the top row and the cofiber sequence

∗ !

∨

i∈Z/(p−1)|i 6=0

V (1) ∧ THH(kup)i
≃
−!

∨

i∈Z/(p−1)|i 6=0

V (1) ∧ THH(kup)i.

This identifies the cofiber, i.e. V (1) ∧ THH(ku(p) | u2) as stated in the proposition.
�

We will identify the homotopy groups of the summands of V (1) ∧ THH(ku(p) |
u2) given by the splitting above. For this, we start by recalling the computations
of V (1)∗THH(ℓ | v1) and V (1)∗THH(ku(p) | u2) from [RSS18]. For what follows,
E(x, y), P (x) and Pk(x) denote the exterior algebra over Fp in two variables, the
polynomial algebra Fp[x] and the truncated polynomial algebra Fp[x]/x

k respectively.

Theorem 6.6. [RSS18, Theorems 7.3 and 8.1] There are ring isomorphisms:

V (1)∗THH(ℓ | v1) ∼=E(λ1, d log v1)⊗ P (κ1)

V (1)∗THH(ku(p) | u2) ∼=Pp−1(u2)⊗ E(λ1, d log u2)⊗ P (κ1)

where |λ1| = 2p− 1, |κ1| = 2p, |d log v1| = |d log u2| = 1 and |u2| = 2. Furthermore,
the map

V (1)∗THH(ℓ | v1) ! V (1)∗THH(ku(p) | u2)
is given by the ring map that carries d log v1 to −d log u2, λ1 to λ1 and κ1 to κ1.

Recall that there is an action of the group ∆ := Z/(p− 1) on kup through Adams
operations. Let δ ∈ ∆ be a chosen generator and we choose a β ∈ F×

p such that
π∗(S/p ∧ δ)(u2) = βu2; here,

π∗(S/p ∧ δ) : π∗(S/p ∧ kup) ! π∗(S/p ∧ kup) ∼= Fp[u2].

A given x ∈ V (1)∗THH(kup) is said to have δ-weight i ∈ Z/(p − 1) if the auto-
morphism of V (1)∗THH(kup) induced by δ carries x to βix [Aus05, Definition 8.2];
the δ-weights of the generators of V (1)∗THH(kup) are given in [Aus05, Proposition
10.1]. One defines δ-weight in a similar way for V (1)∗K(kup), V (1)∗TC(kup) etc.
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It follows by [ABM22, Proposition 8.2] that V (1)∗THH(kup)i is precisely given by
the classes of δ-weight i in V (1)∗THH(kup). In other words, δ-weight and our weight
gradings agree for V (1)∗THH(kup).

Proposition 6.7. For 0 < i < p− 1, the image of the inclusion

ψi : V (1)∗THH(kup)i ! V (1)∗THH(ku(p) | u2)
is given by:

{ui2} ⊗E(λ1, d logu2)⊗ P (κ1).

Here, the maps ψi are given by Proposition 6.4.

Proof. It follows from Theorem 6.6 that the image of the inclusion

ψ0 : V (1)∗THH(ℓ | v1) ! V (1)∗THH(ku(p) | u2)
is given by

V0 := {1} ⊗ E(λ1, d log u2)⊗ P (κ1);

we say V0 = im ψ0. Also, let

Vi = {ui2} ⊗ E(λ1, d logu2)⊗ P (κ1).

It follows by inspection on [RSS18, Theorem 8.5] that every Fp-module generator of
Vi given above gets hit by an element of δ-weight i under the map

V (1)∗THH(ku(p)) ! V (1)∗THH(ku(p) | u2)1.
Since δ-weight i elements of V (1)∗THH(kup) correspond to the Fp-submodule

V (1)∗THH(kup)i ⊆ V (1)∗THH(kup),

we deduce that Vi ⊆ im ψi for every i. Since
⊕

i∈Z/p−1

Vi ∼= V (1)∗THH(ku(p) | u2) ∼=
⊕

i∈Z/p−1

im ψi,

and since all the vector spaces involved are finite dimensional at each homotopy
degree, we deduce that Vi = im ψi as desired. Note that the second isomorphism
above follows by Proposition 6.4.

�

7. Topological cyclic homology of complex K-theory

Let p > 3 for the rest of this section. Here, we compute T (2)∗K(kup) and
T (2)∗K(ku/p).

Remark 7.1. Since V (1) is a finite spectrum, V (1)∧− commutes with all constructions
involving colimits and limits. For instance, it commutes with homotopy fixed points
and one has TC(V (1) ∧ E) ≃ V (1) ∧ TC(E) for every cyclotomic spectrum E.

