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. The case study is based on an industrial multiproduct batch plant. Both the monocriterion and multicriteria design and retrofit were implemented. The results showed that the actual batch plant configuration works nearly at its production capacity limit. Besides, the monocriterion study reveals that a batch plant of lower cost operating;:ç in the same conditions can obtain the same production rate. Concerning the retrofitting case, the aim was to adapt the actual batch plant configuration to an increased demand while minimizing investment and adding as much as possible identical equipment items to the actual configuration. The previous developed methodology was applied and several compromise solutions were found.

INTRODUCTION

The design of multiproduct and multipurpose batch plants is a key problem in chemical engineering [START_REF] Biegler | Systematic Methods for Chemical Process Design[END_REF]) and much work has been presented in this area in the past few years, for instance [START_REF] De-Ming | Optimal Design of Batch Plants with Uncertain Demands Considering Switch Over of Operating Modes of Parallel Units[END_REF] [START_REF] Chunfeng | Ants Foraging Mechanism in the Design of Multiproduct Batch Chemical Process[END_REF], [START_REF] Harish | Optimal Reliable Retrofit Design of Multiproduct Batch Plants[END_REF], [START_REF] Heo | A New Algorithm for Cyclic Scheduling and Design of Multipurpose Batch Plants[END_REF], [START_REF] Montagna | The optimal retrofit of multiproduct batch plants[END_REF], [START_REF] Cavin | Multi-objective process design in multi-purpose batch plants using a Tabu Search optimization algorithm[END_REF], [START_REF] Tânia | Optimal design and retrofit of batch plants with a periodic mode of operation[END_REF]. The formulation of batch plant design generally involves mathematical programming methods, such as LP (Linear Programming), NLP (Non-Linear Programming), MILP (Mixed-Integer Linear Programming) or MINLP (Mixed-Integer Non-Linear Programming). The main drawback of this methodology is the difficulty, even impossibility, to describe with a high degree of sophistication, the real constraints (various storage policies or human operators shift, for instance …). In other cases, the number of equations to take as constraints often renders the problem impossible to solve. An alternative was proposed by Bérard et al. (2000), consisting in coupling a Discrete Event Simulator (DES) in order to evaluate the feasibility of the production at medium term scheduling, with a master optimization procedure based on a Genetic Algorithm (GA). The optimization variables take discrete values and the problem presents a marked combinatorial feature (the equipment sizes are considered as discrete values). These ideas were generalized in [START_REF] Dietz | Integrating Environmental Impact Minimization Into Batch Plant Design: Application To Protein Production ESCAPE-14[END_REF] within a framework for multicriteria design and retrofitting taking into account both the batch plant structure and the operating conditions as optimization variables. The choice of a hybrid method GA/DES was then all the more justified as several criteria were simultaneously taken into account. This paper is divided into three sections. The first is dedicated to the presentation of the multiproduct batch plant and to the results obtained with the discrete event simulator. In the second section, the multicriteria optimization procedure is presented. Then, the results of the optimal design and retrofitting are analyzed. Finally, the conclusions and perspectives of this work are given.

SIMULATION OF A MULTIPRODUCT BATCH PLANT

The case study is an industrial multiproduct batch plant producing four fine chemical products. For confidentiality reasons, only two of them are considered here. A simplified formulation was obtained from the detailed information about the production recipes in order to be implemented in the discrete event simulator. Figure 1 presents the manufacturing sequence for the two considered products, respectively A1 and B2. Each recipe involves five treatments steps. Only two of them (R3 and R6) are shared by the two products considered. The so-called time and size factors of each stage are presented in Table 1. Let us recall here that a size factor is defined as the real batch size at the i stage by kg of product obtained at the end of batch plant treatment. The time factor T i represents the treatment time at the treatment stage I and can be considered as constant in the case of pure discontinuous stages (i.e. reactor) or can be a function of the batch size and/or the equipment item size that performs the treatment task, as it is the case for semi-continuous devices (i.e. filter). It must be emphasized that the size factors have the same order of magnitude for all the treatment stages and are very similar between the two products to manufacture. Concerning time factors, the limiting value corresponds to the synthesis stage in both cases. Since the products to manufacture have similar production recipes both from time and size factors viewpoint, it is interesting to produce them in the same batch plant sharing the available resources. According to this approach, the batch plant design problem has been formulated as a multiproduct batch plant sharing two treatment stages, R3 and R6, manufacturing two products, A1 and B2 (as seen in Figure 2). The hypothesis of an equipment item at each treatment stage has been imposed, which is usually considered at the batch plant design phase. These recipes and data were thus embedded into the Discrete Event Simulator previously developed (see [START_REF] Dietz | Integrating Environmental Impact Minimization Into Batch Plant Design: Application To Protein Production ESCAPE-14[END_REF]. The classical expression C[€] = a + b V[m 3 ] c was used to compute the equipment item costs, where C is the equipment item cost, V the equipment item volume and a, b et c are constants. The c coefficient was set at 0,6 as it is usually assumed in investment cost computing. The a constant was fixed as 10000 €, which represents the fixed cost of the equipment item. A value of 20000 € was adopted for the b constant , taking as reference the cost of a 16 m 3 equipment item, that is around 122000 €. Table 1 presents the required production for each product, A1 and B2 respectively. Two production policies were validated with plant data, i.e. mono and multiproduct cases. Figure 3 presents the Gantt chart corresponding to a monoproduct campaign policy for four batches of both products A1 and B2. The equipment items show a regular use and a relatively high use rate. This behaviour comes from the design stage of the batch plant where only this production policy was considered. The Gantt diagram corresponding to a multiproduct policy is presented in Figure 4. As the time factors corresponding to the reaction exhibit the highest values for both products, this stage becomes the limiting one. The other stages have a relatively low use rate, even though regular, since they treat only one of the two products, which suggests that oversized equipment is involved as far as the multiproduct policy is considered.

