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A B S T R A C T

Breast cancer is one of the most prominent types of cancers, in which therapeutic resistance is a
major clinical concern. Specific subtypes, such as claudin-low and metaplastic breast carcinoma
(MpBC), have been associated with high nongenetic plasticity, which can facilitate resistance. The
similarities and differences between these orthogonal subtypes, identified by molecular and his-
topathological analyses, respectively, remain insufficiently characterized. Furthermore, adequate
methods to identify high-plasticity tumors to better anticipate resistance are lacking. Here, we
analyzed 11 triple-negative breast tumors, including 3 claudin-low and 4 MpBC, via high-
resolution spatial transcriptomics. We combined pathological annotations and deconvolution
approaches to precisely identify tumor spots, on which we performed signature enrichment,
differential expression, and copy number analyses. We used The Cancer Genome Atlas and Cancer
Cell Line Encyclopedia public databases for external validation of expression markers. By focusing
our spatial transcriptomic analyses on tumor cells in MpBC samples, we bypassed the negative
impact of stromal contamination and identified specific markers that are neither expressed in
other breast cancer subtypes nor expressed in stromal cells. Three markers (BMPER, POPDC3, and
SH3RF3) were validated in external expression databases encompassing bulk tumor material and
stroma-free cell lines. We unveiled that existing bulk expression signatures of high-plasticity
breast cancers are relevant in mesenchymal transdifferentiated compartments but can be hin-
dered by abundant stromal cells in tumor samples, negatively impacting their clinical applicability.
Spatial transcriptomic analyses constitute powerful tools to identify specific expression markers
and could thus enhance diagnosis and clinical care of rare high-plasticity breast cancers.
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Introduction

Breast cancer is one of the most prominent types of cancers,1

with 2.3 million women diagnosed in 2020 (Globocan, 2020 In-
ternational Agency for Research on Cancer). Patient stratification
relies on the presence of specific targetable alterations in the
estrogen receptor, progesterone receptor, and HER2 genes. These
genetic properties are generally well recapitulated by the broad
PAM50 transcriptomic signatures: luminal A, luminal B, HER2-
enriched, basal-like, and normal-like.2 Clinical approaches typi-
cally rely on the immunohistochemical expression of those 3
markers, conducted routinely during the pathological examina-
tion of breast cancer specimens. Triple-negative breast cancer
(TNBC) patients, however, lack any of the targetable estrogen
receptor, progesterone receptor, and HER2 alterations, leading to
scarce therapeutic options and low survival rates despite
promising results with antibody-drug conjugates.3,4 Rarer sub-
types, such as claudin-low (CL) tumors or metaplastic breast
carcinoma (MpBC), have furthermore been associated with high
plasticity, a cellular property facilitating dynamic phenotypic
changes and the subsequent emergence of nongenetic thera-
peutic resistance.5 Anticipating the ability of breast cancer cells
to adapt via plasticity is thus of paramount importance for
effective therapeutic targeting. However, the driving mecha-
nisms of tumor plasticity remain poorly understood, and no
standard method exists to accurately detect or quantify it for
patient stratification.

High-plasticity breast cancer subtype identification typically
relies on either molecular or histopathological analyses. CL tumors
were originally defined by transcriptomic analyses, with a
phenotype similar to basal cells lacking expression of claudins 3, 4,
and 7, and other cell-cell adhesion markers.6 They represent 3% to
5% of all breast cancers7,8 and are generally associated with strong
stemness features. The evolutionary trajectories underlying their
malignant progression are, however, still debated. CLs typically
display high expression of epithelial-mesenchymal transition
(EMT) factors,6 known to foster phenotypic plasticity and stem-
ness,9,10 and enhance tolerance to oncogenic stress, thereby
mitigating genomic instability.11 Recent work further suggests the
existence of different CL classes: CL1, CL2, and CL3.7 CL1 tumors
are believed to arise directly from malignantly transformed
mammary stem cells (MaSC). They appear to be the most repre-
sentative of previous observations of EMT-driven plasticity and
genomic stability, displaying the highest intrinsic expression of
EMT markers and the lowest fraction of genome altered (FGA).

MpBC are a heterogeneous group histopathologically defined
by the presence of a nonepithelial tumor component believed to
occur through transdifferentiation.12 MpBCs, accounting for 0.2%
to 2% of all invasive breast carcinomas, (IBCs) are usually triple-
negative and often associated with poorer survival rates.13

Different subtypes exist according to the transdifferentiated
component,13 including but not restricted to spindle, chondroid,
and osseous cells.13,14 MpBC can present �1 metaplastic com-
partments, which are frequently admixed with a component of
IBC of no special type (NST). MpBC diagnosis remains challenging,
and adequate markers are lacking to correctly classify specific
subtypes within this highly heterogeneous disease.15 Similar to
CLs, many of these subtypes display high EMT marker expression
and resemble mammary tumor-initiating stem cellelike cells
based on transcriptomic data.16 Although CL tumors frequently
undergo metaplastic differentiation,6 a thorough comparison be-
tween these subtypes, defined by different approaches, has never
been carried out.
2