1For this, note that the classes ai, bi and u2 are of δ-weight 1 and the classes λ1 and µ2 are of
δ-weight 0 in V (1)∗ THH(kup).
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7.1. Higher Bott element. In [Aus10, Section 3], Ausoni constructs a non-trivial
class b ∈ V (1)2p+2K(kup) of δ-weight 1, that he calls the higher Bott element, by
considering the units of kup. Namely, b is constructed using a map

K(Z, 2) ! GL1(kup)

and it originates from K(2)∗K(Z, 3) which is known due to Ravenel-Wilson [RW80].
Let b ∈ V (1)2p+2TC(kup) also denote the image of this class under the map

V (1)∗K(kup) ! V (1)∗TC(kup); this is also a non-trivial class due to the following.

Proposition 7.2. The classes b mentioned above satisfies the following properties.

(1) The map V (1)∗TC(kup) ! V (1)∗THH(kup) carries b to a δ-weight 1 class
denoted as b1 in [Aus05], see [Aus10, Lemma 4.4]. Since b1 is of δ-weight 1,
we have

b1 ∈ V (1)∗THH(kup)1.

(2) The map V (1)∗THH(kup) ! V (1)∗THH(ku(p) | u2) carries b1 to u2κ1 [RSS18,
Theorem 8.5].

(3) In V (1)∗K(kup), we have b(bp−1 + v2) = 0 [Aus10, Proposition 2.7].

We prove the following.

Proposition 7.3. The higher Bott element b ∈ V (1)∗TC(kup) is a homogeneous ele-
ment of weight 1 in the p−1-grading. In other words, b ∈ V (1)∗TC(kup)1. Similarly,

the corresponding element b ∈ V (1)∗THH(kup)
hS1

is also of weight 1.

Proof. Indeed, we show that all the elements in V (1)∗TC(THH(kup)i) are of δ-weight
i. Since ∆ = Z/(p − 1) is an abelian group, the map δ : kup ! kup induced by the
chosen generator δ ∈ ∆ is a map of E∞-algebras in the ∞-category of ∆-equivariant
ℓp-modules (not just a map of E∞ ℓp-algebras). Therefore, using F in (4.1), δ : kup !
kup can be considered as a map of p− 1-graded E∞ ℓp-algebras.

As a result, the induced map THH(δ) is a map of p− 1-graded cyclotomic objects.
In particular, it preserves weight at the level of TC, TC- and TP. Recall that each

x ∈ V (1)∗THH(kup)i

is of δ-weight i. Therefore, the map induced by δ at the level of the homotopy fixed
point spectral sequence for V (1)∗THH(kup)

hS1

i is given by multiplication by βi ∈ F×
p .

Since V (1)∗THH(kup)i is finite at each degree, this spectral sequence is strongly con-

vergent [Boa99, Theorem 7.1]. We deduce that every class in V (1)∗THH(kup)
hS1

i

with defined δ-weight have δ-weight i. On the other hand, V (1)∗THH(δ)
hS1

i is diag-

onalizable (since its p − 1st power is identity), i.e. V (1)∗THH(kup)
hS1

i have a basis
for which δ-weight is defined for each basis element. Therefore, we deduce that all
the classes in V (1)∗THH(kup)

hS1

i are of δ-weight i. The same argument shows that

every class in V (1)∗THH(kup)
tS1

i is of δ-weight i.
The fiber sequence defining TC also shows that each class in V (1)∗TC(THH(kup)i)

either have δ-weight i or have undefined δ-weight, but since this action is again
diagonalizable, we deduce that every class in V (1)∗TC(THH(kup)i) is of δ-weight i.
Since b is of δ-weight 1, the result follows.

�
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7.2. Topological cyclic homology. As mentioned earlier, we need to show that
b ∈ T (2)∗TC(kup) is a unit. For this, we construct multiplication by b as a self map of
the cyclotomic spectrum V (1)∧THH(kup) and show that it induces a self equivalence

of T (2) ∧ TC(kup). We first show that b provides a unit in T (2)∗THH(kup)
hS1

by

comparing it with the corresponding multiplication in T (2)∗THH(kup | u2)hS
1
.

Construction 7.4. We start with the map S2p+2
! TC(V (1) ∧ THH(kup)) repre-

senting b. Using the adjunction (−)triv ⊣ TC mentioned in Definition 5.1, one obtains
a map of cyclotomic spectra

b1 : Σ2p+2Striv
! V (1) ∧ THH(kup)

representing the class b1. We define

mb : Σ2p+2V (1) ∧ THH(kup) ! V (1) ∧ THH(kup)

as the following composite map of cyclotomic spectra.

mb : Σ2p+2V (1) ∧ THH(kup) ≃ V (1) ∧ THH(kup) ∧ Σ2p+2Striv id∧b1
−−−!

V (1) ∧ THH(kup) ∧ V (1) ∧ THH(kup) !V (1) ∧ THH(kup)

Here, id denotes the identity map of V (1) ∧ THH(kup) and the second map above
is given by the multiplication maps of THH(kup) and V (1).

We construct a similar map for logarithmic THH of ku(p) which is compatible with
the one constructed above.