Figure 3 -Gantt chart for a monoproduct campaign production policy for product A1 and B2 respectively.

Figure 4 -Gantt chart for a multiproduct campaign production policy.

A TWO-STAGE METHODOLOGY FOR PLANT DESIGN AND RETROFIT

-Basic concepts

The approach used consists in coupling a stochastic algorithm, indeed a Genetic Algorithm (GA) with the Discrete Event Simulator (DES). The management of production constraints and the computation of the objective functions are carried out by the DES. The master MultiObjective Genetic Algorithm (MOGA) procedure aims at improving the performance criteria and involves a Pareto sort procedure [START_REF] Dietz | Integrating Environmental Impact Minimization Into Batch Plant Design: Application To Protein Production ESCAPE-14[END_REF].

Figure 5 -Batch plant design framework.

References to multiobjective optimization could be found in [START_REF] Bhaskar | Applications of Multiobjective Optimization in Chemical Engineering[END_REF], [START_REF] Coello | An Updated Survey of GA-based Multiobjective Optimization Techniques[END_REF], [START_REF] Ehrgott | Lecture Notes in Economics and Mathematical Systems -Multicriteria Optimization[END_REF]. Lately, there has been a large development of different types of multiobjective genetic algorithms, which are reflected in the literature. For an overview on genetic algorithms in multiobjective optimization, see [START_REF] Fonseca | An overview of evolutionary algorithms in multiobjective optimization[END_REF]. Literature surveys and comparative studies on multiobjective genetic algorithms are also given in [START_REF] Holland | Adaptation in Natural and Artificial Systems[END_REF]) [START_REF] Bhaskar | Applications of Multiobjective Optimization in Chemical Engineering[END_REF], [START_REF] Coello | An Updated Survey of GA-based Multiobjective Optimization Techniques[END_REF]. Fonseca and Fleming have also divided multiobjective genetic algorithms in non-Pareto (Schaffer, 1985) and Pareto based approaches [START_REF] Goldberg | Algorithmes Génétiques[END_REF].

The main advantage of genetic algorithms over other methods, particularly over other stochastic procedures such as Simulated Annealing, is that a GA manipulates a population of individuals. It is therefore tempting to develop a strategy in which the population captures the whole Pareto front in one single optimization run. This approach was adopted here.

-Multiobjective Genetic Algorithm

The flowchart presented in Figure 6 illustrates the cycle {Evaluation, Selection, Crossover and Mutation} which is repeated until a stop criterion is reached. After this cycle, the Pareto sort is applied. The multiobjective aspects are taken into account at the selection stage and the compromise solution search at the cross-over stage. The selection procedure is carried out by the biased Goldberg's roulette, with a roulette for each criterion to optimize. An equal number of individuals for each criterion was selected to complete the total number of individuals passing by the survival procedure to the next population. The cross-over procedure that proposes compromise solutions was not modified. It must be pointed that the population was composed of "good" individuals for each selected criterion thanks to the Goldberg's roulette and that the individuals were chosen through a random procedure. This allows the crossover of "good" solutions for a criterion with "good" solutions for another with a strong probability to generate a compromise between both criteria. In the case that both "good" chosen solutions correspond to the same criterion, the cross-over procedure will carry out the traditional function of generating a better solution than the two previous ones. The mutation procedure is not modified and its aim is, as usual, to diversify the search and to avoid local optimum solutions.

The aim here is to propose a generic multiobjective genetic algorithm able to evolve naturally towards the whole set of optimal Pareto solution. This evolution must be done from an initial population generally randomly generated composed of individuals not adapted to the considered criteria.