Here, we aimed at further characterizing these plasticity-
associated breast cancer subtypes, defined either molecularly or
histopathologically, via spatial transcriptomics (SpaT). Based on
previously described7,8 genomic instability and CL-associated bulk
gene signatures, we identified 3 putative CL tumors (CL-like) and 4
non-CL, genomically unstable TNBC samples as controls. We also
selected 4 MpBCs through histopathology (2 spindle cell, 1
chondroid, and 1 IBC-NST compartment from a mixed spindle cell
tumor) and performed SpaT analyses on all 11 samples. We report
that, unlike unstable TNBC samples, the tumor compartment of
CL-like tumors did not recapitulate expression patterns expected
from bulk analyses. We demonstrate that existing CL expression
signatures are significantly upregulated in MpBCs with mesen-
chymal transdifferentiation but that the prevalence of stromal
cells can hinder clinical applicability and lead to false-positive
diagnoses. This pitfall highlights the need to integrate histopath-
ological approaches into transcriptomic analyses to define more
robust signatures that are specific to high-plasticity tumor cells.

By focusing SpaT expression analyses on tumor cells in MpBC
samples, we identified specific expression markers that are
neither expressed in other subtypes nor expressed in stromal
cells. SpaT-derived markers could thus enhance the diagnosis and
clinical care of rare high-plasticity breast cancers in the future.
Materials and Methods

Low and High Genomic Instability Sample Identification

We analyzed 87 fresh frozen TNBC samples with paired whole
exome sequencing (WES) data collected at the Centre L�eon B�erard
from 379 samples with RNA sequencing (RNA-seq) data assem-
bled as part of the MyPROBE project (17-RHUS-0008). Only sam-
ples with more than 30% tumor purity (estimated percentage of
tumor cells), as estimated by FACETS,17 had been included in this
data set. We used the already processed RNA-seq and WES data
available for all samples. Using the precalculated FGA, we identi-
fied 3 samples with low genomic instability (FGA, <10%) and 6
samples with high instability (FGA, >75%). Samples CLB-17, CLB-
52, and CLB-74 were considered CL-like, and samples CLB-14, CLB-
23, CLB-37, and CLB-51 were considered unstable TNBC
(Supplementary Table S1). An additional CL-like sample (CLB-11 or
CL-like 4) was discarded after in-depth investigation and identi-
fication of an erroneously low FGA (actual FGA, >10%). However, a
tumor-free slide from this discarded tumor was included in the
controls.
Spatial Transcriptomic Analyses

Visium Spatial 3' v1 slides for fresh frozen samples (10x Ge-
nomics) were processed according to the manufacturer’s guide-
lines. Briefly, tissue was fixed on each capture area with methanol
for 30 minutes at �20 �C, stained with hematoxylin and eosin,
imaged using the 3DHISTECH Pannoramic Scan II scanner, per-
meabilized for 12 minutes, and reverse-transcribed to create RNA
libraries tagged with unique molecular identifiers (UMIs). RNA
libraries were then sequenced in 2 batches on a NovaSeq 6000
sequencer (Illumina), targeting 50,000 reads/spot. Each Visium
“slide” comprised 4 capture areas; each capture area could be used
to analyze a single slide of frozen material from a given sample (ie,
1 Visium slide corresponds to the analysis of 4 tissue slides, each in
a separate capture area). Each tissue slide analyzed by Visiumwas
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given a unique identifier starting with M. The first batch included
tissue slides M1 to M11 (CL-like, unstable TNBC, and normal
controls), and the second batch included tissue slides M13 to M16
(metaplastic TNBCs). Correspondence between patient and slide
identifiers is listed in Supplementary Table S1. The Space Ranger
software (10x Genomics) was used to process the raw data. Ste-
reoscope18 was used for deconvolution analyses using only the
TNBC data from a single-cell breast cancer atlas19 and excluding
plasmablasts that were initially found to be overrepresented in
deconvolution results (included cell types: cancer epithelial,
normal epithelial, endothelial, cancer-associated fibroblasts, T cell,
B cell, myeloid, and perivascular-like cells).

Signature enrichment analyses were performed using the
AUCell tool,20 designed for UMI-based single-cell data that pre-
sent similar biases to those of our SpaT data. To maximize the
capture of weakly expressed genes in all signatures, we used the
maximum threshold advised by AUCell developers (0.2). This
provided higher minimal scores compared to lower thresholds
(0.5, 0.1, and 0.15) without altering the overall observations
(Supplementary Fig. S1).
Combining Histopathological Annotations and Spatial
Transcriptomics on Fresh Frozen Tissue

We analyzed a total of 15 Visium capture areas, including 3
controls extracted from tumor samples with epithelial compart-
ments but no identifiable tumor on the slide. All slides were an-
notated by a breast pathologist (V.C.) to separate tumor/nontumor
and epithelial/nonepithelial compartments as well as to eliminate
spots corresponding to folded tissue and artifacts. The SpaT data
and paired annotations have been publicly deposited as a series on
the Gene Expression Omnibus (GSE213688).