Construction 7.5. The first map below is the underlying S1-equivariant map of the
map b1 in Construction 7.4; the second map is the usual one.

u2κ1 : Σ2p+2Striv b1
−! V (1) ∧ THH(kup) ! V (1) ∧ THH(ku(p) | u2)

This composite is a map of S1-equivariant spectra. Furthermore, it represents u2κ1 in
homotopy due to Proposition 7.2. As in Construction 7.4, we define an S1-equivariant
map:

mu2κ1 : Σ2p+2V (1) ∧ THH(ku(p) | u2) ! V (1) ∧ THH(ku(p) | u2),
through the following composite.

mu2κ1 : Σ2p+2V (1) ∧THH(ku(p) | u2) ≃ V (1)∧THH(ku(p) | u2)∧Σ2p+2Striv id∧u2κ1
−−−−!

V (1) ∧ THH(ku(p) | u2) ∧ V (1) ∧ THH(ku(p) | u2) ! V (1) ∧ THH(ku(p) | u2)
Since V (1)∧THH(kup) ! V (1)∧THH(ku(p) | u2) is a map of monoids in the homotopy
category of S1-equivariant spectra, the following canonical diagram of S1-equivariant
spectra commutes up to homotopy.

(7.6)

Σ2p+2V (1) ∧ THH(kup) Σ2p+2V (1) ∧ THH(ku(p) | u2)

V (1) ∧ THH(kup) V (1) ∧ THH(ku(p) | u2)

mb mu2κ1

Proposition 7.7. The map THH(ℓ) ! THH(ℓ | v1) induces an equivalence

LT (2) THH(ℓ)
hS1 ≃

−! LT (2) THH(ℓ | v1)hS
1

.
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Proof. There is an E∞-map K(Z(p)) ! THH(Z(p))
hS1

and we have LT (2) K(Z(p)) ≃ 0
due to [LMMT20, Purity Theorem]. This implies that

LT (2) THH(Z(p))
hS1 ≃ 0.

Since the cofiber of the map THH(ℓ)hS
1
! THH(ℓ | v1)hS1

is given by ΣTHH(Z(p))
hS1

,
this provides the desired result. �

Remark 7.8. As mentioned earlier, the map V (1) ! T (2) is given by the T (2)-
localization

V (1) ! LT (2)V (1) ≃ T (2).

For a given spectrum E, T (2)∧E is a homotopy T (2)-module and therefore, T (2)∧E
is T (2)-local. Furthermore, V (1)∧E ! T (2)∧E is a T (2)-equivalence as V (1) ! T (2)
is. Therefore, V (1) ∧ E ! T (2) ∧ E is given by the T (2)-localization:

V (1) ∧ E ! LT (2)(V (1) ∧ E) ≃ T (2) ∧ E.

Proposition 7.9. For the composite S1-equivariant map:

f : Σ2p+2V (1) ∧ THH(ℓ | v1) ! Σ2p+2V (1) ∧ THH(ku(p) | u2)
mu2κ1
−−−!

V (1) ∧ THH(ku(p) | u2) ! V (1) ∧ THH(kup)1,

LT (2)(f
hS1

) is an equivalence. Here, the first and the last maps are those provided by
Proposition 6.4; indeed, the last map above is the projection to the factor of V (1) ∧
THH(ku(p) | u2) corresponding to 1 ∈ Z/(p− 1).

Proof. Due to Theorem 6.6 and Proposition 6.7, π∗f can be given by the composite
map

π∗f : E(λ1, d log v1)⊗ P (κ1) ! {1} ⊗ E(λ1, d log u2)⊗ P (κ1)
·u2κ1
−−−! {u2} ⊗ E(λ1, d logu2)⊗ P (κ1)

where the first map above sends d log v1 to −d log u2 and fixes the other generators
and the second map multiplies by u2κ1. The first map is an isomorphism and the
second map above is an isomorphism in sufficiently large degrees. We deduce that
π∗f is an isomorphism in sufficiently large degrees.

In particular, the cofiber of f , lets call it C, is bounded from above in homotopy.
Therefore, ChS1

is also bounded from above in homotopy since (−)hS
1
preserves co-

connectivity. In particular, LT (2)(C
hS1

) ≃ 0. This means that LT (2)(f
hS1

) is an
equivalence as desired. �

Remark 7.10. In the construction of the map f above, if we used V (1) ∧ THH(kup)
(together with its weight splitting and mb) instead of V (1) ∧ THH(ku(p) | u2), the
proof above would fail to go through. This is because the cofiber of f would not be
bounded from above. This is precisely the reason why we use logarithmic THH for
our computations.

The following is the non-logarithmic analogue of the the proposition above.
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Proposition 7.11. For the composite S1-equivariant map:

g : Σ2p+2V (1) ∧ THH(kup)0 ! Σ2p+2V (1) ∧ THH(kup)
mb
−!

V (1) ∧ THH(kup) ! V (1) ∧ THH(kup)1,

LT (2)(g
hS1

) is an equivalence. Here, the first and the last maps are given by the
p− 1-grading on THH(kup).

