
HAL Id: hal-04104591
https://hal.science/hal-04104591v1

Submitted on 24 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Layered Implementation of DR-BIP Supporting
Run-Time Monitoring and Analysis

Antoine El-Hokayem, Saddek Bensalem, Marius Bozga, Joseph Sifakis

To cite this version:
Antoine El-Hokayem, Saddek Bensalem, Marius Bozga, Joseph Sifakis. A Layered Implementation
of DR-BIP Supporting Run-Time Monitoring and Analysis. International Conference on Software
Engineering and Formal Methods, SEFM 2020, Sep 2020, Amsterdam, Netherlands. pp.284-302,
�10.1007/978-3-030-58768-0_16�. �hal-04104591�

https://hal.science/hal-04104591v1
https://hal.archives-ouvertes.fr

A Layered Implementation of DR-BIP Supporting
Run-Time Monitoring and Analysis

Antoine El-Hokayem, Saddek Bensalem, Marius Bozga, and Joseph Sifakis

Univ. Grenoble Alpes, CNRS, Grenoble INP?, Verimag

Abstract. Reconfigurable systems are emerging in many application domains
as reconfiguration can be used to cope with unpredictable system environments
and adapt by delivering new functionality. The Dynamic Reconfigurable BIP
(DR-BIP) framework is an extension of the BIP component framework enriched
with dynamic exogenous reconfiguration primitives, intended to support rigorous
modeling of reconfigurable systems. We present a new two-layered implemen-
tation of DR-BIP clearly separating between execution of reconfiguration opera-
tions and execution of a fixed system configuration. Such a separation of concerns
offers the advantage of using the mature and efficient BIP engine as well as ex-
isting associated analysis and verification tools. Another direct benefit of the new
implementation is the possibility to monitor a holistic view of a system’s behav-
ior captured as a set of traces involving information about both the state of the
system components and the dynamically changing architecture. Monitoring and
analyzing such traces poses interesting questions regarding the formalization and
runtime verification of properties of reconfigurable systems.

1 Introduction

The current trend for adaptive and resilient systems changes the perspective of system
designers who have to consider systems that are reconfigurable and self-organizing.
This requires conceptual models to better understand and properly take into account
the different types of dynamism and corresponding coordination mechanisms for their
description. In particular, it is desirable to have a rigorous and disciplined approach
that would allow envisioning how a system with static coordination structure can be
progressively modified to enhance its adaptivity and resilience.

Consider a platoon system of an automated highway where an arbitrary number of
autonomous cars are moving in the same direction, in a single lane, at different cruising
speeds. Cars dynamically organize into platoons, i.e., groups of cars cruising at the
same speed and closely following a leader car. Platooning confers advantages such as
increasing the road capacities, providing a more steady-state traffic flow, and reducing
the risk of traffic congestion [4]. Organizing as platoons requires non-trivial dynamic
coordination between cars. All the cars belonging to a platoon must agree on a common

? Institute of Engineering Univ. Grenoble Alpes
The research performed by these authors was partially funded by H2020-ECSEL grants
CPS4EU 2018-IA call - Grant Agreement number 826276.

2 A. El-Hokayem et al.

cruising speed dictated by the leader car. Platoons may dynamically merge or split. A
merge can take place if two platoons are close enough, i.e., the distance between the
tail car of the first platoon and the leader car of the second is reaching some minimal
distanceK. After the merge, the speed of the new platoon is updated consistently for all
cars. A platoon may also split upon the request of a car to leave the platoon. This results
in the creation of two platoons. A leading platoon that increases its speed whereas
the newly formed tail platoon decreases its speed to achieve some separation distance.
However, not all cars can initiate a split, as they may leave other cars stranded. After
splitting, the resulting platoons should have at least some minimal size S. For such
traffic systems, the global system dynamics depends both on the behavior of individual
cars as well as the organization into platoons and their coordination.

Providing insight into the interplay between static coordination and various types
of dynamism and reconfiguration has been a driving concern for the design of the DR-
BIP component framework [9]. DR-BIP is an extension of the BIP framework which
has been used for more than a decade for modeling component-based systems with
static architectures. In BIP, a system is built from architecture-agnostic components co-
ordinated using interactions and priorities. We have thoroughly formalized operational
semantics for BIP and studied results comparing its expressiveness with respect to ex-
isting modeling formalisms [5]. The theoretical framework has been implemented by a
toolset integrating an execution engine, code generators for different types of execution
platforms, and verification tools. DR-BIP supports an incremental modeling method-
ology considering that a system consists of a set of motifs, a kind of “worlds” where
components “live”. Motifs are dynamic architectures integrating components coordi-
nated according to specific rules. To model component mobility, a motif is equipped
with a data structure which is a graph representing a map. An addressing function is
used to associate with each component a node of the map. Reconfiguration rules deal
with: 1) component dynamism e.g., creation/deletion of components; 2) map dynamism
e.g., updating the map structure; 3) component mobility e.g., changing the addressing
function, and 4) modifying connectors that define interactions between components.
Furthermore, it is possible to express reconfiguration between motifs e.g., component
migration, which confers the ability for system self-organization.