Tumor spots were first annotated by the pathologist. To later
investigate expression markers that would not be biased by the
prevalence of mesenchymal stromal cells, we restricted the anal-
ysis of stromal spots to the following pathologist annotations,
exclusively: fibrosis, fibrosis (peritumoral), fibrous stroma, tumor
stroma, and tumor stroma fibrous, the last 2 separated on visual
appreciation of the cellular density and collagen abundance in the
stroma. Tumor and stromal spots identified by the pathologist
were further refined using scores obtained by RNA-based
computational deconvolution. This ensured that only the most
enriched spots in the population of interest were analyzed by
combining human expertise and computational data mining. For
each spot, the stereoscope software reports individual scores for
each of the 8 cell types on which it was trained: the higher the
score, the higher (likelier) the proportion of the related cell type in
a spot, and the sum of these 8 scores is always 1. Tumor spots with
a cancer epithelial score <0.1, as attributed by the stereoscope
software, were discarded. In addition, spots annotated as tumor by
the pathologist in the MpBC_chondroid sample with unusual B
cell stereoscope scores >0.1 were also discarded. For spots anno-
tated as stromal by the pathologist, those with either normal
epithelial or cancer epithelial scores >0.1 in the stereoscope
deconvolution output were discarded.
Copy Number Alteration Profiles

Three slides that were devoid of tumor cells upon histopath-
ological examinationwere included as normal references: M1 and
M9 (CL like3) and M7 (CL like4). The expression profiles of
epithelial spots present on these slides provided a more relevant
3

reference than those of other cells, in which cell typeespecific
expression patterns local to genome segments could hamper
copy number alteration (CNA) identification. Individual spot copy
number (CN) profiles were produced with the infercnvPlus tool
(https://github.com/CharleneZ95/infercnvPlus, based on inferCNV
of the Trinity CTAT project: https://github.com/broadinstitute/
inferCNV). For each slide, all spots annotated as either tumoral
or epithelial were pooled using epithelial spots as references.

This produced a relative CN measure per gene per spot, which
we complied into a major cytoband per spot matrix, by computing
the average CN per cytoband. Sample-specific profiles were then
obtained by averaging the relative CN measures per cytoband
across all spots of each given sample. Comparable profiles were
obtained for bulk samples, by averaging per cytoband the
segmented logR values reported by FACETS17 analysis, from the
WES data of CL-like and unstable samples.

Gain/loss profiles were calculated for each bulk sample by
attributing values of 1 (gain), 0 (normal), or �1 (loss) to each
cytoband, according to whether their mean logR exceeded the
median logR of the sample ± 0.6, as implemented by Van Loo
et al.21 A threshold was used to calculate similar gain/loss profiles
in Visium samples, according to whether the cytoband CNA score
exceeded the threshold. Its value was optimized to minimize the
pairwise distance across all cytobands between the bulk-derived
and SpaT-derived gain/loss profiles for the 4 unstable tumors,
which provided the most reliable and informative data.

CN profiles were calculated for all Molecular Taxonomy of Breast
Cancer International Consortium IntClusters (METABRIC) using the
difference between gains and losses (number of gains minus
number of losses) reported for each gene in each cluster and then
summed per cytoband as for our other CN profiles. Correlation-
based distances were obtained by calculating the Pearson R corre-
lation between 2 samples, minus 1, and then divided by �2. This
gives a minimum distance of 0 for perfectly correlated samples and
a maximum distance of 1 for perfectly anticorrelated samples.
Differential Expression Analyses on Spatial Tanscriptomics Data

All tumor samples were first individually normalized using the
SCTransform function of the Seurat R package.22 All 11 samples
were then merged together and renormalized using the
SCTransform function, resulting in a matrix of 22,058 genes by
14,905 spots. The MAST R package23 was used to perform differ-
ential expression analyses on SpaT data. Fold changes (FC) were
defined as the mean expression in the population of interest
divided by the mean expression in the control population.

The CL, unstable control, and normal samples (M1-M11) were
distributed across 3 Visium slides and were sequenced together in
the first batch. All 4 MpBC samples (M13-M16) were on the same
Visium slide and were sequenced in the second separate batch.
We thus adapted our design to remove potential biases stemming
from batch effects and different sequencing depths. The Uniform
Manifold Approximation and Projection of all MpBC tumor spots
was obtained without spots from other samples, to prevent batch
effects, and then normalized using the harmony software24 to
account for technical effects between capture areas. For the same
reasons, we initially defined differentially expressed (DE) genes
only among the metastatic samples. We used the tumor spots
from the MpBC_NST sample as a nonmetastatic reference and the
spots annotated as fibrosis and tumor stroma from the
MpBC_spindle2 sample as a stromal reference. To account for the
uneven number of tumor spots between the 2 spindle MpBC
samples, we first performed DE analysis between them and

