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Abstract—Advanced data-driven methods can facilitate the
participation of renewable energy sources in competitive electric-
ity markets by leveraging available contextual information, such
as weather and market conditions. However, the underpinning
assumption is that data will always be available in an operational
setting, which is not always the case in industrial applications.
In this work, we present a feature-driven method that both
directly forecasts the trading decisions of a renewable producer
participating in a day-ahead market, and is resilient to missing
data in an operational setting. Specifically, we leverage robust
optimization to formulate a feature-driven method that minimizes
the worst-case trading cost when a subset of features used during
model training is missing at test time. The proposed approach is
validated in numerical experiments against impute-then-regress
benchmarks, with the results showcasing that it leads to improved
trading performance when data are missing.

Index Terms—energy trading, data-driven optimization, miss-
ing data, renewable energy sources, robust optimization

I. INTRODUCTION

The integration of renewable energy sources, such as wind
and solar, in deregulated electricity markets necessitates deal-
ing with their inherent variability and uncertainty. At the same
time, as power systems are becoming increasingly data-centric
[1], advanced data-driven methods, based on machine learning
and optimization, enable improved decisions and help mitigate
uncertainty.

The implicit assumption underpinning most applications of
data-driven methods is that data will always be available when
needed in an operational setting, i.e., at test time. Nonethe-
less, in real-world applications, data can go missing for a
multitude of reasons. Network latency, equipment failures, or
cyberattacks, can render input data unavailable at test time
and compromise decision quality. For instance, an EC survey
[2] on the timeliness of data published on the ENTSO-E

This work was supported in part by the Smart4RES Project (Grant No
864337) funded under the Horizon 2020 Framework Program and in part by
the Carnot M.I.N.E.S project Flexi4Value (Grant No 220000499) supported
by ANR.

Transparency Platform1 finds that “for every data domain,
fewer than 40% of users reported that data were always there
when needed.” To ensure that the outcome of data-driven
decision-making processes remains consistent, it is pivotal to
develop methods that are resilient to missing data.

A. Related work

Leveraging data to optimize the participation of renewable
energy sources in electricity markets has received a lot of
attention over the last two decades. Typically, available data
comes in the form of historical production data and associated
contextual information (or features) related to weather and
market conditions. Earlier works focus on leveraging contex-
tual information to generate probabilistic forecasts of uncertain
renewable production, which are subsequently used to derive
optimal trading decisions— see, e.g., [3]. Recently, the focus is
placed on data-driven optimization methods that directly map
contextual information to decisions. We highlight [4], where
meta-optimization is utilized to derive trading decisions, [5],
where decision trees are trained to directly optimize for trading
cost, and [6], where the trading decisions are directly forecast
from contextual information.

Missing data at test time, i.e., the case when a subset
of features used for model training becomes unavailable in
an operational setting, poses a major challenge to model
performance. This problem has been primarily examined w.r.t.
forecasting applications. In [7], two approaches are proposed
to handle missing data in wind power forecasting, namely re-
training without the missing features and impute-then-regress.
Retraining typically outperforms impute-then-regress methods,
however, the number of additional models required might
render it impractical. To address this challenge, [8] develops a
robust optimization approach to enable model resilience while

1Data on generation, transportation and consumption of electricity including
information for the pan-European market



also maintaining practicality for energy forecasting applica-
tions. Nonetheless, missing data at test time for renewable
trading applications have not been thoroughly examined. One
exception is [6], where separate models are trained to deal
with potential delays in data acquisition, effectively retraining
without missing features.

B. Aim and Contribution

In this work, inspired by [6] and [8], we develop a feature-
driven model to directly forecast the trading decisions of a
renewable producer participating in a day-ahead electricity
market that is resilient to missing data. We leverage robust
optimization to formulate a model that optimizes for the worst-
case trading cost when a subset of features is missing at test
time. The proposed approach is agnostic to the missingness
mechanism (whereas [6] only addresses a specific missingness
pattern due to data acquisition delays), maintains consistent
performance, and remains practical. For validation, we exam-
ine an aggregation of wind power plants participating in a
day-ahead market and compare the proposed approach against
state-of-the-art methods coupled with imputation. The results
illustrate that the proposed approach maintains consistent per-
formance and outperforms impute-then-regress benchmarks.

The rest of this work is organized as follows. Section II
formulates the problem of trading in a day-ahead market.
Section III develops the proposed methodology. Section IV
presents the experimental setup and discusses numerical re-
sults. Finally, Section V provides conclusions and perspective
on future work.

