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ANGULAR SYNCHRONIZATION OVER GRAPHS

Angular Synchronization asks to recover a set of n unknown angles ω = (ω) i ⊆ [0, 2π) n with prescribed pairwise offset measurements {θ i,j } i,j . This task appears in many structured signal problems, such as brightness reconstruction [START_REF] Yu | Angular embedding: from jarring intensity differences to perceived luminance[END_REF], ranking [START_REF] Cucuringu | Sync-rank: Robust ranking, constrained ranking and rank aggregation via eigenvector and sdp synchronization[END_REF] or cryo-electron mycroscopy (cryo-EM) denoising [START_REF] Singer | Vector diffusion maps and the connection laplacian[END_REF], where it is often a key component in state-of-the-art recovery methods.

If we have access to perfect measurements θ i,j = ω i -ω j , exact recovery can be performed up to a global phase shift. In practice, we may only observe a subset of all such measurements θ i,j , in which case the problem can be formulated on a graph G with n nodes whose set of edges E is indexed by the number of measurements, and where edge (i, j) (resp. (j, i)) carries the offset θ i,j (resp. (θ j,i = -θ i,j )). Exact recovery is then derived from pairwise comparisons along a spanning tree of G.

The problem becomes more involved when considering imperfect measurements θ i,j , for instance if:

θ i,j = ω i -ω j + ε i,j , (1) 
with ε i,j representing some unknown degradation of said measurement. In general, exact angular synchronization can no longer be performed in this noisy regime, and a common workaround (first introduced in [START_REF] Yu | Angular embedding: from jarring intensity differences to perceived luminance[END_REF]) is to solve the following optimization problem:

argmin ω∈[0,2π) n (i,j)∈E 1 -cos(ω i -ω j -θ i,j ), (2) 
which is a non-convex problem and, in practice, is relaxed to a more convenient form before being solved. This is the object of the next section.

SPECTRAL RELAXATION AND THE MAGNETIC LAPLACIAN

The first step in obtaining a spectral relaxation of Problem (2) (common in synchronization problems over groups [START_REF] Perry | Message-passing algorithms for synchronization problems over compact groups[END_REF]) consists in representing all the angles involved in the problem as
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unitary complex numbers to obtain the equivalent problem:

argmin ω∈[0,2π) n (i,j)∈E e iωi -e iθi,j e iωj . (3) 
The Magnetic Laplacian L θ (also Connection Laplacian [START_REF] Singer | Vector diffusion maps and the connection laplacian[END_REF]) is a generalization of the combinatorial Laplacian L to graphs equipped with unitary complex numbers on their edges, such as the graph G considered so far is defined as

L θ = D -A θ , (4) 
with D the diagonal degree matrix and

(A θ ) i,j = e iθi,j if {i, j} ∈ E (0 otherwise). Note that L = L θ if θ i,j = 0 for all pairs {i, j} ∈ E.
Similarly to the combinatorial Laplacian, L θ is Hermitian and semi-definite positive. Much unlike L though, the eigenvalues of L θ are in general all strictly positive.

This surprising phenomenon can be explained by a further relaxation of Problem (3) given by:

argmin f ∈C n , f =1 f * L θ f = {i,j}∈E |f (i) -e θj,i f (j)| 2 , (5) 
which is one of the most straightforward relaxations to solve when performing angular synchronization. The solution to Problem ( 5) is classically given by the eigenvector u of L θ associated to its smallest eigenvalue λ 0 = u * L θ u, which is nonzero except when angular synchronization can be performed exactly.

Note that computing the eigenvector u of L θ for a graph G of size n can be computationally expensive, as generic methods often scale with O(n 3 ) complexity, which is prohibitive for large graphs, and approximate methods can be used instead.