The paper presents the DR-BIP language for constructing dynamic reconfigurable
systems using BIP components and connectors as well as a layered implementation of
DR-BIP that re-uses the BIP Engine. Our previous work on DR-BIP introduced the
concepts for programming reconfigurable systems [9,8], nonetheless, its implementa-
tion was limited to a restricted abstract language of simple components and motifs, and
had little support for executing reconfiguration rules. The DR-BIP language has been
designed to integrate full-fledged components and connectors described in BIP, arbi-
trary motif maps and addressing functions described as external C++ structures, and a
high-level declarative syntax for reconfiguration rules. The implementation of DR-BIP
semantics relies on code generation (for motifs, reconfiguration rules, components, etc)
and clearly separates reconfiguration issues from the execution of static configurations.
It involves two separate computational phases: the first deals with the execution of re-
configuration rules that determine the overall static coordination structure which we re-
fer to as the instantiated BIP model; the second executes for the instantiated BIP model,

A Layered Implementation of DR-BIP Supporting Run-Time Monitoring and Analysis 3

the interactions between components using the BIP Engine. The two phases alternate
in a global computation cycle synchronized by a well-defined protocol. The present
implementation offers the advantage of using the mature and efficient BIP execution
engine. Furthermore, the underlying separation of concerns allows better comprehen-
sion and management of the intricate semantics of DR-BIP and enhances confidence
in the reconfiguration engine implementation. Another direct benefit from the studied
implementation is the possibility to monitor a holistic view of the system behavior as
a set of traces involving dynamic configurations in addition to component states. The
proposed implementation of DR-BIP provides insight into system behavior as the com-
bination of both architectural and component state information, as well as monitoring
execution traces at different levels of detail. Analyzing such traces poses interesting
questions regarding the formalization and verification of properties of reconfigurable
systems. Nonetheless, the development of a specific logic for expressing reconfigura-
tion properties and the synthesis of monitors are beyond the scope of this paper.

Automatic code generation for implementation and/or analysis purposes is one of
the most prominent features of model-based design methodologies. There exists a tremen-
dous number of modeling formalisms and associated code generation flows dedicated to
static systems. On one hand, general purpose formalisms such as UML/PAPYRUS [13],
AADL/OSATE [11], TASTE [19], PTOLEMY [7] are state-of-the-art tools oriented towards
design and implementation. On the other hand, domain specific formalisms and/or soft-
ware libraries such as GENOM [15] and ROS [22] focus on simulation, rapid prototyping
and implementation targeting only specific application domains.

Code generation and runtime analysis is becoming more challenging for reconfig-
urable systems. Approaches have been explored for several general-purpose architec-
ture description languages with reconfiguration capabilities such as π-ADL [6], ARCH-
JAVA [1], C2SADEL [17] to cite only a few. Nonetheless, these approaches did not reach
the same level of acceptance as for static systems. Architecture dynamism and recon-
figuration is of much interest for domain specific languages as well. Formalisms such
as BUZZ [20] for swarm robotics and PARACOSM [14] for autonomous driving systems
are gaining popularity. However, most of the concepts supported are ad-hoc and hardly
re-usable beyond their domain. We position DR-BIP as a general-purpose architecture
description language for the description of dynamic reconfigurable systems.

The paper is structured as follows. Section 2 recalls the DR-BIP concepts and intro-
duces the key features of the DR-BIP language. Section 3 presents the DR-BIP layering
principle and its concrete implementation. Section 4 provides insights on the software
architecture and the tooling for generating code used to execute DR-BIP models. Sec-
tion 5 presents the provided monitoring support and illustrates its application to the
analysis of a platoon system as presented earlier. Section 6 discusses challenging future
work directions on modeling and analysis of dynamic reconfigurable systems. Finally,
Section 6 concludes about the benefits from the presented layered implementation. We
provide an online artifact with the tools, the simulation experimental data, and the doc-
umentation needed to recreate it [23].

4 A. El-Hokayem et al.

c4c6 c5 c2c3c4c6 c5 c2c3

Platoon Motif Instance

Instantiated BIP Model

Fig. 1: An example motif and its instantiation in BIP.

2 DR-BIP Overview

We consider DR-BIP models integrating (1) components and connector types described
in the BIP language and (2) motif types and reconfiguration rules described in the DR-
BIP language. We recall that in BIP, connector types specify interactions between com-
ponents along their interfaces. This section introduces the concepts underlying DR-BIP
and key features of the language.

2.1 Motifs and reconfiguration rules

Motifs are dynamic structures consisting of (i) a set of components, (ii) a map and (iii)
an addressing function [9]. Maps are underlying data structures (typically a directed
graph) used to organize interactions between components. Addressing functions pro-
vide an association between the components and the nodes of maps.

Example 1. Figure 1 showcases on the left an instance of a motif type named Platoon.
It consists of the set of five components {c2 . . . c6}, the map consisting of a chain of
five nodes, and the addressing function associating each component with one node in
the chain. Component c2 is associated with the head of the chain, thus giving it the role
of the leader. Components c3, · · · c6 are associated with other nodes and have the role
of followers of the platoon.

Motifs are associated with local reconfiguration rules dictating their evolution. These
rules define how components are interconnected, and modify the motif i.e., add/remove
components, update the map, and update the addressing function. Rules are executed
depending on conditions evaluated on the motif and component states. More precisely,
local reconfiguration rules have the general form:

rule rule-name (arg1, ... argn)
when (cond1, ... condn) { action1(args), ... actionm(args) }

Their execution consists in selecting a set of components of the motif and assigning
them to formal parameters argi. Assignments are constrained by a “when”-clause, pro-
viding a Boolean condition condi for each formal parameter. For each valid assignment
to formal arguments args, a sequence of actions actionj is executed modifying the mo-
tif. An assignment of the parameters such that a “when”-clause is satisfied, is called a
match. Further details on the computation of matches are presented in Sect. 3.2.

A Layered Implementation of DR-BIP Supporting Run-Time Monitoring and Analysis 5

c0c4c6 c5 c2c3

Platoon0

Road

Platoon1

c1

Fig. 2: An example platoon system consisting of 7 cars organized in 2 platoons.

We distinguish between two types of configuration rules: 1) connecting rules whose
actions deal solely with the creation of connectors, and 2) updating rules whose actions
deal with the creation or deletion of components and the modification of the map or of
the addressing function. The distinction is important because connecting rules do not
change the motif; they affect solely the instantiated BIP model.