Proof. For this, we consider the following (up to homotopy) commuting diagram of
S1-equivariant spectra.

Σ2p+2V (1) ∧ THH(kup)0 Σ2p+2V (1) ∧ THH(ℓ | v1)

Σ2p+2V (1) ∧ THH(kup) Σ2p+2V (1) ∧ THH(ku(p) | u2)

V (1) ∧ THH(kup) V (1) ∧ THH(ku(p) | u2)

V (1) ∧ THH(kup)1 V (1) ∧ THH(kup)1

g fmb mu2κ1

id

The sequence of vertical maps on the left hand side is the composite defining g and
the sequence of vertical maps on the right hand side is the composite defining the
map f in Proposition 7.9. The upper horizontal map is given by the passage from
THH to log THH by noting THH(kup)0 ≃ THH(ℓp) (see Proposition 5.6). The lower
horizontal map is the identity map. The inner square above is given by Diagram
(7.6) which commutes up to homotopy. By the definition of the rest of the maps, one
observes that the diagram above commutes.

Due to Proposition 7.9, LT (2)(f
hS1

) is an equivalence. Furthermore, the top hor-

izontal map is also an equivalence after applying LT (2)(−hS1
) due to Propositions

7.7 and 5.6. Since the lower horizontal map is also an equivalence, we deduce that
LT (2)(g

hS1
) is an equivalence as desired. �

For the rest, we also let b ∈ V (1)∗THH(kup)
hS1

denote the image of the higher Bott

element b ∈ V (1)∗K(kup) under the trace map V (1)∗K(kup) ! V (1)∗THH(kup)
hS1

.

Corollary 7.12. After restricting and corestricting, multiplication by b provides an
isomorphism

·b : T (2)∗Σ2p+2THH(kup)
hS1

0

∼=
−! T (2)∗THH(kup)

hS1

1

between the sets of weight 0 and weight 1 classes in T (2)∗THH(kup)
hS1

.

Proof. By Remark 7.8 and the lax monoidal structure of the fixed points functor
−hS1

, this map is given by π∗LT (2)(g
hS1

) which is an isomorphism due to Proposition
7.11. �
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Corollary 7.13. In T (2)∗THH(kup)
hS1

, we have bp−1 = −v2. In particular, b ∈
T (2)∗THH(kup)

hS1
is a unit.

Proof. By Proposition 7.2, we have b(bp−1 + v2) = 0 in T (2)∗K(kup). Using the ring

map T (2)∗K(kup) ! T (2)∗THH(kup)
hS1

, we we obtain that

(7.14) b(bp−1 + v2) = 0

in T (2)∗THH(kup)
hS1

.

Due to Proposition 7.3, b is of weight 1 in V (1)∗THH(kup)
hS1

. In particular,
bp−1 + v2 is of weight 0 as v2 is of weight 0. However, multiplication by b does not
annihilate any non-trivial weight 0 classes in T (2)∗THH(kup)

hS1
due to Corollary

7.12. This, together with (7.14) implies that bp−1 + v2 = 0 in T (2)∗THH(kup)
hS1

as
desired. �

We are going to use the following two propositions to deduce that LT (2) TC(mb) is
an equivalence; i.e. that b is a unit in T (2)∗TC(kup).

Proposition 7.15. The map

LT (2)(m
hS1

b ) : Σ2p+2T (2) ∧ THH(kup)
hS1 ≃

−! T (2) ∧ THH(kup)
hS1

is an equivalence.

Proof. Using the lax structure of the homotopy fixed points functor (−)hS
1
and Re-

mark 7.8, one observes that the map π∗LT (2)(m
hS1

b ) is precisely the map

T (2)∗THH(kup)
hS1

! T (2)∗THH(kup)
hS1

given by multiplication by b. This is an isomorphism due to Corollary 7.13. �

Proposition 7.16. The map LT (2)(m
tS1

b ) is an equivalence.

Proof. Since mb is an S
1-equivariant map, we have the following commuting diagram

given by the canonical natural transformation in [NS18, Corollary I.4.3].

Σ2p+2T (2) ∧ THH(kup)
hS1

Σ2p+2T (2) ∧ THH(kup)
tS1

T (2) ∧ THH(kup)
hS1

T (2) ∧ THH(kup)
tS1

can
≃

LT (2)(m
hS1

b
)≃ LT (2)(m

tS1

b
)

can
≃

The maps can above are equivalences since their fibers are given by

T (2) ∧ ΣTHH(kup)hS1 ≃ 0

due to [NS18, Corollary I.4.3]. The left hand vertical map is an equivalence due to
Proposition 7.15; and therefore, the right hand vertical map is also an equivalence.

�

Proposition 7.17. The higher bott element b ∈ T (2)2p+2TC(kup) is a unit.

Proof. Recall that mb is a map of cyclotomic spectra by construction. Furthermore,
the map

π∗LT (2) TC(mb) : T (2)∗Σ
2p+2TC(kup) ! T (2)∗TC(kup)
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is given by multiplication by b. Therefore, it is sufficient to show that LT (2) TC(mb)
is an equivalence. Since mb is cyclotomic, this induces a map of fiber sequences as
follows, see [NS18, Lemma II.4.2].

