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MODELLING A FLUIDIZED BED FOR WATER TREATMENT VIA GAMS PACKAGE

) by using a combined stochastic/NLP approach. The problem is solved for two values of fluidization velocity (50L/h and 90L/h), which represent two experimental behaviours, and with two GAMS tools (DICOPT and SBB). For the two flowrates considered separately, the solutions of Montastruc and SBB are quite equivalent. However, when both flowrates are considered together, SBB easily reaches an optimal solution with a minimum number of elementary units. Due to crisp constraints, the Montastruc's method and DICOPT need "good" initializations for giving only worse solutions than SBB. From this study, it appears that the SBB procedure is more efficient than the DICOPT one and the hybrid method of Montastruc for modelling a fluidized bed through a superstructure.

INTRODUCTION

Phosphorus recovery from wastewater accords with the increasing demand for sustainable development of the phosphate industry and the associated stringent environmental quality standards. During the last decade, numerous engineering solutions addressing phosphorus recovery from wastewater by precipitation of calcium phosphate in a recyclable form have been proposed (Morse et al., 1998). An advanced alternative is to implement the so-called pellet reactor approach first presented by Seckler et al., (1996), and recently used by [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatement[END_REF]. In this work, a two-step procedure is proposed with Ca-PO 4 -H 2 O as a support system. The first modelling level was previously presented by [START_REF] Montastruc | Modélisation et optimisation d'un réacteur en lit fluidise de déphosphatation d'effluents aqueux[END_REF], and leads to the development of a thermodynamic model for predicting phosphate conversion. The second step is related to the computation of the pellet reactor's efficiency. It must be emphasized that a phenomenological way to treat the problem would imply the precise knowledge of some key parameters of the induced agglomeration process (such as coating), which are in fact rather difficult to obtain practically, such as calcium phosphate density and thickness. For these reasons, in the work of [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatement[END_REF], another alternative based on a network-oriented reactor model is proposed: the pellet reactor model is identified as a combination of elementary systems, representing ideal flow patterns, as perfect mixed flows, plug flows, continuous stirred tank reactors, etc. A superstructure involving the set of all possible solutions corresponding to the physical reactor is defined. Then, potential solutions are extracted from this superstructure and evaluated according to a given performance function. In the work of [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatement[END_REF], the MINLP problem (Mixed NonLinear Programming Problem) arising from the superstructure formulation is solved by a combination of a simulated annealing (SA) and a quadratic programming (QP) method from the IMSL library. Each potential structure proposed by the simulated annealing procedure is optimised with the QP. The major difficulty of the approach of [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatement[END_REF], lies in the initialisation of the QP procedure at each iteration of the SA, probably leading in some cases to quite poor solutions. The present work is a continuation of the one of [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatement[END_REF], where the MINLP problem of the model identification is formulated using the high level input language of the GAMS software. According to two values of fluidization velocity (50L/h and 90L/h), which represent two observed experimental behaviours, and several objective functions, the problem is solved by means of two GAMS tools (DICOPT and SBB).

The DICOPT and SBB software packages can be used for solving mixed-integer nonlinear programming (MINLP) problems that involve linear binary or integer variables as well as linear and nonlinear continuous variables. Both solvers are based on different solution algorithms, leading to two different ways of solving the problem, in terms of efficiency. This article is organized as follows. First, the fluidized bed is described for the two experimental fluidization velocities. Then, a brief survey of MINLP methods is recalled, and followed by the presentation of the numerical tools chosen within the GAMS package. Then, the fluidised bed is modelled by means of a superstructure and the problem constraints are listed. The problem data and the various objective functions are described in the following part. The final section concerns the results presentation and their comparison with those obtained by [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatement[END_REF].

PROCESS DESCRIPTION

The process is based on calcium phosphate precipitation obtained by mixing a phosphate solution with calcium ions and a base. More precisely, it involves a fluidized bed of sand continuously fed with aqueous solutions (see Figure 1). Calcium phosphate precipitates upon the surface of sand grains; at the same time, small particles, also called "fines," leave the bed with the remaining phosphate not recovered in the reactor. Two different regimes were experimentally observed (see Figure 2). On the one hand, for high values of the fluidization velocity (>90L/h), only one zone is observed at the bed top, in which fines leave the bed with the liquid effluent. Process efficiency is thus mainly attributed to fine coating on sand grains. On the other hand, for low values of the fluidization velocity (<50 L/h), an additional layer is observed at the upper zone of the fluidized bed where fines stagnate and agglomerate. Because of the stratified form and size of the agglomerates, the fines remain at the surface of the bed. Inside the fluidized bed, fines totally cover the sand grains and constitute large particles of complex structure. In this paper, only the second step of modelling approach is considered, that is to say that the pellet reactor efficiency is computed from the identification of the pellet reactor model as a reactor network, represented by a superstructure involving a combination of ideal flow patterns.