Example 2. Figure 1 illustrates the Platoon motif (left), and the instantiated BIP model
resulting from the application of connecting rules (right). Connector SpeedUpdate
(pink) is used to synchronize speed with the leader. Furthermore, cars that are allowed
to split from the platoon are connected with the leader, as they need to adjust speeds.
We call this connector SplitStep. For example, c3 cannot split, since by doing so, it
will leave c2 stranded. Since both c4 and c5 can split, two connectors (shown in brown)
of SplitStep are created.

While local reconfiguration rules apply to a single motif and are given access to
that motif only, global reconfiguration rules apply to more than one motif. In this case,
the formal parameters can be assigned any motif or component. Moreover, actions can
perform migration of components between motifs as well as the creation or deletion of
motif instances. The execution of all reconfiguration rules both local and global results
in creating an instantiated BIP model containing components interconnected by a set of
connectors.

Example 3. Figure 2 illustrates a fully instantiated BIP model of the platoon system.
We have one Road motif grouping all 7 cars, and two platoons: Platoon0 grouping two
cars, and Platoon1 grouping five. We notice two SpeedUpdate connectors (pink),
one for each platoon, and two SplitStep connectors (brown) in Platoon1, as no car
is allowed to split in Platoon0. The GlobalStep connector (blue) allows all cars to
move synchronously. Finally, to perform a merge, the two platoons can interact using
connector MergeForward (green) resulting from the execution of a global connecting
reconfiguration rule between the two platoons. This connector involves the leader of
the heading platoon, the tail and the leader of the second platoon. It allows checking
proximity and updating the speed.

2.2 The DR-BIP Language

The DR-BIP language is a declarative language for the description of: (1) imports that
expose all building blocks for the dynamic model (i.e., component types, connector

6 A. El-Hokayem et al.

types, additional BIP predicates, map types and addressing functions); (2) a set of motif
types with their associated local and global reconfiguration rules; and (3) a designated
“initializer” global reconfiguration rule to initialize the system.

Imports. The DR-BIP language allows component and connector types to be imported
from a BIP model. Additionally, external general purpose data structures and func-
tions from the host language (C++) can be used for the implementation of maps and
addressing functions. Listing 1.1 provides an example of imports. It includes the ref-
erence to the BIP package containing component and connector types (Line 1) which
can be used in DR-BIP rules. The listing also includes specifications of signatures of
the data structures used to build maps and addressing functions that can be found in a
file platoon.cpp. We distinguish methods that modify objects from those that do
not (using keyword const). We see in lines 3-9 the declaration of the data structure
PlatoonMap used as a map. The methods prefixed with const do not modify the
map. For example, the method allowedSplit checks whether a split of the platoon
by the car assigned to that node is allowed. The method assign replaces all nodes of
the current map with those of another PlatoonMap. Finally, we import the signature
of additional BIP predicates, described as Boolean functions over elements of the BIP
model. Line 11 introduces the predicate AtSplitLocation which checks if a given
Car component (whose type is described in BIP) is in a control location where a split
is allowed.

Listing 1.1: DR-BIP external declarations.
1 model platoon
2 import from "platoon.cpp" {
3 map PlatoonMap {
4 const bool isLeader(Node)
5 const bool allowedSplit(Node)
6 const PlatoonMap[] splitAt(Node)
7 void assign(PlatoonMap)
8 ...
9 }

10 addressing PlatoonAddressing { ... }
11 predicate AtSplitLocation(Car)
12 }

Motif types and reconfiguration rules The definition of a set of motif types follows the
declaration of imports in a DR-BIP specification. For each motif, the types of map and
addressing functions are declared, along with their associated reconfiguration rules.

As explained previously, each reconfiguration rule consists of (1) a label specifying
its name, (2) a list of formal parameters referring to components or motifs affected by
the rule’s actions (3) a “when”-clause consisting of a list of Boolean conditions used
to filter the relevant components and assign them to formal parameters, and (4) one or
more reconfiguration actions.

A Layered Implementation of DR-BIP Supporting Run-Time Monitoring and Analysis 7

The concrete specification of reconfiguration rules in the DR-BIP language uses the
following predefined symbols for every motif: the set of managed components (C), the
map (S), and the addressing function (@). These variables can be used in the “when”-
clause by calling the const methods of the map and addressing functions1. Further-
more, all methods for S and @ can be used as reconfiguration actions.

Listing 1.2: The Platoon motif and the SplitIR connecting rule.
1 motif Platoon<PlatoonMap, PlatoonAddressing> {
2 connecting rule SplitIR(Car leader, Car follower)
3 when ((C.size() > 3) && S.isLeader(@leader),
4 follower != leader && S.allowedSplit(@follower)) {
5 new SplitStep(follower, leader)
6 }}

Example 4. Listing 1.2 displays the motif Platoon along with the local connecting
rule SplitIR. Line 1 declares the motif with the identifier Platoon, and asso-
ciates with it the map PlatoonMap and addressing function PlatoonAddressing
(which are imported as explained in Listing 1.1). Platoon has a connecting reconfig-
uration rule SplitIR. It creates a connector (of type SplitStep) between each fol-
lower and the leader to allow the follower to split. Thus, it is parametrized by a follower
and a leader . The “when”-clause provides two conditions, one for each parameter. The
first condition (line 3) specifies that there must be at least 3 components in the compo-
nent set and queries the map to ensure that the node associated with leader is the head
of the platoon in the map. Since function isLeader expects a node, the addressing
function is used (@leader) to get the associated node. In the second condition (line 4),
we ensure that the follower is any other car in the platoon where a split is allowed. To
check if splitting is allowed, we make use of the method allowedSplit associated
with the map. For every match, we create a new connector (SplitStep) with the two
associated components. �

3 Layered Implementation

We adopt a two-layered approach for the execution of DR-BIP models. The first layer is
the interaction layer. It deals with an instantiated BIP model involving a fixed number
of components and their connectors. This model can be simulated and executed using
the BIP engine, and analyzed using existing tools of the BIP toolset. The second layer is
the reconfiguration layer. It deals with dynamic changes of the set of components and
the way they are connected. It includes the reconfiguration rules that determine how the
instantiated BIP model evolves. We note that this implementation principle is general
and can be applied to any kind of dynamic reconfigurable system.