https://github.com/CharleneZ95/infercnvPlus
https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
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retained all genes with a nonsignificant difference in expression (P
> .05; absolute log2 FC, < 2). We then performed DE analyses
between combined tumor spots from both spindle samples
compared to tumor spots from the NST sample and the stromal
references separately. Genes upregulated in the spindle tumor
spots were defined as those having a log2 FC of >1.5 and a cor-
rected P value of <.001 (Benjamini-Hochberg). Genes overex-
pressed in MpBC tumor spots in both analyses (vs non-MpBC
tumor and stroma) were considered candidate MpBCmarkers. We
further validated their relevance in the tumor and stromal spots
from the CL-like and unstable samples using the samemethod but
with a higher log2 FC threshold (>2) in this larger data set. Only
genes significantly overexpressed in MpBC samples in both ana-
lyses (non-MpBC tumor and stroma) were considered internally
validated markers. For external validation, we used the clinical
information, including sample metaplastic status, and messenger
RNA expression (z-normalized RNA-seq log RSEM) data from The
Cancer Genome Atlas (TCGA) breast cancer Firehose Legacy cohort
retrieved through the cBioPortal.25,26 Cancer Cell Line Encyclo-
pedia (CCLE) data, z-normalized relative to diploid samples, were
also obtained from the cBioPortal. CL classification of the CCLE
breast cancer cell lines was retrieved from the studies by Pommier
et al7 and Prodhomme et al.27 Differential expressionwas assessed
using Wilcoxon rank-sum tests for each gene of interest.
Results

Identification of Claudin-LoweLike, Unstable, and Metaplastic
Breast Tumors

We focused on identifying CL tumors displaying high intrinsic
plasticity and low genomic instability, as described by the CL1 sub-
classification.7Weanalyzed379TNBCsamples fromtheCentre L�eon
B�erard for which RNA-seq datawere available, 87 of which also had
paired whole exome data. To initially identify potential CL1 tumors
basedongenomic stability,we selected3 tumorswithFGA<10%. For
control TNBC samples, we focused on those least resembling CL1
tumors and identified 6 genomically unstable tumors with FGA
>75% (SupplementaryTableS1). The low-FGAtumorsdisplayedRNA
expressionpatterns highly concordantwith CL, and particularly CL1,
phenotypes: high ZEB1, ZEB2, andMSRB3 and low POLQ11,27 (Fig.1A).
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We thus considered these 3 samples as highly relevant CL-like
candidates. Of the 6 high-FGA samples, to be used as controls, we
selected the 4 high-FGA samples displaying the most contrasting
patterns regarding these genes (Supplementary Fig. S2). We per-
formed PAM50 centroid classification on the 379 samples from our
cohortmergedwith the TCGABRCAdata set. This revealed that the 3
CL-like sampleswere similar to luminalA, and the4unstable control
samples were closer to the Basal subtype. Furthermore, these find-
ings were consistent with gene set enrichment analyses of estab-
lished CL and Basal-like gene signatures from the study by Prat et al6

and the CL1 and MaSC signatures from the study by Pommier et al7

(Fig. 1B, C, Supplementary Figs. S3-S5). These tumors were histo-
logically reviewed to confirm their histotype; all were classified as
TNBC-NST according to the WHO Classification of Tumours of the
Breast, Fifth edition, criteria, and no metaplastic component was
identified in these samples.

To broaden the analysis of high-plasticity breast tumor types,
we further selected 4 MpBC of different subtypes: 2 spindle cell
carcinomas (MpBC_spindle), 1 carcinoma with pure chondroid
differentiation (MpBC_chondroid), and 1 IBC-NST compartment
from a tumor diagnosed as a mixed spindle cell and IBC-NST
(MpBC_NST). Their subtypes were initially determined during
routine histopathological evaluation for clinical diagnosis on
formalin-fixed, paraffin-embedded samples and were then
reviewed by a breast pathologist. Only tumors for which fresh
frozen material was available were selected in order to use the
same SpaT technology as for CL and control TNBCs. Frozen speci-
mens were also reviewed on hematoxylin and eosinestained
slides to assess the sampled components and select optimal
samples to be used for SpaT.
Spatial Transcriptomic Data Deconvolution Reflects
Histopathological Annotations

We performed SpaT analyses on a total of 14 slides comprising
3 CL-like tumors, 4 unstable TNBCs, 4 MpBCs, and 3 adjacent
normal tissue with no detectable tumor cells. We uncovered
medians of 85% reads under tissue, 2398 genes per spot, and 5083
UMIs per spot (Supplementary Table S1). Estimation of spot
cellular composition using the stereoscope deconvolution soft-
ware confirmed that spots histopathologically identified as tumor
C

2 4 6
nature

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

−5 0 5 10

−1
5

−1
0

−5
0

5
10

15
20

CL1 signature

M
aS

C 
si

gn
at

ur
e

ers ZEB1, ZEB2, POLQ, and MSRB3 in the 87 MyPROBE triple-negative breast cancer
n of genome altered samples considered to be CL-like and 4 highefraction of genome
the 87 samples for (B) the CL and Basal expression signatures and (C) the CL type 1



Tumor cells
Fibrosis
High TILs
stroma

Tumor cells
Fibrous stroma

Stroma with
inflammation

Adipose tissue

0.2 0.4 0.6
Cancer Epithelial

0.2 0.4 0.6
Cancer Epithelial

0.1 0.2 0.3 0.4
Cancer Epithelial

CL-like1

Unstable3

MpBC
spindle2

Tumor cells
Fibrosis

Tumor stroma
Vascular structures

A

B

C

Figure 2.
Overlaying pathology annotations and in silico deconvolution in spatial transcriptomics data. Hematoxylin and eosin staining (left), pathologist annotations (center), and per-
spot deconvolution-based cancer epithelial score (right) for samples (A) CL-like1, (B) unstable3, and (C) MpBC_spindle1. Unlabeled gray spots were either considered to be
artifacts or could not be annotated with confidence by the pathologist. CL, claudin-low; MpBC, metaplastic breast carcinoma; TIL, tumor-infiltrating lymphocyte.