Σ2p+2T (2) ∧ TC(kup) T (2) ∧ TC(kup)

Σ2p+2T (2) ∧ THH(kup)
hS1

T (2) ∧ THH(kup)
hS1

Σ2p+2T (2) ∧ THH(kup)
tS1

T (2) ∧ THH(kup)
tS1

LT (2) TC(mb)

ϕhS1
p −can

LT (2)(m
hS1

b
)

≃

ϕhS1
p −can

LT (2)(m
tS1

b
)

≃

The middle and the bottom horizontal maps are equivalences due to Propositions 7.15
and 7.16. Since this is a map of fiber sequences, we deduce that the top horizontal
map is an equivalence as desired. �

Theorem 7.18 (Theorem 1.1). Let p > 3 be a prime. There is an isomorphism of
graded abelian groups:

T (2)∗K(ku) ∼= T (2)∗K(ℓ)[b]/(bp−1 + v2),

where |b| = 2p+ 2.

Proof. Due to [LMMT20, Purity Theorem] and the Dundas-Goodwillie-McCarthy
theorem, we have

T (2)∗K(ku) ∼= T (2)∗TC(kup) and T (2)∗K(ℓ) ∼= T (2)∗TC(ℓp).

Therefore, it is sufficient to prove the corresponding statement:

T (2)∗TC(kup) ∼= T (2)∗TC(ℓp)[b]/(b
p−1 + v2),

at the level of topological cyclic homology. Since T (2)∗TC(kup) is a p − 1-graded
ring with a unit in weight 1 (Propositions 7.3 and 7.17), it is periodic in its weight
direction. In other words, multiplication by bi provides an isomorphism

·bi : T (2)∗Σ(2p+2)i TC(kup)0
∼=
−! T (2)∗TC(kup)i

for each 0 < i < p− 1. Furthermore, T (2)∗TC(kup)0 ∼= T (2)∗TC(ℓp) due to Propo-
sition 5.6. This proves the desired isomorphism. �

Remark 7.19. Blumberg, Gepner and Tabuada prove that there is a lax symmet-
ric monoidal transformation from algebraic K-theory to topological cyclic homology
[BGT14] given by the cyclotomic trace. On the other hand, we defined the lax sym-
metric monoidal structure on TC(−) using cyclotomic spectra as in [NS18] whereas
the older definition of topological cyclic homology is used in [BGT14]. On connective
E1-rings, the two definitions of topological cyclic homology provide the same spec-
trum [NS18]. From this, one obtains a map of spectra K(−) ! TC(−) on connective
E1-rings for TC(−) as in Definition 5.1. To our knowledge, a lax symmetric monoidal
comparison of the two definitions of topological cyclic homology is not currently avail-
able in the literature. Therefore, we do not assume the existence of a lax symmetric
monoidal transformation K(−) ! TC(−) unless we explicitly state otherwise. Note
that we only make this assumption in Remarks 7.20 and 7.22 and Theorem 7.23.
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On the other hand, it is highly expected that the agreement of the two definitions
of TC can be improved to that of lax symmetric monoidal functors and it should be
possible to obtain a lax symmetric monoidal transformation K(−) ! TC(−) for TC
as in Definition 5.1.

Remark 7.20. If we assume that the trace map K(−) ! TC(−) is lax symmetric
monoidal (see Remark 7.19), then we have a T (2)-equivalence K(ku) ! TC(kup)
of E∞-rings. This shows that b is a unit in T (2)∗K(ku). Since b(bp−1 + v2) = 0
in T (2)∗K(ku) (Proposition 7.2), one obtains that bp−1 = −v2 in T (2)∗K(ku). In
particular, the isomorphism in Theorem 1.1 improves to an isomorphism of graded
rings.

7.3. Algebraic K-theory of the 2-periodic Morava K-theory. At this point,
Theorem 1.5 follows easily from our previous arguments.

Theorem 7.21 (Theorem 1.5). Let p > 3 be a prime. There is an isomorphism of
graded abelian groups:

T (2)∗K(ku/p) ∼= T (2)∗K(ℓ/p)⊗Fp[v2] Fp[b]

with |b| = 2p+ 2 and in the tensor product above, we take v2 = −bp−1.

Proof. As before, it is sufficient to prove the same identity at the level of topological
cyclic homology, i.e. we need to show that

T (2)∗TC(ku/p) ∼= T (2)∗TC(ℓ/p)⊗Fp[v2] Fp[b].

Recall from Construction 5.4 that TC(ku/p) is a module over TC(kup) in p − 1-
graded spectra. By Proposition 5.7, we have

T (2)∗TC(ku/p)0 ∼= T (2)∗TC(ℓ/p).