II. TRADING PROBLEM FORMULATION

In this section, we formulate the problem of trading renew-
able production in a day-ahead market.

A. Trading in a Day-ahead Market

We assume a renewable producer, e.g., wind power pro-
ducer, participating as a price-taker in a day-ahead market
with a dual-price balancing mechanism. For each clearing
period t of the day-ahead market, the producer submits an
energy offer Edat

2. As temporal constraints do not apply, we
drop subscript t for simplicity. During real-time operation, the
system operator activates balancing reserves to maintain the
equilibrium between demand and supply. To recover the cost
of reserve activation, all participants have to buy back (sell)
the amount of energy shortage (surplus), thus balancing their
individual position.

Let E be the uncertain renewable production, λda be the
day-ahead clearing price, and λu, λd be the marginal cost of
activating upward and downward reserves, respectively. We
assume that if the total demand exceeds the total supply,
i.e., the system requires upward regulation, then λu ≥ λda

and λd = λda. Conversely, if the total demand exceeds the
total supply, i.e., the system requires downward regulation,
then λd ≤ λda and λu = λda. If Eda > E, i.e., the
real-time production is less than the contracted amount, then

2We assume that the offer is always accepted at zero marginal cost.

the producer buys back the difference at price λu, while if
Eda > E sells the excess production at price λd. Hence, if the
producer deviates from the contracted offer in the direction that
helps decrease the amount of regulation required, no financial
penalty is incurred. We further define ψu = λu − λda and
ψd = λda − λd to be the non-negative upward and downward
unit regulation costs.

The uncertain profit for a single period t can be concisely
written as

ρ = λdaE −
[
ψu(Eda − E)+ + ψd(E − Eda)+

]
, (1)

where (t)+ = max(0, t). Evidently, both the renewable
production E and all the market quantities λda, ψu, ψd are
unknown; thus, the trading profit ρ is also stochastic. The first
term in (1) relates to the revenue from the day-ahead market,
while the term in the bracket is the non-negative imbalance
cost. A risk-neutral producer aims to maximize the expected
trading profit. Since the first term in (1) does not depend on
trading decisions, maximizing trading profit is equivalent to
minimizing the imbalance cost. The problem of minimizing
the imbalance cost is given by

min
Eda

E
[
max

(
ψu(Eda − E), ψd(E − Eda)

)]
(2a)

s.t. 0 ≤ Eda ≤ E, (2b)

where the expectation is taken w.r.t. the joint distribution of
uncertain parameters, constraint (2b) ensures that the trading
decision is non-negative and respects the nominal capacity E.

Problem (2) is an instance of the well-known newsvendor
problem. Assuming we have access to the probability distribu-
tion of E and we know the true values of ψu, ψd, the optimal
offer is derived analytically from

Eda∗ = F−1
E

(
ψd

ψd + ψu

)
, (3)

where F−1
E is the inverse of the cumulative distribution

function of E—see [3] for a proof. Thus, the optimal offer
equals the τ -th quantile of the probability distribution, where
τ = ψd

ψd+ψu . Clearly, as both the probability distribution of E
or the actual values of ψu, ψd are unknown and need to be
forecast.

B. Data-driven Approaches

We assume to have access to a training data set D =
{(Ei, ψui , ψdi ,xi)}ni=1 of n observations of joint realizations
of renewable production, unit regulation costs, and associated
contextual information x. Here, x denotes a p-size feature
vector, e.g., weather forecasts, historical production data, and
market-related data, all of which are available to the producer
prior to submitting the offer Eda. Data set D can be used to
approximate the solution to the original problem (2).

A first data-driven approximation is given by

min
Eda

1

n

n∑
i=1

max
(
ψui (E

da − Ei), ψ
d
i (Ei − Eda)

)
(4a)

s.t. 0 ≤ Eda ≤ E, i = 1, . . . , n, (4b)



which defines the so-called Sample Average Approximation
(SAA) of (2). By linearizing the maxima terms in (4a),
problem (4) can be reformulated into a linear programming
(LP) problem. Effectively, the SAA finds the trading decision
that minimizes the in-sample imbalance cost given data set D.