Ang�ele Coutant et al. / Lab Invest 103 (2023) 100258
displayed more tumor-associated expression patterns (P < .001, t
test; Fig. 2, Supplementary Figs. S6-S10) and that adjacent normal
slides were tumor-free (Supplementary Fig. S9). This confirmed
that the RNA profiles from tumor-labeled spots reflected patho-
logical annotations.

Computational deconvolution was based on individual RNA
profiles of cells extracted from tumors of epithelial origin19 and
could identify cancer cells in all but 1 of the 4 MpBC slides: the
MpBC_spindle1 sample (Supplementary Fig. S8), in which the
strong mesenchymal nature of metaplastic tumor cells led to
spots being predicted as containing mostly cancer-associated
5

fibroblasts. In later analyses, we used both pathological anno-
tations and thresholds on computer-derived deconvolution
scores to identify genuine tumor and nontumor spots (see Ma-
terials and Methods). Of note, all SpaT analyses were performed
on tumor sections that were distinct from the ones initially used
for bulk analyses, which can lead to sampling bias. Importantly,
we report that the tumor slides from the CL-like2 and CL-like3
analyzed by SpaT were annotated as noninvasive in situ carci-
noma, while both patients were diagnosed with invasive TNBC.
This may imply phenotypic differences compared to the sections
included in bulk analyses initially performed on these samples.
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Figure 3.
Spatialized enrichment analyses of existing plasticity-associated expression signatures. (A) Correlation for gene set enrichment scores between bulk- and spatial
transcriptomicsederived pseudobulk data for claudin-low (CL), Basal, CL1, and mammary stem cell (MaSC) expression signatures using all annotated spots. (B) Correlation for
gene set enrichment scores between bulk- and spatial transcriptomicsederived pseudobulk data for CL, Basal, CL1, and MaSC expression signatures focusing on tumor spots. (C)
Average per-spot gene set enrichment scores for the CL, Basal, CL1, and MaSC expression signatures in each sample of CL-like, unstable, and metaplastic breast carcinoma (MpBC)
sample types. For clarity, the MpBC samples were dichotomized according to the presence or absence of a spindle cell transdifferentiated compartment on the captured area
(“spindle” or “other,” respectively). The asterisks highlight groups of samples whose signature enrichment scores were significantly different from those of all other pooled
samples (P < .05, Wilcoxon rank-sum tests). NST, no special type
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Spatialization Sheds Light on the Impact of the Microenvironment
on Molecular Plasticity Signatures

To assess how SpaT recapitulates the bulk signal used to clas-
sify the CL-like and unstable control samples, we generated
pseudobulk data by pooling all spots on each slide. In addition,
histopathological annotations of tumor spots allowed us to
investigate the prominence of CL, Basal, CL1, and MaSC signatures
6

on the entire surface of slides as well as in tumor spots. When all
spots per slide were pooled, correlations between the bulk and
pseudobulk (all spots) data were statistically significant for the
Basal and CL1 signatures (rho¼ 0.93, P¼ .007; rho¼ 0.82, P¼ .034,
respectively) but not for the CL and MaSC signatures (Fig. 3A).
However, no significant correlation was found when focusing on
tumor spots (Fig. 3B). This suggests that SpaT data were less
similar to bulk data when focusing on tumor spots.
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Unstable spatial transcriptomics (SpaT)ederived copy number (CN) profiles are less divergent from their bulk counterpart. (A) Copy number alteration (CNA) profile calculated
for each tumor spot of all 11 cancer samples. This score represents a per-spot relative measure, with values close to �1 (blue) corresponding to the highest loss of genomic
material and values close to 1 to the highest gain. For each spot (y axis), values were averaged per major cytoband (x axis), that is, the average of the scores obtained for each
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We further analyzed each signature using either all spots or
only tumor spots in all samples (Fig. 3C). The original CL signature
was significantly higher in spindle cell MpBC samples, particularly
in tumor spots (Fig. 3C; P ¼ .036, Wilcoxon rank-sum tests). The
CL1 signature was also enriched in spindle cell MpBC tumor spots
(P ¼ .036). The 3 spindle cell and chondroid MpBC samples also
displayed a significantly lower enrichment of the Basal signature
when grouped together (P ¼ .012, both cases; Fig. 3C). This sug-
gests that these existing signatures are relevant for the identifi-
cation of breast cancer transdifferentiation, particularly to a
mesenchymal phenotype.