Furthermore, there is a unit b ∈ T (2)∗TC(kup) of weight 1, (Propositions 7.3 and
7.17). Therefore, multiplying by powers of b induces isomorphisms

·bi : T (2)∗Σ(2p+2)i TC(ku/p)0
∼=
−! T (2)∗TC(ku/p)i

for each 0 < i < p− 1. This provides the desired result.
�

Remark 7.22. As in Remark 7.20, if we assume that the trace map provides a lax
symmetric monoidal transformation K(−) ! TC(−) (see Remark 7.19), then the
isomorphism in Theorem 1.5 improves to an isomorphism of Fp[b]-modules.

Now we prove Theorem 7.23 verifying the the conjectural formula of Ausoni and
Rognes [AR09, Section 3] that we stated in (1.6). For this, note that due to [LMMT20,
Purity Theorem], T (2)∧K(ff (kup)) and T (2)∧K(ff (ℓp)) are given by the cofibers of
the transfer maps T (2)∧K(ku/p) ! T (2)∧K(kup) and T (2)∧K(ℓ/p) ! T (2)∧K(ℓp)
respectively, see [AR09, Diagrams 3.1 and 3.10].

Theorem 7.23. Let p > 3 be a prime. Assume that the natural transformation
K(−) ! TC(−) on connective E1-rings given by the cyclotomic trace is lax symmetric
monoidal (see Remark 7.19). There is an isomorphism of Fp[b]-modules:

(7.24) T (2)∗K(ff (kup)) ∼= T (2)∗K(ff (ℓp))⊗Fp[v2] Fp[b]

where v2 = −bp−1 and |b| = 2p+ 2.
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Proof. The trace map K(−) ! TC(−) is a T (2)-equivalence for kup, ku/p, ℓp and ℓ/p
[LMMT20, Corollary E]. Therefore, we obtain that T (2)∧K(kup) is a monoid in the
homotopy category of p− 1-graded spectra and T (2)∧K(ku/p) is a left module over
T (2) ∧K(kup) in the homotopy category of p− 1-graded spectra.

Let

τ : T (2) ∧K(ku/p) ! T (2) ∧K(kup)

denote the map induced by transfer along kup ! ku/p. Since

T (2) ∧K(ku/p) ≃
∨

0≤i<p−1

T (2) ∧K(ku/p)i,

it is sufficient to understand the restriction of τ to T (2) ∧ K(ku/p)i for each i. For
i = 0, we consider the commuting diagram of E1-rings:

ℓp ℓ/p

kup ku/p.

We obtain a commuting diagram of spectra:

(7.25)

K(ℓ/p) K(ℓp)

K(ku/p) K(kup)

by using the following equivalence of the corresponding functors induced at the level
of module categories:

kup ∧ℓp − ≃ (kup ∧ℓp ℓ/p) ∧ℓ/p − ≃ ku/p ∧ℓ/p −.

Let τ ′ : T (2) ∧ K(ℓ/p) ! T (2) ∧ K(ℓ) denote the map induced by transfer along
ℓ! ℓ/p. Diagram (7.25) provides that the restriction of τ to T (2)∧K(ku/p)0 is given
by the following map.

T (2) ∧K(ku/p)0 ≃ T (2) ∧K(ℓ/p)
τ ′
−!

T (2) ∧K(ℓp) ≃ T (2) ∧K(kup)0 ! T (2) ∧K(kup)

Here, the last map is the inclusion of the weight 0-component and the equivalences
above are provided by Propositions 5.6 and 5.7. Let τ0 denote the map

τ0 : T (2) ∧K(ku/p)0 ! T (2) ∧K(kup)0

in the composite above.
Let 0 < i < p−1. To describe the restriction of τ to T (2)∧K(ku/p)i, we use the fact

that τ is a map of T (2)∧K(kup)-modules in the stable homotopy category, see [AR09,
Section 3]. By Propositions 7.3 and 7.17, there is a unit bi ∈ T (2)∗K(kup) of weight
i. Omitting the suspension functor, let m1 : T (2)∧K(ku/p)0 ! T (2)∧K(ku/p)i and
m2 : T (2)∧K(kup)0 ! T (2)∧K(kup)i denote the equivalences given by multiplication
with bi ∈ T (2)∗K(kup). Abusing notation, let m1 and m2 also denote the respective
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endomorphisms of T (2) ∧ K(ku/p) and T (2) ∧ K(kup). We have the following up-to
homotopy commuting diagram of spectra.

T (2) ∧K(kup)0

T (2) ∧K(ku/p)0 T (2) ∧K(ku/p) T (2) ∧K(kup) T (2) ∧K(kup)i

T (2) ∧K(ku/p)i T (2) ∧K(ku/p) T (2) ∧K(kup)

m2

≃

τ0

m1≃ m1

τ

m2

τ

Here, the unmarked arrows are the canonical inclusions. The bottom left hand square
and the right hand diagram commute since T (2) ∧ K(ku/p) and T (2) ∧ K(kup) are
modules over T (2) ∧K(kup) in the homotopy category of p− 1-graded spectra. The
inner square commutes as τ is a map of modules over T (2)∧K(kup) in the homotopy
category of spectra. The top left diagram commutes due to our previous identification
of τ0.