While the SAA enjoys several nice theoretical properties, it
does not leverage the available features x. Typically, features
x can be utilized to train forecasting models that target the
uncertain problem parameters. Conversely, we can construct
a feature-driven policy that directly maps features to trading
decisions and minimizes the imbalance cost, i.e., express Eda

as a function of x. Following [6], we consider an affine policy
Eda(x) = w⊺x parametrized by coefficients w3. The problem
of finding the optimal decision rules is given by

min
w

1

n

n∑
i=1

max
(
ψui (w

⊺xi − Ei), ψ
d
i (Ei −w⊺xi)

)
(5a)

s.t. 0 ≤ w⊺xi ≤ E, i = 1, . . . , n, (5b)

where we effectively replaced the decision variable in (4) with
the feature-driven policy. For an out-of-sample realization of
features, say x0, the optimal energy offer is derived directly
from w⊺x0, which bypasses the optimization solver. Evidently,
it is possible for an out-of-sample decision to be infeasible; in
this case, a projection to the feasible set [0, E] is required.

Note that if the unit regulation costs ψui and ψdi are replaced
with a point forecast, i.e., their conditional expectation, then
(5) is equivalent to quantile regression. In this case, we could
also estimate the predictive density of E and find the optimal
offer from the expected optimal quantile, as shown in (3).

III. RESILIENT DATA DRIVEN ENERGY TRADING

An implicit assumption underpinning the feature-driven
solution (5) is that the feature vector x will always be available
at test time. If a subset of features, however, is missing, then
the performance of the feature-driven policy is compromised.
In this section, we robustify (5) against missing features.

A. Modeling Uncertainty

To model uncertainty w.r.t. feature availability, we assume
that Γ (integer) features, at most, could be missing from
each observation. Following [8], we introduce binary variables
αi ∈ {0, 1}p that model feature availability for the i-th
training observation. This is done as xi ⊙ (1 − αi) where
⊙ is the element-wise multiplication, where αij = 1 results
in the deletion of the j-th feature.

In energy forecasting and trading applications, certain fea-
tures may not make sense to be deleted, e.g., calendar vari-
ables. Moreover, a subset of features might be grouped, e.g.,
polynomial terms of the same variable or variables received
from the same source, and, thus, would go missing together. To
model these cases, a set of equality constraints are introduced
as Mαi = 0, where M ∈ Rm·n models the m additional
constraints. For instance, if the first feature cannot be deleted,

3To model the bias term, we assume a vector of ones is padded to x.

then a row vector [1,0] is appended to M. Similarly, if
α1 = α2 then [−1, 1,0] is appended to M.

For the i-th observation, we model the uncertainty w.r.t.
feature availability with the following discrete uncertainty set

Ui = {αi |αi ∈ {0, 1}p,
∑
j∈[p]

αij = Γ,Mαi = 0}. (6)

As all vertices of (6) occur at integer values, we can replace
(6) with its convex hull, given by (7)

Ai = {αi |0 ≤ αi ≤ 1,
∑
j∈[p]

αij = Γ,Mαi = 0}, (7)

which is a polyhedral uncertainty set. Therefore, using (7)
instead of (6) results in equivalent solutions.

B. Resilient Feature-Driven Model

In this section, we develop the proposed resilient feature-
driven model. First, the feature-driven problem (5) is equiva-
lently written as

min
t,u,w

t, (8a)

s.t.
1

n

n∑
i=1

ui ≤ t, (8b)

ψui (−Ei +w⊺xi) ≤ ui, i ∈ [n] (8c)

ψdi (Ei −w⊺xi) ≤ ui, i ∈ [n] (8d)
0 ≤ w⊺xi ≤ Ē, i ∈ [n] (8e)

where we effectively linearized the inner maxima terms, with
t, ui denoting auxiliary variables, u being an n-size vector that
comprises of ui, and [n] being shorthand for {1, . . . , n}.

Using (7), we robustify the feature-driven models (8) against
uncertainty w.r.t. to feature availability. The robust version is
given by

min
t,u,w

t, (9a)

s.t.
1

n

n∑
i=1

ui ≤ t, (9b)

ψui (−Ei +w(xi ⊙ (1−αi)) ≤ ui, i ∈ [n],∀αi ∈ Ai,
(9c)

ψdi (Ei −w(xi ⊙ (1−αi))) ≤ ui, i ∈ [n],∀αi ∈ Ai,
(9d)

0 ≤ w(xi ⊙ (1−αi)) ≤ E, i ∈ [n],∀αi ∈ Ai,
(9e)

which we term resilient feature-driven model. Effectively, (9)
finds the set of linear decision rules that map features to
decisions that minimize the worst-case trading cost when Γ
features are missing. Constraints (9c)-(9e) are robust con-
straints. As we are dealing with an LP problem and a polyhe-
dral uncertainty set, (9) can be reformulated into a tractable
problem using techniques from robust optimization [9, Ch. 2].