NUMERICAL SOLUTION PROCEDURES

Survey of MINLP methods

Numerical procedures for solving MINLP problems have appeared only quite recently, compared to other mathematical programming approaches, like classical linear and nonlinear ones. Indeed, MINLP procedures are based on efficient NLP and MIP or IP (Mixed Integer Programming or Integer Programming) packages. Two approaches can be distinguished for solving MINLP problems: the stochastic method and the deterministic one, as presented in figure 3. A third solution technique, combining the two previous methods, is the hybrid approach. The stochastic approach mimics natural phenomena, like annealing of solids (Pibouleau et al,2005), ant colony behaviour, or natural evolution of species (Dedieu et al,2003). It gives birth to evolutionary algorithms, which can reach a "good" solution, not necessary an optimal one in terms of Kuhn-Tucker conditions, starting from an initial and feasible solution according to the constraints, through a set of local improvements. Insofar as they do not require the knowledge of mathematical properties of the problem, they are generally easy to implement. In deterministic methods, the optimal solution (at least a local one) is guaranteed, but they are more complex to implement, due to strict mathematical properties required for the problem under consideration. A recent alternative [START_REF] Hocine | A hybrid optimization method (GA/SQP) for methyl acetate production process by reactive batch distillation[END_REF][START_REF] Montastruc | Modélisation et optimisation d'un réacteur en lit fluidise de déphosphatation d'effluents aqueux[END_REF] consists in using hybrid methods, combining a stochastic procedure for solving the master (MIP or IP) problem, and a deterministic one by implementing a NLP package for solving the slave (continuous) problem.

Because on the one hand, in the stochastic approach an optimal solution is not guaranteed, and on the other hand in the hybrid method, the initialisation of the NLP procedure at each iteration on the master problem is a rather difficult task, a deterministic approach using the GAMS environment has been adopted in this study.

GAMS optimisation tools

GAMS is a modelling system for optimization that provides an interface with a variety of different algorithms. Models are supplied by the user to GAMS in an input file in the form of algebraic equations using a high level language. GAMS then compiles the model and interfaces automatically with a "solver" (i.e. optimisation algorithm, SBB and DICOPT in this study). The compiled model as well as the solution found by the solver are then reported back to the user through an output file [START_REF] Gams | A user's guide[END_REF]. Two procedures, presenting different characteristics in terms of numerical methods used and variable initialisation phase, are used in this study.

DICOPT (Discrete Continuous Optimization Package)

The solver is based on the OA/ER optimization algorithm (Kocis and Grossmann, 1987). The MINLP algorithm solves a series of NLP and MIP sub-problems by using the solver CONOPT for the NLP part, and the solver CPLEX for the MIP sub-problem.

SBB (Simple Branch & Bound)

This more recent solution procedure is based on Branch and Bound method, where some integer variables are considered as continuous ones at some nodes of the search space tree, providing lower bounds, by solving NLP problems (with the CONOPT solver), for guiding the search [START_REF] Allen | How to use mixed integer programming[END_REF][START_REF] Gupta | Branch and Bound experiments in nonlinear integer programming[END_REF]. The main difference between the two solvers lies in the variable initialisation phase, which is not required for the SBB solver. Let us recall that the initialisation phase was a crucial feature [START_REF] Montastruc | Modélisation et optimisation d'un réacteur en lit fluidise de déphosphatation d'effluents aqueux[END_REF].

FLUIDIZED BED MODELING

In order to get a sufficient degree of accuracy, a variant of the superstructure of [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatement[END_REF] was proposed, where each plug flow reactor was replaced by a series of four well-stirred tank reactors and additional flows were added, as shown in Figure 4. The superstructure, includes the one of [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatement[END_REF], and involves a dead zone (volume V1), a by-pass (number 15), a recycle stream (number 2), and 12 continuous stirred tank reactors (CSTR), (volumes V2 to V13). The binary variables of the MINLP problem represent the existence or absence of elementary units, and the continuous ones the corresponding volumes. Since it involves 15 binary variables, the problem combinatorics is 2 15 =32,768 potential solutions.

For the two flowrates, taken separately or simultaneously, the problem consists in extracting from the superstructure, the model allowing to reach the specified output concentration, with a minimum number of streams and elementary units. The problem formulation comprises the following equations (where Vi, Fi, and Ci represent respectively the reactor volumes, the total flowrates, and the molar concentrations in fines), whereas the term yi is related to the presence or absence of element i.
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Balance on reactors -these equations have the following form (example for reactor 7):
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The optimisation problem involves the following items. Linear Constraints: 1 equation for the volumes, 8 total balance equations on the reactors, 2 total balance equations on nodes, 4 concentration equations Bilinear Constraints: 2 partial balance equations on nodes, 12 partial balance equations on the reactors Bounded Variables: 13 volumes, 14 flowrates, 13 concentrations 

PROBLEM DATA AND SOLUTION

The following sets of data were used for solving the model identification problem.