ESTIMATORS FOR ANGULAR SYNCHRONIZATION

In this work, we propose approximate algorithms to perform angular synchronization, which can be applied whenever the power iteration map x → M x is repeated, with M = q(L θ + qI) -1 for some regularizing parameter q > 0, as is classical for computing the leading eigenvector of M . We develop new unbiased estimators to compute the iterations x → M x based
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Spanning forest of unicycles Rooted spanning forest Rooted MTSF Fig. 1: Some structured subgraphs on sampling structured subgraphs of G, thus generalizing the approach of [START_REF] Yusuf | Graph Tikhonov regularization and interpolation via random spanning forests[END_REF] to smooth real signals on graphs. This same power iteration appears in popular heuristics [START_REF] Perry | Message-passing algorithms for synchronization problems over compact groups[END_REF] for solving the angular synchronization Problem 2, all of which can benefit from our techniques. The starting point is a variant of the random process introduced in [START_REF] Fanuel | Sparsification of the regularized magnetic Laplacian with multi-type spanning forests[END_REF], from which we randomly sample a rooted multi-type spanning forest φ ⊆ V ∪ E (MTSF) of edges and nodes of G. In order to explain what a MTSF is, we start from simpler objects. A rooted spanning forest is a cycle-free subset of edges and nodes whose edges span the entire graph and for which each of the nodes belongs to only one connected component of the induced subgraph, called a rooted tree. A unicycle is a subset of edges containing exactly one cycle. A forest of unicycles is a spanning subset of unicycles. Finally, a rooted MTSF is a spanning subset of edges and nodes, whose connected components are either rooted trees or unicycles. These structures are illustrated in Figure 1.

Efficient algorithms based on random walks can be used to sample from the aforementionned distribution on (rooted) MTSFs [START_REF] Fanuel | Sparsification of the regularized magnetic Laplacian with multi-type spanning forests[END_REF], and our estimators then compute M x at a low computational cost by propagating the values at the roots of the MTSF in its associated connected component, whilst taking into account the offsets θ i,j [START_REF] Jaquard | Smoothing complex-valued signals on Graphs with Monte-Carlo[END_REF].

We illustrate the performance of our method on a stateof-the-art ranking procedure [START_REF] Cucuringu | Sync-rank: Robust ranking, constrained ranking and rank aggregation via eigenvector and sdp synchronization[END_REF]. We start from an incomplete and incoherent set of pairwise comparisons of the n elements of an ordered set, that we corrupted (according to a degradation model proposed in e.g. [START_REF] Cucuringu | Sync-rank: Robust ranking, constrained ranking and rank aggregation via eigenvector and sdp synchronization[END_REF]), and aim to recover the underlying order. This problem can be cast as an angular synchronization problem [START_REF] Cucuringu | Sync-rank: Robust ranking, constrained ranking and rank aggregation via eigenvector and sdp synchronization[END_REF], that we solve by computing the eigenvector u solution of Problem [START_REF] Yusuf | Graph Tikhonov regularization and interpolation via random spanning forests[END_REF], where we used the normalized magnetic Laplacian (our method remains applicable in this case), using the power method with and without our estimators. Here, we worked with a dense graph, a challenging setting for approximate methods, and high corruption of the n = 300, k = 5

Varying n, k = 5 n = 3000, k = 5 n = 3000, k = 10 Fig. 2: Experimental results comparisons. We use q = 0.1 and 5 MTSF sampled at each of the k iterations of the power method, for a graph of size n.

The experimental results obtained from our Julia implementation, depicted in Figure 2, show that we obtain similar performances to the power method with only 5 MTSFs, with improved runtime as compared to the exact power iteration starting from graphs with n ∼ 1000. Our runtime improvements do not manage to outperform a direct Lanczos iteration when computing the eigenvector u, which is in part due to the difference in the quality of the implementations of the two methods, but the Lanczos iteration is not applicable to other (sometimes preferred) angular synchronization heuristics [START_REF] Perry | Message-passing algorithms for synchronization problems over compact groups[END_REF].