Our approach is driven by two main goals: separation of concerns and simplicity.
Separation of concerns means that we reason separately about each layer. We reuse

1 The set of components (C) is a C++ std::set, and relevant methods can be used.

8 A. El-Hokayem et al.

Compute enabled
Interactions

Choose and
execute an
interaction

Evaluate interrupt
conditions

All are false

At least
one true

Send Reconfigure

Wait on GoInitialize DR-BIP + Execute
initializer global rule

Execute local updating
reconfiguration rules

Send Go

Wait on
Reconfigure

Interaction phase

Reconfiguration Engine BIP Engine

No Rules
Executed

Execute global updating
reconfiguration rules

Execute connecting
reconfiguration rules

No Rules
Executed

Recompute set of interrupt
conditions

Reconfiguration Phase

Signals

Go
BIP Engine

Reconfigure
Reconfiguration Engine

Interactions

Components

Interrupt Conditions

Instantiated BIP Model

Fig. 3: Interplay between the reconfiguration engine and BIP engine.

predefined elements from the interaction layer such as types of components and con-
nectors as well as existing engines for execution, analysis, and verification (cf. [2]),
while adequately extending all the concepts of BIP. Simplicity means that we ease the
learning and use of the language by introducing a minimal set of new concepts and con-
structs. For the reconfiguration layer, we only provide constructs for building the rules
modifying the instantiated BIP model that is used by the interaction layer. In the recon-
figuration layer, elements of the BIP model and all necessary topological structures are
external to the language and are imported.

3.1 Execution Principle

The execution of a DR-BIP model uses a protocol for the collaboration between two
engines (shown in Fig. 3): the reconfiguration engine handling the reconfiguration layer,
and the BIP engine handling the interaction layer. The two engines share an instantiated
BIP model which consists of: the set of components, the set of connectors between these
components, and a set of interrupt conditions. An interrupt condition is a predicate on a
given state of the instantiated BIP model. When an interrupt condition becomes true, the
system needs to be reconfigured. Normal execution is stopped in the BIP engine, and
control is transferred to the reconfiguration engine so that it applies reconfiguration.

A Layered Implementation of DR-BIP Supporting Run-Time Monitoring and Analysis 9

Two signals determine which layer is to execute: Go and Reconfigure, respectively,
initiate phases of execution of the BIP engine and the reconfiguration engine.

The BIP engine evaluates all interrupt conditions, and if none of them holds, it com-
putes enabled interactions. If an interrupt condition holds, control is transferred to the
reconfiguration engine until a Go signal is received. In BIP, interactions are specified
by connectors. They represent synchronized state changes of several components. An
interaction is enabled if all inter-connected components are able to synchronize. The
BIP engine finds all enabled interactions and, if any, one is selected for execution. Fol-
lowing the execution, the states of all inter-connected components are updated. If no
enabled interaction is found, the BIP engine has reached a deadlock state of the in-
stantiated BIP model and the entire execution of the dynamic reconfigurable system is
halted. Otherwise, it continues executing as long as no interrupt condition holds.

The reconfiguration engine executes the reconfiguration rules and modifies the in-
stantiated BIP model. First updating reconfiguration rules are executed iteratively until
stabilization. They consist in adding/removing components and updating the structure
of the motifs. In our implementation, local updating reconfiguration rules execute first
until stabilization, followed by global updating reconfiguration rules. When stabiliza-
tion is reached, connecting rules are executed to re-create the connectors between com-
ponents, and then the set of interrupt conditions is updated. Control is then passed to
the BIP engine. It is important to note that to avoid interference, reconfiguration rules
are executed sequentially.

3.2 Reconfiguration Engine Details

We present additional details about the reconfiguration engine and the way it computes
matches and modifies the set of interrupt conditions.

Computing matches. The computation of matches constitutes the core operation in the
reconfiguration phase. It can be computationally expensive as generally, a condition
for a given parameter can depend on other parameters. For efficiency reasons, in our
implementation, we restrict conditions to reference only previous parameters in the list
(i.e., a condition for parameter at index n can reference only parameters [0..n]). This
ensures that matches can be computed incrementally without the need to backtrack,
stopping immediately if no assignment is found.

Example 5. We revisit the connecting rule in Listing 1.2 applied on Example 1. The
Platoon motif shown in Fig. 1 has the set of components C = {c2, c3, c4, c5, c6},
where c2 is the leader and c6 is the tail of the platoon. This rule has two formal pa-
rameters of component type Car namely, leader and follower. Since it is a local
reconfiguration rule, parameters are assigned components of type Car belonging to the
motif (in our case C). The “when”-clause consists of 2 conditions, one for each for-
mal parameter. The computation begins by evaluating the first condition to calculate
the possible assignments for leader. The predicate |C| > 3 holds for all possible
assignments. However, S.isLeader(@leader) is true only for c2. The final set of
assignments for leader is therefore {c2}.

10 A. El-Hokayem et al.

We now evaluate the possible assignments for follower. Note that it is possible to
reference also leader as the set of possible assignments is computed. Indeed the con-
dition leader != follower is evaluated for each component assigned to leader
(i.e., for all elements in {c2}). Furthermore, since no split can result in a platoon with
less than 2 cars, S.allowedSplit(@follower) holds only for c4 and c5. The
possible assignments for the second parameter are thus {c4, c5}. The rule executes for
each of the following two matches: 〈c2, c4〉 and 〈c2, c5〉, creating two SplitStep
connectors (shown on the right of Fig. 1 in brown). �

Executing rules. After finding possible matches for a given rule, it is possible to execute
it multiple times. In the case of updating reconfiguration rules (both local and global),
the rule is executed with the first match, before stopping and re-evaluating all the recon-
figuration rules. This is important, as a rule action can modify the state of (one or more)
motif component set, map, or addressing function, requiring all respective clauses to be
recomputed. However, in the case of connecting rules, the rule is executed for all pos-
sible matches, as connecting rules only add connectors to the model without modifying
the motifs.