The genetic algorithm includes the following steps (see Figure 6):

Step 1: an initial population is generated randomly. This procedure guarantees a diversified initial population covering the complete space search.

The following steps are performed in order to pass from the actual population (k) to the next one (k+1). First an intermediate population is generated in steps 2 to 4.

Step 2: an elitism procedure selects the best individual for each criterion and is placed in intermediate population.

Step 3: an equal number of individuals is chosen for each criterion using the biased Goldberg's roulette.

Step 4: the intermediate population is completed with individuals generated by the cross-over procedure. Let us note that the individuals to whom this procedure is applied are chosen randomly from the population k. The simplest cross-over procedure is used with only one cutting point.

Step 5: The mutation procedure is applied to a fixed number of randomly chosen individuals. Only one point of the chromosome is modified, changing its value from 0 to 1 or the opposite.

Step 6: the new population becomes the current one and Steps 2 to 5 are repeated until the maximal number of generations is reached.

Step 7: A Pareto sort procedure is carried out over all the individuals evaluated over generations. At the end of the algorithm, the set of Pareto non dominated solutions is obtained. 

BATCH PLANT DESIGN

Monocriterion Batch Plant Design

First, the batch plant design was carried out in order to validate the approach. The results obtained showed that a batch plant with an investment cost of around 75% of the actual one can reach the same production rate (Figure 7). The investment reduction is achieved over all stages except the reaction stage (R3), which has the longest operating time. Both solutions propose the same capacity for this stage, using yet two equipment items half sized instead of one. This gives more flexibility to the batch plant. Since the first stage size is reduced, the batch size is also reduced, and, consequently, the downstream equipment item sizes, R21, R6, R5, F, S.

The configuration obtained with a multiproduct policy is 5% lower than the monoproduct one. The difference between both configurations lies in the spin-dryer stage sizing. When a monoproduct policy is proposed, a bigger spin-dryer is necessary for treating the batch in a reduced time, thus releasing the filter (F) and R4 equipment items available for production purposes and reducing the batch storage time in these equipment items.

It is interesting to visualize the weight of each treatment stage on the total investment cost criterion. Figure 7 presents the contribution of each treatment stage to the total investment cost for the current batch plant configuration and the two configurations obtained by the batch plant design framework. In all three cases, the contribution to the global cost for the different stages is more or less equivalent. The most expensive equipment item is R5, i.e., a distillation column, which presents the highest values for cost coefficients. The main difference between the actual configuration and the two proposed configurations lies in the reaction stage, R3, which contribution percentage is doubled for both new configurations. The decrease in investment cost for batch plant design framework was observed in most of the treatment stages, except the reaction stage, which has the highest time factor. This behaviour was already highlighted in the simulation phase that was carried out to validate the model.

Figure 7 -Contribution of all stages to the total investment cost.

The batch plant configuration for each solution is illustrated in Figure 8. The first remark concerns the synthesis stage, R3: both proposed configurations have the same capacity as the actual configuration, which means that it is the limiting stage; but they propose to use two smaller size reactors instead of one middle-sized item, giving some flexibility to the batch plant. The decrease in the size factor of the first treatment stage involves in turn a decrease in the batch size and in the equipment item size for the downstream process, i.e., R21, R6, R5, F, S. In the actual configuration, let us note that an equipment item, R6, was oversized because it was initially designed to manufacture a product that was finally discarded in the industrial production step.

Figure 8 -Monocriterion batch plant design results.

Bicriteria Batch Plant Design

The bicriteria batch plant design problem based on an {investment cost -production capacity} approach was then investigated while keeping the previous design formulation with a fixed time horizon and production. The production capacity criterion is taken into account through the necessary time to manufacture the imposed production. If the production is manufactured in half time horizon, the batch plant production capacity in the complete horizon is therefore twice the fixed production. The investment cost is a criterion to minimize while the production capacity must be maximized. Parameter setting of the MOGA results from a preliminary study and is presented in Table 3. The results obtained for both production policies are presented in Figure 9. Three optimisation runs were carried out for each case where it can be seen that the multiproduct policy is slightly better, which assesses once more the interest of a multiobjective batch plant framework. At each implementation, the framework was able to find the best solution for each criterion considered as well as a complete set of compromise solutions. 