The commuting diagram above shows that the restriction of τ to T (2) ∧K(ku/p)i
is given by the composite:

T (2) ∧K(ku/p)i
m−1

1
−−!

≃
T (2) ∧K(ku/p)0

τ0
−!

T (2) ∧K(kup)0
m2
−!

≃
T (2) ∧K(kup)i ! T (2) ∧K(kup).

Letting τi : T (2)∧K(ku/p)i ! T (2)∧K(kup)i be as in the composite above, we obtain
that τ is given by

τ ≃
∨

0≤i<p−1

τi

and that each τi is equivalent to τ0 up to a suspension. Since τ0 is equivalent to τ ′,
this provides the desired splitting of the cofiber of τ as a coproduct of shifted copies
of T (2) ∧K(ff (ℓp)). This proves (7.24) as an isomorphism of abelian groups. Due to
the argument above, the resulting cofactors of T (2)∧K(ku/p) are connected through
multiplication by b and this shows that (7.24) is an isomorphism of Fp[b]-modules.

�

Appendix A. Graded cyclotomic spectra

For this section, let m be a positive integer such that p = 1 in Z/m. Here, our goal
is to construct a symmetric monoidal functor

THH: AlgE1
(Fun(Z/m, Sp)) ! Fun(Z/m, CycSp)

and show that the resulting diagram:

(5.2)

AlgE1
(Fun(Z/m, Sp)) Fun(Z/m, CycSp) Fun(Z/m, Sp)

AlgE1
(Sp) CycSp Sp

THH TC

D D′

THH TC
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of lax symmetric monoidal functors commutes. Note that this diagram is also stated
as Diagram (5.2) in Section 5. Recall that the vertical functors above are given by
left Kan extending through Z/m! 0, i.e. they provide the corresponding underlying
objects. Furthermore, the upper right hand horizontal arrow TC is given by levelwise
application of TC: CycSp ! Sp.

We first prove the following proposition which states that the right hand square in
Diagram (5.2) commutes.

Proposition A.1. Let m > 0 such that p = 1 in Z/m. Then the following diagram:

Fun(Z/m, CycSp) Fun(Z/m, Sp)

CycSp Sp,

D

TC

D′

TC

of lax symmetric monoidal functors commutes. In other words, the right hand side of
Diagram (5.2), commutes.

Proof. Let R and R′ denote the right adjoints of D and D′ respectively. The functors
R and R′ are given by restriction along Z/m ! 0. Here, we denote the top horizontal
arrow by TClevel to distinguish it from the bottom horizontal arrow TC.

First, we show that there is a lax symmetric monoidal natural transformation

φ : D′ TClevel
! TCD,

later, we complete the proof by showing that φ is an equivalence. By adjunction, it
is sufficient to obtain a lax symmetric monoidal transformation

TClevel
! R′ TCD.

Since precomposition followed by postcomposition agrees with postcomposition fol-
lowed by precomposition, we have R′ TC ≃ TClevelR. Therefore, it is sufficient to
obtain a lax symmetric monoidal transformation

TClevel
! TClevelRD

and this is given by the unit of the adjunction D ⊣ R. This provides φ above. Indeed,
φ is given by the canonical map

φX : ∨i∈Z/m TC(Xi) ! TC(∨i∈Z/mXi).

Since m 6= 0, the coproducts above are finite and due to [NS18, Corollary II.1.7], col-
imits of cyclotomic spectra agree with those of the underlying spectra. Furthermore,
both CycSp and Sp are stable and therefore these coproducts are the corresponding
products. As TC commutes with finite products, we obtain that φ is an equivalence
as desired. �

What remains is to construct the left hand square in Diagram 5.2 and show that
it commutes.

For the rest, we let Grm(C) denote Fun(Z/m,C) for a given presentably symmetric
monoidal ∞-category C. Abusing notation, let

(−)tCp : Grm(Sp
BS1

) ! Grm(Sp
BS1

)
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also denote the lax symmetric monoidal functor given by levelwise application of

(−)tCp . Slightly diverting from the notation of [NS18], we let Leq
(

Grm(Sp
BS1

), (−)tCp
)

denote the ∞-category defined as the lax equalizer of the identity endofunctor and

the endofunctor (−)tCp on Grm(Sp
BS1

) in the sense of [NS18, Definition II.1.4]. The

∞-category Leq
(

Grm(Sp
BS1

), (−)tCp
)

is defined via the following pullback square.

Leq
(

Grm(Sp
BS1

), (−)tCp
)

Grm(Sp
BS1

)∆
1

Grm(Sp
BS1

) Grm(Sp
BS1

)×Grm(Sp
BS1

)

ev0×ev1

(id,(−)tCp )

In particular, the objects of this pullback ∞-category are given by an object of

E ∈ Grm(Sp
BS1

) and a morphism E ! EtCp .
In [AMMN22, Appendix A], the authors construct THH as a functor on graded

ring spectra and show that it fits into the following commuting diagram of symmetric
monoidal functors [AMMN22, Proposition A.5 and Corollary A.15].