Modifying the set of interrupt conditions. Interrupt conditions are predicates on the state
of the instantiated BIP model that initiate reconfiguration. For each rule, we construct
the conjunction of all conditions in the “when”-clause, and instantiate it to account
for all possible assignments of parameters, adding each instantiation as an interrupt
condition. The set of interrupt conditions models the disjunction over all such interrupt
conditions, as when one holds at least one rule has a match and can execute. Since
the sets of components and motifs change dynamically after reconfiguring, the set of
possible assignments changes, and the set of interrupt conditions is updated to account
for it. Recall that during the execution of the instantiated BIP model, motifs remain
unchanged, when generating interrupt conditions, only BIP predicates are considered to
change values. Therefore, optimizations by partial evaluation are applied to minimize
the number of instantiated interrupt conditions.

4 Software / Code Architecture

The two-layered execution principle (Fig. 3) is mirrored in the software code, where BIP
and the reconfiguration layer are written separately, and compiled separately to generate
all necessary C++ files. Then, all C++ files are compiled together to form a single
executable process. Figure 4 showcases the compilation scheme for DR-BIP models.
Note the clear separation between BIP language, DR-BIP language, and external code.

BIP compiler modifications. We modified the BIP compiler to generate the BIP engine
code that accounts for interrupt conditions. As shown in Fig. 4, the BIP compiler also
generates a separate file containing all type information on connectors and components.
The BIP engine itself has been modified to work on a dynamic number of components
and connectors. Related connectors and interrupt conditions are grouped according to
the rules that generate them. In this way, a group acts as a “namespace” for the corre-
sponding rule allowing (1) dynamic change in connectors and interrupt conditions to

A Layered Implementation of DR-BIP Supporting Run-Time Monitoring and Analysis 11

BIP Model (.bip) BIP Compiler

Reconfiguration File
(.drbip)

Reconfiguration
Compiler

BIP Engine with
Interrupt Cycle (C++)

Component & Connector
Types (C++)

Rules & Matching Logic
(C++)

DR-BIP Execution
Loop Template (C++)

Imports (C++)

C++ Compiler Executable

Fig. 4: Compilation scheme for the reconfiguration engine alongside BIP. Solid arrows
indicate input/output relation, dashed arrows indicate logical dependencies and dotted
arrows highlight the control-flow between the various elements.

be done in bulk for performance gains; and (2) isolation of connectors and interrupt
conditions of one rule from those of other rules. In BIP, connectors are originally con-
ceived to operate on a fixed number of components. To overcome this limitation, an
extra annotation to the BIP model has been introduced to specify connector types with
a variable number of components.

Reconfiguration compiler. The reconfiguration compiler performs the parsing, analysis,
and code-generation for the reconfiguration layer. It re-uses the BIP compiler to load
information on interaction and component types for the considered BIP model. Further-
more, it parses the elements from the input reconfiguration file to generate the recon-
figuration engine code. Type-checking is done at this phase using information from the
BIP model and the external signatures of BIP predicates, maps, and addressing func-
tions. To analyze, and eventually generate code, the reconfiguration compiler provides
an infrastructure for executing a sequence of passes on the model. The reconfiguration
compiler performs two passes: the first annotates rules and motifs with necessary in-
formation to minimize the number of interrupt conditions; the second pass generates
C++ code. It outputs the necessary code to (1) create data-structures to manage com-
ponents; (2) compute matches, execute, and generate interrupt conditions for rules; and
(3) initialize and destroy motifs dynamically.

Execution control flow. The DR-BIP implementation compiles both engines in one exe-
cutable. In the resulting executable, the BIP engine begins executing, and yields control
to the reconfiguration engine using the two function calls init and reconfigure.
Function init is called once to initialize the reconfiguration engine. Function
reconfigure is called whenever reconfiguration is needed. Alongside the reconfig-
uration compiler, a template (C++ file) provides an implementation for functions init
and reconfigure. The init implementation calls the “initializer” global reconfig-
uration rule, then performs a reconfiguration phase, while reconfigure performs the
reconfiguration phase as described in Fig. 3. So, control flow goes from the BIP engine
main loop to the template, which then invokes the relevant methods for the rules and

12 A. El-Hokayem et al.

motifs generated by the configuration layer compiler to perform reconfiguration. By
providing the general execution infrastructure in a template separately from the rules
specific to the dynamic model, it is possible to manage, inspect, and customize the DR-
BIP state and execution independently of a given model. Template modification is key
for instrumenting DR-BIP and outputting traces for analysis and monitoring, as we will
discuss in Sect. 5.

5 Monitoring, Analysis and Profiling Support

In Sect. 4, we introduced the two elements allowing DR-BIP modular support for trac-
ing, inspection, and run-time monitoring and analysis. On the one hand, the reconfig-
uration compiler provides a modular pass on the model that can be used to generate
further code and “hooks” for tracing and generating run-time events. On the other hand,
the DR-BIP template provides all the structures and control flow primitives needed to
inspect, analyze and log relevant elements of the model: the instantiated BIP model
shown in Fig. 3, including all BIP component instances internals, sets of all active mo-
tif instances and their reconfiguration rules, as well as global reconfiguration rules.