BATCH PLANT RETROFIT

-Monocriterion Batch Plant Retrofit

In the retrofit application, the current configuration is now supposed to adapt to a new market demand, i.e., 2.5 times the actual demand for both products, A1 and B2. The design problem was then extended to treat the retrofit case and can be formulated easily as the number of equipment items and their corresponding size to find, while optimizing the various criteria. Figure 10 shows schematically the equipment items that have to be added to the actual configuration for the two production policies considered. The results obtained have the same investment cost for the shared stages, R3 and R6. The main difference concerns the stages that are used by only one of the products. The advantages of using a multiproduct policy are highlighted, because no additional equipment items are needed at the non-shared stages. In order to explain briefly these differences, the shared stages must treat a higher demand in the same time, which leads to a need in resources. With a multiproduct policy, the non-shared stages, are used over all the time horizon; with a monoproduct policy, they are used only by the product being manufactured, i.e. over only part of the time horizon and, consequently, more resources are necessary to treat the same production in a shorter time. Figures 11 also presents the weight contribution of the additional investment cost for each treatment stage for both production policies, mono and multiproduct respectively. The monoproduct production policy needs a higher additional investment of about 50% than the one corresponding to the multiproduct policy. An investment of the same order of magnitude is necessary for the non-shared treatment stages for a monoproduct policy. Concerning the shared stages, R3 and R6, a higher level of investment is needed for R3 treatment stage for both policies, which can be attributed to the difference in product time factor. 

-Bicriteria Batch Plant Retrofit

In the previous configurations, the added equipment items are not in all cases of the same size as the existing ones. However, it is required, for flexibility and maintenance reasons, that all the equipment items of a given stage be identical, which drives us to a compromise in investment cost. In order to explore the compromise configurations which respect these two criteria, investment cost and different equipment items, the bicriteria retrofitting is carried out. Given the stochastic aspects of the genetic algorithm, three optimization runs were carried out. For the monoproduct policy, the results obtained are illustrated in Figure 13, and the corresponding configurations are presented in Table 4. It is interesting to visualize the dominated Pareto solutions obtained in the second optimization run (S6, S7, S8 of Table 2), which correspond to a local optimum where the main investment is carried out over the A1 production chain with R5, ES and R4 instead of the B2 production chain (ES, F, S) which corresponds to the optimal solutions. Given the few solutions obtained, it is advised to keep them for the final decision procedure, because they could be interesting for other criteria, such as maximal production capacity. Concerning the multiproduct policy, the two expected solutions were found (see Table 4). 

CONCLUSIONS AND PERSPECTIVES

In this work, an integrated multicriteria optimization framework is implemented for batch plant design and retrofit. The different stages of the methodology were presented. At first, the DES was implemented and validated with plant data. The AG-DES coupling was validated with the monocriterion batch plant design and the results obtained agree with the actual configuration. Then, the batch plant retrofit was tackled and both the mono and multicriteria cases were treated. Concerning the multicriteria case, the method was able to find the set of non-dominated Pareto optimal solutions as well as some other interesting configurations. Generally, the results highlighted the interest of a multiproduct production policy. Some perspectives could now be to include aspects such as maintenance and uncertainty on the market demand in the batch plant model.
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Table 1 :

 1 Time and size factors.

	Product A1	S i .10 3 [m 3 /kg]	T i [h.]	Product B2	S i .10 3 [m 3 /kg]	T i [h.]
	R3	5.91	16.5	R3	5.68	33
	R6	5.91	10	R21-2	6.70	8.5
	R5	5.45	11.5	R21-1	5.01	8.5
	ES	4.26	1.5	R6	5.01	20
	R4	2.48	6	F	2.66	--
				S	1.25	23

Table 2

 2 

		: Production data.
	Product	Production (kg/year)
	A1	300000
	B2	200000

Table 3 :

 3 GA parameters.

	Type of parameter	
	Population size	400
	Generation number	1000
	Survival rate	0.5
	Mutation rate	0.4
	Elitism	1

Table 4 :

 4 Multicriteria batch plant retrofit results.

	MonoP Criteria	R3	R6	R5	ES	R4	R21	F	S
	S1	768240/4	2-16	1-16	0	1-2	0	0	1-8/4	1-3
	S2	804157/3	2-16	1-16	0	1-2	0	0	1-16/4	1-3
	S3	856303/2	2-16	1-16	0	1-2	0	0	1-16/8	1-3
	S4	910743/1	2-16	1-32	0	1-2	0	0	1-16/8	1-3
	S5	970561/0	2-16	1-32	0	1-2	0	0	1-16/8	1-6
	S6	1014890/2	2-16	1-16	1-16	2-2	1-8	0	0	0
	S7	1050810/1	2-16	1-16	1-16	2-2	1-16	0	0	0
	S8	1105250/0	2-16	1-32	1-16	2-2	1-16	0	0	0
	MultiP Criteria	R3	R6	R5	ES	R4	R21	F	S
	S1 346690 €/1 2-16	1-16	0	0	0	0	0	0
	S2	401130/0	2-16	1-32	0	0	0	0	0	0