(A.2)

AlgE1
(Grm(Sp)) Leq

(

Grm(Sp
BS1

), (−)tCp
)

AlgE1
(Sp) CycSp

THH

D′′

THH

As usual, the vertical arrows are induced by left Kan extension through Z/m! 0.
Here, we omit the functor Lp (given by left Kan extension through ·p : Z/m! Z/m)
since Lp is the identity functor whenever p = 1 in Z/m.

Construction A.3. Let AlgE1
(Grm(Sp)) ! Grm(CycSp) be the composite of the

upper horizontal arrow in Diagram (A.2) with the equivalence provided in the propo-
sition below. This provides the left hand upper horizontal arrow in Diagram (5.2) and
the commuting diagram in the following proposition, together with Diagram (A.2)
ensures that the left hand square in Diagram (5.2) commutes.

What remains is to prove the following proposition.

Proposition A.4. Let m > 0 such that p = 1 in Z/m. There is an equivalence of
symmetric monoidal ∞-categories:

(A.5) Leq
(

Grm(Sp
BS1

), (−)tCp
) ≃
−! Grm(CycSp)

such that the following diagram commutes.

Leq
(

Grm(Sp
BS1

), (−)tCp
)

Grm(CycSp)

CycSp

≃

D′′

D

Proof. We construct an equivalence in the opposite direction. Due to [NS18, Con-
struction IV.2.1], giving a symmetric monoidal functor

T : Grm(CycSp) ! Leq
(

Grm(Sp
BS1

), (−)tCp
)
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is equivalent to giving a symmetric monoidal functor

F : Grm(CycSp) ! Grm(Sp
BS1

)

together with a lax symmetric monoidal transformation F ! (−)tCp ◦ F .
Applying [NS18, Construction IV.2.1] to the identity functor of CycSp, one obtains

a symmetric monoidal functor:

H : CycSp ! SpBS1

,

together with a lax symmetric monoidal transformation H ! (−)tCp ◦H . By [Nik16,
Corollary 3.7], this provides the desired symmetric monoidal functor F above. Fur-
thermore, the lax symmetric monoidal transformation H ! (−)tCp ◦ H applied to
the following lemma provides the desired lax symmetric monoidal transformation
F ! (−)tCp ◦F . This natural transformation and F provides the symmetric monoidal
functor T above. Since Fun(Z/m,−) commutes with limits, it commutes with the
pullback square defining CycSp as a lax equalizer; therefore, T is an equivalence as
desired. The functor claimed in (A.5) is now given by T−1.

For the second statement in the proposition, it is sufficient to show that the fol-
lowing diagram commutes.

Grm(CycSp) Leq
(

Grm(Sp
BS1

), (−)tCp
)

CycSp

T

D
D′′

Let R and R′′ denote the right adjoints of D and D′′ respectively. These are given
by the corresponding restriction functors along Z/m ! 0. Since T is an equivalence,
T−1R′′ is a right adjoint toD′′T and therefore, it is sufficient to show that R ≃ T−1R′′,
i.e. the right adjoints of D and D′′T agree. For this, it is sufficient to show that
TR ≃ R′′. This follows by the fact that the functor F and the lax transformation
F ! (−)tCp ◦ F are defined levelwise. �

Lemma A.6. Let η : T ! S be a lax symmetric monoidal transformation of lax
symmetric monoidal functors between presentably symmetric monoidal ∞-categories
C and D. Then applying η levelwise induces a lax symmetric monoidal transformation
between the induced lax symmetric monoidal functors from Grm(C) to Grm(D).

Proof. We follow closely [Nik16, Section 3]. Since the ∞-category of lax symmetric
monoidal functors is a full subcategory of the ∞-category of functors over NFin∗, it
is sufficient to show that η provides a map ∆1

! MapNFin∗(Grm(C)
⊗, Grm(D)⊗) of

simplicial sets where the vertices of ∆1 correspond to the lax symmetric monoidal
functors induced by T and S. Using the universal property defining hom/NFin∗(−,−)
in [Nik16, Section 3], one obtains the second map below:

∆1
! MapNFin∗(C

⊗,D⊗) ! MapNFin∗(hom/NFin∗(Z/m
⊗,C⊗), hom/NFin∗(Z/m

⊗,D⊗)),

where the first map represents η. Using the definition of Grm(−) as a full simplicial
subset of hom/NFin∗(Z/m

⊗,−) and [Nik16, Corollary 3.7], we deduce that the 1-
simplex in the composite above lies in MapNFin∗(Grm(C)

⊗, Grm(D)⊗) with vertices
corresponding to the lax symmetric monoidal functors induced by T and S as desired.

�
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