In addition to execution, our implementation provides the key ingredients that en-
able profiling, analyzing, and monitoring the execution of DR-BIP models. In this sec-
tion, we describe our approach for inspecting dynamic reconfigurable architectures and
generating a trace for analysis and profiling. We first present the concept of DR-BIP
traces. Then, we evaluate quantitative properties on two scenarios of platoon system,
we profile the execution time of these scenarios, and report on performance metrics.

5.1 DR-BIP Traces

The state of the instantiated BIP model is usually represented as a tuple giving for each
component its current control location and a valuation of its variables [3,10]. Nonethe-
less such a concept of state is not adequate for dynamic reconfigurable systems as it
ignores their structure represented by the motifs and the outcome of applying reconfig-
uration rules. For this reason we use the concept of configuration which encompasses
the usual notion of component state and additionally accounts for architectural aspects.
A configuration of a DR-BIP model consists of (i) the set of its motifs, and (ii) for each
motif the set of its associated components and the connectors generated by executing
its connecting rules. It is represented as a set of hyper-graphs, one for each motif. The
set of nodes is the set of the components of the motif. Each hyper-edge corresponds
to a connector relating the involved components. We call stateful configuration a pair
consisting of a configuration and component states at a given execution step. A DR-BIP
trace is the sequence of stateful configurations.

Example 6. Fig. 5 shows a stateful configuration of a platoon system with 12 cars. The
configuration shows the cars grouped by platoons while the position of the cars is part
of their state. Combining information from both makes it possible to calculate distances
between platoons, and the space occupied by all the cars. Our example has 4 platoons
(shown different colors) occupying a total of 10.41 units. We infer from the respective
positions that two platoons are about to merge as they are separated by 0.41 units. �

A Layered Implementation of DR-BIP Supporting Run-Time Monitoring and Analysis 13
platoon-test

10 11 12 13 14 15 16 17 18 19 20 21 22

110.41

10.41

Score: 0.64 (US=0.34, TS=0.07, RO=0.23)

Fig. 5: Stateful configuration of a 12 car platoon system with 4 platoons (each platoon
is assigned a unique color).

5.2 Properties for Dynamic Reconfigurable Systems

By analyzing DR-BIP traces we are able to check properties not only about compo-
nents and their states, but also about the evolution of configurations as a result of recon-
figuration actions. Monitoring and checking such qualitative or quantitative properties
requires the evaluation of predicates on stateful configurations.

Qualitative properties can be formalized in logics. Clearly, a propositional formula
can be checked on a given stateful configuration. If a formula involves modalities, it
should be evaluated on sequences of stateful configurations. While formalizing qualita-
tive properties for dynamic reconfigurable systems is not in the scope of this paper, we
present an example safety property ensuring that a car can belong only to one platoon,
and all cars in the same platoon have the same speed as the leader. The property can be
expressed as:

� ∀p, p′ ∈ Platoon ∀c ∈ Car ∃c′ ∈ p.C ∃X ⊆ p.C :
(p′ 6= p ∧ c ∈ p.C) =⇒ (c 6∈ p′.C ∧ (SpeedUpdate(c′, X)) ∧ c.speed = c′.speed)).

This means that for any sequence of stateful configurations, the argument of � holds.
For a given stateful configuration, we can verify if a car belongs to a platoon (c ∈ p.C)
by checking if it is a vertex in the hypergraph of the motif. Furthermore, the leader
is determined by verifying the presence of the edge associated with the connector
(SpeedUpdate(c′, X)) in the corresponding hypergraph. Using the state of each car,
we verify that the cars have the same speed as the leader (c.speed = c′.speed).

Quantitative properties can be evaluated in a similar manner. We specify the degree
of satisfaction of a quantitative property by using score functions normalized in the
interval [0..1]. We assume that the degree increases as the scores get close to zero.

Example 7. To analyze quantitative properties of the platoon system in Example 6, we
define three score functions: (1) uniform separation (US), (2) target size (TS), and (3)
road occupancy (RO). Uniform separation is used to assess how uniform the distance
between platoons is. It is computed from the set of distances between platoons, nor-
malized in an interval [0..1] to obtain a set of distances di, for which we compute their

mean d, and the standard deviation as follows: US =
√

Σ((di−d)2)
|d| . Thus, for uni-

form distances the score converges to 0. TS is used to estimate how close the size of
platoons is to an ideal target size. It is computed similarly to the score US as the de-
viation from the ideal size. For this example, we fix the ideal size to be 2. Lastly, RO
measures the total space occupied by all cars on the road. It is computed as follows:

14 A. El-Hokayem et al.

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000 220,000 240,000 260,000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Uniform Separation Target Size Road Occupancy

(a) S1 (initial distance = 0.3 < K)

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000 220,000 240,000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Uniform Separation Target Size Road Occupancy

(b) S2 (initial distance 1.0 = 2K)

Fig. 6: The evolution of scores in two scenarios of platoon systems. The Y-axis shows
the score (in the range [0..1]), while the X-axis shows the number of steps of the system
(number of rules and interactions executed). The scores are: uniform separation (blue),
target size (orange), and road occupation (purple).

RO = 1 − ((L − Σdi)/L) where L is the distance between the leading car of the
first platoon and the tail car of the last platoon. By combining the three scores we aim
to measure deviation with respect to configurations where the platoons have a specific
size, while maintaining similar distances between them that are not too large, so as to
not waste road space. The scores computed for the stateful configuration in Fig. 5 are
as follows: US = 0.34,TS = 0.14 and RO = 0.23. Indeed, we observe that the dis-
tance between the left-most two platoons (0.41) significantly differs from the distance
between the two others (1). Additionally, we see two platoons of size 4, and a total sep-
aration distance of 2.41 units between platoons (23% of the total distance occupied by
the cars).