The restriction of signature enrichment analyses to tumor
spots had little impact on unstable control samples. In CL-like
samples, however, CL and CL1 signatures decreased in this case,
while the Basal signature increased, albeit only with borderline
significance due to limited data points (P ¼ .169, P ¼ .020, and P ¼
.254, respectively, t tests). This further indicates that the specific
transcriptomic profiles of tumor cells in these samples did not
reflect the bulk-based signal used to identify CL-like samples at
diagnosis.
Claudin-LoweLike Samples Poorly Recapitulate Bulk Copy Number
Alterations

We determined relative CN profiles per major cytoband for
each SpaT tumor spot using the infercnvPlus software. Intra-
tumor heterogeneity was very low in the regionally restricted
SpaT data, with per-spot CN profiles displaying little variability
within a sample but being markedly dissimilar across samples
(Fig. 4A). As such, spot-specific profiles were then averaged to
obtain per-sample CN profiles (Supplementary Fig. S11A).
These profiles derived from measured RNA quantities are only
relevant as relative values within each sample and, thus,
cannot be used to determine absolute CNs. We thus defined a
threshold to identify regions of chromosomal loss and gain
based on the unstable control samples, which provided more
reliable estimates in terms of number of CNAs per sample and
signal quality (Supplementary Figs. S11B, C and S12-S14; see
Materials and Methods). This allowed us to calculate relative
fractions of genome altered (rFGA) and investigate distances
and correlations between bulk and SpaT CN profiles (Fig. 4B,
C). Unlike bulk data, CL-like samples did not appear genomi-
cally stable, and their SpaT-derived rFGAs were not signifi-
cantly different from those of unstable control samples (P ¼
.88, t test). However, we found that CL-like CN profiles were
less correlated with their bulk counterparts than unstable
profiles, both on the entire genome (Supplementary Fig. S15)
and exclusively on regions of chromosomal gain or loss (P ¼
.064 and P ¼ .074, respectively, t test). Analyses of differences
in rFGA and average pairwise distances between bulk and SpaT
profiles (see Materials and Methods) further confirmed that
SpaT data in unstable control samples, rather than in CL-like
samples, better recapitulated the bulk CNA information
(Fig. 4C, D, both P < .001, t test).
individual gene in the cytoband. Samples for which more tumor spots were identified take
average CNA scores, averaged per major cytoband, in claudin-low (CL)elike and unstable sa
the correlation calculation. (C) Normalized divergence between bulk- and SpaT-derived rela
pairwise distances between bulk- and SpaT-derived CN profiles in CL-like and unstable sam
cytoband. Only the cytobands reported as nonneutral in the SpaT profiles were included
sample type. (F) Cancer epithelial score, as reported by stereoscope-based deconvolution, fo
type.
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We further analyzed the similarities between CN profiles
from all 6 CL-like bulk and SpaT samples (Supplementary
Fig. S16A) and compared them to the 10 IntClusters from Curtis
et al28 (Supplementary Fig. S16B). We used distances based on
Pearson R correlation to evaluate the similarities between per-
cytoband CN profiles (minimum 0 for perfect correlation;
maximum 1 for perfect anticorrelation; see Materials and
Methods). This first revealed that the bulk CN profiles of the CL-
like1 and CL-like3 samples were closest to their SpaT counterpart
than to any other sample (and vice versa). Despite the low quality
of the bulk signal, this suggests that the real CN profile was
detectable in the bulk, albeit greatly diluted by a large fraction of
normal diploid stromal cells for these 2 samples. In addition, CL-
like CN profiles were most similar to IntClusters 4 (CL-like1) and
10 (CL-like2 and CL-like3), substantiating our previous report7

stating that IntClust4 comprised all highly genetically stable
samples from the CL1 subtype, and IntClust10 was enriched in
the CL3 subtype, more similar to genetically unstable basal TNBC
samples.
Higher Stromal Content in Claudin-LoweLike Samples

We also observed that SpaT slides from CL-like tumors con-
tained a significantly smaller fraction of tumor spots (Fig. 4E; P ¼
.02, Wilcoxon rank-sum test) and a lower fraction of cancer
epithelial cells per spot than the other tumors, as estimated by the
stereoscope, even when including transdifferentiated MpBC
samples (Fig. 4F; P < .001, Wilcoxon rank-sum test). Given that
tumor spots in CL-like samples did not display a strong signal for
the highly mesenchymal CL expression signatures, this strongly
suggests that an insufficient percentage of tumor cells in CL-like
bulk samples could have both artificially increased enrichment
scores for CL expression signatures and hampered the detection of
genuine CNAs.
Spatial Tanscriptomics Can Identify Tumor-Specific Markers That
Are Robust Against High Stromal Content

Clustering analyses on the tumor spots from MpBC samples
revealed that spindle cell samples clustered together, highlighting
that they shared common, spindle cellespecific expression pat-
terns (Fig. 5A). We thus harnessed SpaT data to identify genes
overexpressed in MpBC tumor cells compared to both tumor cells
of NST and healthy stromal cells.