Case 1 (low flowrate)

Case 2 (high flowrate) F 0 = 50 l/h C 0 = 1 mol/l (inlet concentration) C out = 0.258 mol/l (inlet concentration) K = 91 h -1 V tot = 1.3 l (total volume) F 0 = 90 l/h C 0 = 1 mol/l (inlet concentration) C out = 0.477 mol/l (outlet concentration) K = 68.5 h -1 V to t = 1.9 l (total volume) For high (90 l/h) and low (50 l/h) input flowrates considered separately, the problem is solved according to three objective functions to be minimized: ) represents the output concentration given by the model (respectively the given experimental output).
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, in order to obtain the best model with regard to the concentration, but also the simplest one with respect to the number of elementary units (ρ is a positive penalty coefficient adjusted so that both terms of the objective function have the same order of magnitude). Let us note that the search for the model involving the smallest possible number of elementary units, constitutes a key point for future control purposes of the process. When both flowrates (90 and 50 l/h) are considered together, the goal is to extract from the superstructure a model that fits well with the two experimental outputs. In that case, the first objective function cannot be used because the problem would involve two conflicting equality constraints with the same left hand side and two different right hand sides (the two output experimental concentrations); so the problem is solved according to the two objective functions to be minimized:
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, where case 1 and case 2 are related to the two studied flowrates.
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, in order, as in the previous case, to obtain the best, but also the simplest model.

NUMERICAL RESULTS

The results obtained by the two methods SBB and Dicopt, for the three flowrate value cases and for the three objective functions are presented. The results obtained previously by [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatement[END_REF] The study presented in this paper compared the performances of two different approaches for tackling the problem of model identification, involving an MINLP formulation : a purely deterministic framework via the GAMS package and a hybrid SA/QP approaches within the GAMS environment, two solvers were used, i.e., SBB and DICOPT for MINLP problem. The solutions obtained from DICOPT strongly depend on initial values, and are only local optima. This is not the case with SBB where initial values for optimization values are not necessary. For the two flowrates considered separately, the solutions of SA/QP and SBB are quite similar. However, when two flowrates are considered together, SBB easily reaches an optimal solution with a minimum number of elementary units, while due to crisp constraints, SA/QP and DICOPT need "good" initializations for giving only worse solutions than SBB. As above mentioned, the high level input language of GAMS and the efficiency of its incorporated solvers (particularly SBB), make easy the solution of large MINLP problems, arising from model identification of complex processes.

For the modeling of the considered fluidized bed, the approach based on the GAMS environment (particularly SBB) has proved to be more efficient than the hybrid approach of [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatement[END_REF] using a combination of the Simulated Annealing procedure with a nonlinear programming package. Current works are related on the model identification of more complex processes, such as the residence time distribution in a ventilated room, by introducing some dynamic (time dependent) variables.
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In case 1 (low flowrate), the results obtained by the solver Dicopt for objective functions 1 and 3 are close to those obtained by the solver SBB. On the other hand, the structure obtained with the second objective function by using the solver Dicopt is nonoptimal (i.e. this solution comprises a number of items greater or equal than 5). This difference is explained by the initialization of variables, which is a crucial point for this kind of problem implying strong interactions between the variables. In case 2 (strong flowrate), in spite of the difference between the obtained structures, the results are equivalent. In both cases, the number of elementary structures does not exceed two. One can think that the problem comprises several local optima because several models including the same minimal number of elementary operations (here two) can give the same exit concentration. This explains the fact that the three procedures lead to relatively different results, while remaining rather close. The same remark as in case 1 can be made for the use of Dicopt where the obtained results may vary according to the initialization of the variables (in particular for the discrete variables). Finally, in case 3 (two flowrates together), one notices that SBB finds the best solution for the two objective functions, whereas Dicopt does not find an optimal solution. The need for a good initialization for Dicopt is clearly confirmed in this last case. It can be noted that the structures obtained are rather comparable except in certain cases for the solutions provided by Dicopt, where the need for a good initialization appears to be a basic point for avoiding convergence towards a non optimal solution. This kind of situation is frequently encountered in the treatment of problems of large size with the Dicopt solver. Even if the results obtained using the GAMS environment are close to the results presented in (Monstatruc et al, 2004), some issues such as the computation time and initialization (generally not required for the SBB solver) show that the use of the deterministic methods implemented in this study appear more efficient than the hybrid method (SA/QP) of [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatement[END_REF].