We consider two different large platoon systems: S1 and S2 differing only in the
initial distance between cars. Both S1 and S2 start with a single platoon of 1,000 cars.
In S1 cars are initially separated by K = 0.3 which is less than the minimal distance
needed to merge platoons, while in S2 cars are initially separated by 2K. By taking the
initial distance between cars smaller than the merge distance, platoons have very little
possibility to diverge, as they will be merged very soon after a split. On the contrary,
with an initial distance much larger than K, platoons are not likely to be merged soon
after a split. We illustrate the evolution of scores in Fig. 6. In the case of S1, cars form
at most 2 platoons during the simulation, and we are unable to reach platoon size 2, as
splits are rapidly followed by merges. In addition, distances between platoons remain
equal in S1 as splits are rapidly followed by merges allowing no possibility for the cars
to separate. For S2, we see a convergence towards the target platoon size. However, we
observe larger and diverging separation between platoons, as well as differentiation of
the distances between platoons. �

A Layered Implementation of DR-BIP Supporting Run-Time Monitoring and Analysis 15

Table 1: Fixed-length simulation of 5,000 interactions of platoon system capturing max-
imum number of motifs (M) and execution times (BIP, DR-BIP) when varying initial
distance, number of cars (N), and number of reconfiguration phases (RP).

S1 S2

N RP M BIP (s) DR-BIP (s) RP M BIP (s) DR-BIP (s)

100
48 4 0.16 0.05 178 77 0.18 0.52

13 4 0.13 0.01 30 40 0.14 0.05

500
48 4 0.68 0.59 569 306 0.83 30.40

14 4 0.72 0.18 47 65 0.75 0.77

1000
48 4 1.40 2.08 729 504 1.52 118.00

14 4 1.44 0.62 51 73 1.44 1.94

5.3 Profiling DR-BIP Performance for Platoon System

We use performance metrics to profile the behavior of both DR-BIP and the system
being executed. Measurements of reconfiguration frequency and time allow fine-tuning
rules and models so as to enhance performance.

Recall from Example 7, we have two platoon systems that differ only in the initial
distance between cars: S1 and S2. Both S1 and S2 start with a single platoon of N cars.
Cars are initially separated by 0.3 < K for S1 and 2K for S2, where K is the minimal
distance needed to merge platoons. We performed a fixed-length simulation up to 5,000
BIP interactions for S1 (resp. S2), and report the result in Table 1 averaging values over
10 simulations. To control the number of reconfiguration phases, we modify the model
so that a car cannot split before moving for a certain amount of time.

Consider the case of 1000 cars and high reconfiguration rate (row 5). The aver-
age total execution time for S1 (resp. S2) is 3.48s (resp. 119.52s). A reconfiguration
phase occurs after executing 104 (resp. 7) interactions. The percentages of the time
spent reconfiguring are respectively 60% and 99%. For S1, we can see that the max-
imum number of motifs present after each reconfiguration phase (M) is 4, indicating
the presence of at most 2 platoons (with 1 road and 1 motif responsible to merge pla-
toons). For S2, we see the creation of multiple motifs, increasing to 729 motifs, which
results in an increase of execution time for DR-BIP. Growing number of car and motif
instances increases the time required for matching motif rules and global reconfigura-
tion rules. When reconfiguration is less frequent, and with fewer motif instances, we
observe reasonable execution times. For S2, when a reconfiguration phase occurs every
98 interactions (row 6), the runtime is reduced from 119.52s to 3.38s.

6 Conclusion

We presented a two-layered approach for the specification, execution and monitoring of
DR-BIP models integrating a reconfiguration and an interaction layer. DR-BIP extends

16 A. El-Hokayem et al.

BIP with the concepts and primitives needed for modeling dynamic reconfigurable sys-
tems. It supports modeling reconfiguration involving motifs along with their maps and
addressing functions as well as reconfiguration rules for the dynamic change of local
and global coordination patterns. We elaborated on the interplay between the reconfig-
uration engine which manages motifs and executes reconfiguration rules to modify an
instantiated BIP model, and the BIP engine which executes the interactions of the latter.
We also presented the necessary extensions to the BIP compiler and engine in order to
reuse them in the context of dynamic and reconfigurable systems.

Another key contribution is the definition of traces for DR-BIP models allowing a
natural high level interpretation of system behavior and run-time monitoring and anal-
ysis. Using information from stateful configurations, we can analyze properties charac-
terizing the complex collective behavior of the system components. We demonstrated
all these concepts for both qualitative and quantitative properties on a platoon system
example inspired from autonomous traffic systems. We focus on two complementary
directions for future work. The first is to improve the current implementation. The sec-
ond is to provide enhanced support for analysis and controlled experimentation through
model simulation. We plan to increase the efficiency of the execution of the recon-
figuration phase, by allowing the incremental evaluation of reconfiguration rules. For
instance, static dependencies between rules can be exploited to avoid the costly global
re-evaluation of all rule constraints and computation of matches at every step. Moreover,
symbolic representations and/or searching techniques inspired from SAT/SMT solving
can be used to isolate the impact of a rule on the system and therefore to restrict the
focus of application of rules to that part.

Regarding the support for analysis at runtime, our simulation infrastructure provides
all the needed introspection capabilities to extract both architecture (i.e, hypergraph of
interconnected components and connectors) and state information (i.e, component state
vectors). We plan to integrate the monitoring of behavior and/or configuration prop-
erties by introducing temporal modalities [21] into configuration logics [16]. Beyond
monitoring, statistical model checking can be used to evaluate properties over multiple
traces of the system and to compute levels of confidence for their satisfaction. However,
the application of statistical model checking would require the definition of a stochastic
semantics for the DR-BIP model. As a first alternative, this can be achieved by keep-
ing non-stochastic the execution of the reconfiguration engine, while leaving stochastic
aspects at the BIP level to be handled only by the (statistical) BIP engine [18]. A more
challenging alternative would consist in proposing and implementing a stochastic se-
mantics for the reconfiguration engine to be combined with the BIP engine.