With 1983 spots per slide on average (range, 1055-3037), our
SpaT data provided a very powerful basis for differential expres-
sion analyses, even with few samples. We then aimed at miti-
gating the impact of the low number of samples and maximizing
reproducibility (see Materials and Methods). Based on the high
number of spots available, we split our cohort into internal dis-
covery (MpBC samples) and validation (CL-like and unstable
samples) sets to prevent overfitting (Table). We identified genes
significantly overexpressed in spindle cell or chondroid spots
more space on the y axis. (B) Pearson correlation between bulk logR and SpaT-derived
mples. Only cytobands harboring nonneutral CNAs in the SpaT data were included in
tive fractions of genome altered (rFGAs) in CL-like and unstable samples. (D) Average
ples. CN profiles were based on a �1 (loss), 0 (neutral), or 1 (gain) attributed to each
in the distance calculation. (E) Percentage of tumor spots in each captured area, per
r all tumor spots in each sample. MpBC, metaplastic breast carcinoma; NST, no special



Figure 5.
Spatial transcriptomicsederived expression markers. (A) Uniform Manifold Approximation and Projection (UMAP) of all tumor spots from the 4 metaplastic breast
carcinoma (MpBC) samples analyzed by spatial transcriptomics. (B) Expression heatmap of the newly identified spindle cell MpBC markers (top, light green) and
known epithelial-mesenchymal transition (EMT) and claudin-low (CL) markers (bottom, light blue). Expression is reported in log2 number of unique molecular
identifiers per spot, ranging from white (no expression) to red (high expression), and was analyzed in both tumor spots (left, black) and stromal spots (right,
gray). (C) Expression of validated spindle cell MpBC genes BMPER, EPDR1, JPH2, POPDC3, and SH3RF3 in an external cohort of 1108 samples analyzed per bulk RNA
sequencing and stratified by tumor metaplastic status (14 metaplastic tumors in total). (D) Expression of validated spindle cell MpBC genes BMPER, POPDC3,
SH3RF3, DSEL, and DIPK1A in an external cohort of 51 cancer cell lines analyzed per RNA sequencing and stratified by CL status (9 CL samples in total). NST, no
special type.
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compared to both NST and stromal spots from MpBC samples,
combining 2 separate differential expression analyses. We then
selected those that were overexpressed compared to both tumor
spots and stromal spots from CL-like and unstable control
samples.
9

Using this design, we identified subtype-specific genes with
low expression in nonmetaplastic tumor cells and stromal cells.
Nine genes were overexpressed in the 2 spindle cell MpBC sam-
ples: BMPER, DIPK1A, DSEL, EPDR1, JPH2, PIEZO2, POPDC3,MSC-AS1,
and SH3RF3 (Fig. 5B).We also investigated known EMTmarkers,6-8



Table
Number of spots used in each design for differential expression analyses

Type of spots No. of spots in cohort

Discovery
(spindle)

Discovery
(chondroid)

Validation

Metaplastic breast carcinoma 1977 1984 NA

Non-metaplastic breast
carcinoma

1492 1492 2719

Stroma 181 181 875

Metaplastic breast carcinoma spots were compared to both non-metaplastic breast
carcinoma spots and stromal spots separately, first in the discovery cohort and
then in the validation cohort. NA, not available.
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none of which were significant in our analyses, and whose
expression patterns were less specific to spindle cell MpBC tumor
cells. The same analysis conducted on the MpBC_chondroid
samples identified 8 genes whose overexpression was specific to
chondroid MpBC cells: HSPB6, VGLL3, PTX3, GFRA1, MT1G, MT1E,
CHI3L2, and SAA1 (Supplementary Fig. S17).

However, these genes were identified from a small number of
samples (n¼ 2 for spindle cell; n¼ 1 for chondroid). To assess their
relevance in larger cohorts, we investigated their expression in 2
complementary external data sets: the TCGA breast cancer
expression data set comprising 1108 samples,29 including 14
metaplastic samples, and the51 stroma-freebreast cancer cell lines
from the CCLE,30 including 9 samples classified as CL. Long non-
coding RNAMSC-AS1was the only gene for which expression data
were unavailable in both sets. In the TCGA data set, samples were
classifiedasnon-CL (n¼940), CL1 (n¼69), CL2 (n¼42), or CL3 (n¼
57) according to previous work based on expression signatures.27

BMPER, EPDR1, JPH2, POPDC3, and SH3RF3 were significantly over-
expressed in metaplastic samples (for all, P < .05, Wilcoxon rank-
sum tests; Fig. 5C, Supplementary Fig. S18). In the CCLE data set,
BMPER, DIPK1A, DSEL, POPDC3, and SH3RF3 were significantly
overexpressed in CL cell lines (Fig. 5D, Supplementary Fig. S19). All
significant P values held after Benjamini-Hochberg correction in
each data set.

These results validate that 3 of the 8 analyzable stroma-
independent spindle cell MpBC markers (BMPER, POPDC3, and
SH3RF3) were highly relevant in metaplastic tumors and CL cell
lines from 2 independent external cohorts. Fourmore genes could,
furthermore, be validated in 1 external cohort (EPDR1 and JPH2 in
the TCGAdata;DIPK1A andDSEL in the CCLEdata) but not the other.
These results suggest that leveraging SpaT data to focus solely on
tumor cells can yield powerful expression markers that are less
likely to be biased by stromal cell prevalence. This could help
identify high-plasticity tumors more reliably and improve molec-
ular classification.