Finally, in addition to monitoring and analysis, we plan to develop support for con-
trolled experimentation allowing to bring reconfigurable dynamic systems into specific
configurations and check their behavior. This is particularly important for the definition
of coverage criteria and validation through the exploration of corner cases and critical
situations. It will additionally require the refinement of the BIP model into a model
distinguishing between observable and controllable features and their integration.

A Layered Implementation of DR-BIP Supporting Run-Time Monitoring and Analysis 17

References

1. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: connecting software architecture to imple-
mentation. In: Tracz, W., Young, M., Magee, J. (eds.) Proceedings of the 24th International
Conference on Software Engineering, ICSE 2002, 19-25 May 2002, Orlando, Florida, USA.
pp. 187–197. ACM (2002)

2. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T., Sifakis, J.: Rigor-
ous component-based system design using the BIP framework. IEEE Software 28(3), 41–48
(2011)

3. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In:
Fourth IEEE International Conference on Software Engineering and Formal Methods (SEFM
2006). pp. 3–12. IEEE Computer Society (2006)

4. Bergenhem, C.: Approaches for facilities layer protocols for platooning. In: Intelligent Trans-
portation Systems (ITSC), 2015 IEEE 18th International Conference on. pp. 1989–1994.
IEEE (2015)

5. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based systems. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008 - Concurrency Theory, 19th Interna-
tional Conference Proceedings. Lecture Notes in Computer Science, vol. 5201, pp. 508–522.
Springer (2008)

6. Cavalcante, E., Oquendo, F., Batista, T.V.: Architecture-based code generation: From π-ADL
architecture descriptions to implementations in the go language. In: Avgeriou, P., Zdun, U.
(eds.) Software Architecture - 8th European Conference, ECSA 2014, Vienna, Austria, Au-
gust 25-29, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8627, pp. 130–145.
Springer (2014)

7. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S.R.,
Xiong, Y.: Taming heterogeneity - the Ptolemy approach. Proceedings of the IEEE 91(1),
127–144 (2003)

8. El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Four exercises in programming dynamic
reconfigurable systems: Methodology and solution in DR-BIP. In: Leveraging Applications
of Formal Methods, Verification and Validation. Distributed Systems - 8th International Sym-
posium, ISoLA 2018. LNCS, vol. 11246, pp. 304–320. Springer (2018)

9. El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Programming dynamic reconfigurable
systems. In: Formal Aspects of Component Software - 15th International Conference, FACS
2018, Proceedings. Lecture Notes in Computer Science, vol. 11222, pp. 118–136. Springer
(2018)

10. Falcone, Y., Jaber, M., Nguyen, T., Bozga, M., Bensalem, S.: Runtime verification of
component-based systems in the BIP framework with formally-proved sound and complete
instrumentation. Software and Systems Modeling 14(1), 173–199 (2015)

11. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL - An Introduction to the
SAE Architecture Analysis and Design Language. SEI series in software engineering,
Addison-Wesley (2012)

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc., USA (1995)

13. Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S., Tessier, P., Schnekenburger,
R., Dubois, H., Terrier, F.: Papyrus UML: an open source toolset for MDA. In: Proc. of
the Fifth European Conference on Model-Driven Architecture Foundations and Applications
(ECMDA-FA 2009). pp. 1–4 (2009)

14. Majumdar, R., Mathur, A.S., Pirron, M., Stegner, L., Zufferey, D.: Paracosm: A language
and tool for testing autonomous driving systems. CoRR abs/1902.01084 (2019)

18 A. El-Hokayem et al.

15. Mallet, A., Pasteur, C., Herrb, M., Lemaignan, S., Ingrand, F.F.: GenoM3: Build-
ing middleware-independent robotic components. In: IEEE International Conference on
Robotics and Automation, ICRA 2010, Anchorage, Alaska, USA, 3-7 May 2010. pp. 4627–
4632. IEEE (2010)

16. Mavridou, A., Baranov, E., Bliudze, S., Sifakis, J.: Configuration logics: Modeling architec-
ture styles. J. Log. Algebraic Methods Program. 86(1), 2–29 (2017)

17. Medvidovic, N., Rosenblum, D.S., Taylor, R.N.: A language and environment for
architecture-based software development and evolution. In: Boehm, B.W., Garlan, D.,
Kramer, J. (eds.) Proceedings of the 1999 International Conference on Software Engineering,
ICSE’ 99, Los Angeles, CA, USA, May 16-22, 1999. pp. 44–53. ACM (1999)

18. Nouri, A., Mediouni, B.L., Bozga, M., Combaz, J., Bensalem, S., Legay, A.: Performance
evaluation of stochastic real-time systems with the SBIP framework. IJCCBS 8(3/4), 340–
370 (2018)

19. Perrotin, M., Conquet, E., Delange, J., Schiele, A., Tsiodras, T.: TASTE: A real-time soft-
ware engineering tool-chain overview, status, and future. In: Ober, I., Ober, I. (eds.) SDL
2011: Integrating System and Software Modeling - 15th International SDL Forum Toulouse,
France, July 5-7, 2011. Revised Papers. Lecture Notes in Computer Science, vol. 7083, pp.
26–37. Springer (2011)

20. Pinciroli, C., Beltrame, G.: Buzz: An extensible programming language for heterogeneous
swarm robotics. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, IROS 2016, Daejeon, South Korea, October 9-14, 2016. pp. 3794–3800. IEEE (2016)

21. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of
Computer Science. pp. 46–57. IEEE Computer Society (1977)

22. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.:
ROS: an open-source robot operating system. In: ICRA workshop on open source software.
vol. 3, p. 5. Kobe, Japan (2009)

23. Verimag: DR-BIP Artifact. https://gricad-gitlab.univ-grenoble-
alpes.fr/verimag/bip/artifacts/drbip-feb2020 (February 2020)

	A Layered Implementation of DR-BIP Supporting Run-Time Monitoring and Analysis