In addition, all genes except PIEZO2 displayed a significant over-
expression in CL subtypes (Supplementary Fig. S20) in the TCGA
data, confirming the similarities between CL andMpBC tumors. The
overlap between the 2 subtypes showed significant enrichment as
57% of TCGA (8/14) MpBCs were classified as CL (4 CL1, 1 CL2, and 3
CL3),which representonly15%of tumors (P< .001, Fisher exact test).
As for chondroidmarkers,VGLL3and PTX3 could bothbevalidated in
MpBC samples in the TCGA data due to their significant over-
expression after multiple testing (Supplementary Fig. S21).
Discussion

Rare breast cancer subtypes, associated with cellular plasticity
features, remain difficult to diagnose and treat. Two subtypes in
10
particular, molecularly defined CL tumors and MpBC typically
defined by histopathology, appear to overlap. Here, based on
recent advances in SpaT, we shed light on the similarities and
discrepancies between these plasticity-associated breast cancer
subtypes and assess the opportunities and pitfalls their routine
classification presents. We identified 3 putative CL samples and 4
unstable TNBCs using gene expression and CN data as well as 4
MpBCs reviewed by a breast pathologist (V.C.). We analyzed a
single slide of each of the 11 samples by SpaT along with 3 slides
from adjacent normal breast tissue with no detectable tumor
material as controls.

We investigated 4 previously reported signatures (CL vs Basal
from Prat et al,6 CL type 1, and MaSCs from Pommier et al7) and
found they were highly relevant in MpBC, particularly for the
spindle cell subclassification. However, CL-like samples, defined by
molecular analyses, were heavily impacted by stromal cell preva-
lence, hampering the detection of genuine CNAs and biasing RNA
signals toward mesenchymal gene overexpression, which is a
feature of CL tumors. Restricting our SpaT analyses to spots
harboring tumor cells revealed that these cells did not recapitulate
the low-FGA, high-CL expression features that prompted our initial
assessment of these samples as putative CL based on bulk analyses.

Overall, these findings illustrate the obstacles hindering
molecular-based identification of high-plasticity subtypes as
overrepresentation of stromal cells in a sample can lead to false
positivity. This is likely the case for the 3 tumors we identified as
putative CL tumors, which may have led to their PAM50 classifi-
cation as luminal rather than basal samples by diluting the basal
expression signal. It is clear that at least a subset of tumors
molecularly classified as CL would also be histologically defined as
spindle cell MpBCs. However, the nature of CL tumors that are not
spindle cell MpBCs remains insufficiently characterized. It will be
important to determine whether these samples merely display
strong stromal prevalence or whether they reflect an additional
specific tumoral phenotype. Indeed, if such cells, displaying CL
transcriptomic features but without being histologically identified
as metaplastic, exist, our results here highlight that SpaT analyses
could both validate their existence and uncover more specific
markers. This would help refine the classification of rare breast
cancers and more clearly define nonoverlapping bona fide sub-
types with specific clinical outcomes. Despite all 3 CL-like tumors
being reported as invasive carcinoma, 2 of the 3 slides cut from
frozen leftover material were annotated as in situ carcinoma
during our SpaT analyses. Our findings may thus not be repre-
sentative of all CL tumors.

Here, we could further harness the spatial information to
analyze differential expression between the different compart-
ments of tumor samples at near single-cell resolution. Using in-
ternal and external validation procedures, we could identify
BMPER, POPDC3, and SH3RF3 as robust spindle cell MpBC markers,
whose detection is unlikely to be affected by the stromal content
of samples. Of note, BMPER was reported to promote invasive
phenotypes and angiogenesis in cancer,31 and SH3RF3 was shown
to promote stem-like properties in breast cancer.32 We also
identified MSC-AS1, a long noncoding RNA that has been linked to
both osteogenic differentiation33 and oncogenesis,34 as an addi-
tional potential spindle cell MpBC marker. However, we could not
validate its relevance due to its absence in the external data set.

Our SpaT analyses revealed that although breast tumor cells
displaying CL-like mesenchymal properties could be detected in
spindle cell MpBC samples, their classification using existing
molecular signatures in bulk samples remains error-prone. How-
ever, despite our limited sample size, SpaT proved extremely
powerful for the identification of genes that are highly specific to
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transdifferentiated tumor cells. This is of particular interest for
translational research on rare subtypes as large cohorts are diffi-
cult to obtain. SpaT analysis can prove very powerful to identify
candidate markers with no previous expectations on a limited
number of samples before performing targeted and more afford-
able validation studies on a larger scale. In rare breast cancers,
larger SpaT studies than ours could provide more specific
expression signatures for MpBC and CL tumor cells. This may
prove useful to help diagnose such complex cases, for which
integrative histologic and molecular approaches are required to
overcome their respective limitations.
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