For illustration, consider constraint (9c). As this constraint
needs to be satisfied for all realizations of αi, it suffices to be



satisfied for the worst-case scenario. For the i-th observation,
assuming ψui > 0, (9c) is equivalently written as

−Ei +wxi − max
αi∈Ai

(w ⊙ xi)
⊺αi ≤ ui

1

ψui
. (10)

The inner max problem is given by

max
αi

(w ⊙ xi)
⊺αi,

s.t. αi ≤ 1 : µi ≥ 0,∑
j∈[p]

αij = Γ : ζi,

Mαi = 0 : πi,

αi ≥ 0,

where µi,πi, γi are dual variables of appropriate size. As this
problem is linear in αi, it can be replaced in (10) by its dual,

min
µi,γiπi

∑
j∈[p]

µij + γiΓ, (12a)

µi + γi +Mπi ≥ xi ⊙w, (12b)
µi ≥ 0, (12c)

where the min operator becomes redundant. The rest of the
constraints are reformulated similarly. Note that (9) ensures
that in-sample trading decisions are always feasible. Nonethe-
less, it is possible for out-of-sample decisions to be infeasible.
In this case, the inferred decision is projected onto the feasible
set [0, E].

IV. NUMERICAL EXPERIMENTS

This section presents the experimental setup used to validate
the proposed model and discusses our numerical results.

A. Experimental Setup and Input Data

First, we formulate different data-driven methods to derive
trading decisions. Next, we examined their performance when
features are missing. The following models are tested:

• SAA: the SAA solution (4) that does not account for
contextual information and is not affected by missing
features.

• FD: the feature-driven method (5).
• EV: this involves offering the expected production value,

derived from standard forecasting. For simplicity, EV is
the same as FD assuming ψu and ψd are equal.

• RF: a random forest model that maps data to decisions,
as described in [5], using the same features as FD.

• ResFD: the proposed resilient (i.e., robust) version of FD.
Initial experiments showed that including the realizations of

ψui , ψ
d
i in the feature-driven models led to worse performance.

In fact, the best results were obtained using the in-sample
means, e.g., replacing ψui with 1

n

∑
i∈[n] ψ

u
i . This is also the

case in [6] and effectively amounts to using the in-sample
mean of unit regulation costs as the respective point forecast.

For models that cannot handle missing data, i.e., FD, EV,
and RF, we follow the impute-then-regress approach with
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Fig. 1. Location of wind farms and NWP grid points.

mean imputation. For the proposed ResFD, missing data are
set to zero and a different model is trained for each value of Γ
and the respective model is used at test time. Also, for Γ = 0,
ResFD is equivalent to FD.

Regarding input data, we use real-world production data,
numerical weather predictions (NWPs), and market data. All
data sets span the same period, from October 2018 to Septem-
ber 2020, and are normalized prior to model training. The first
year of data is reserved for model training, while the remaining
data are used for testing.

The power production data comprise an aggregation of 13
wind farms located in mid-west France with a total nominal
capacity of 120MW. The measured power production is effec-
tively our target and represents the “perfect” day-ahead offer
for each observation.

The NWPs are used to create the feature vector x. The
NWPs consist of weather forecasts in a spatial grid with a
half-hourly resolution, namely wind speed, wind direction,
solar irradiance, and cloud coverage. To model the nonlinear
relationship between wind speed and wind power production,
we further add a quadratic and cubic transformation of the
wind speed variable. For each of the 13 wind farms, we find
the NWP grid point that is closest in terms of Euclidean
distance and append it to the feature vector, resulting in a total
of 52 features. Fig. 1 illustrates the geographical distribution of
wind farms and respective NWPs. Each grid point determines
a group of variables, i.e., all the variables go missing together
(13 groups in total). Hence, the possible combinations of
missing features are

∑13
k=0

(
13
k

)
. In turn, this number renders

the retraining method [7] impractical.
For market data, we consider data from the French elec-

tricity market. The market data are used to estimate the in-
sample mean of the balancing penalties and for out-of-sample
validation.

B. Results

First, we briefly compare baseline performance without
missing features. Table I presents the mean imbalance cost
in EUR/MWh. Overall, all feature-driven models signifi-
cantly outperform SAA. Specifically, EV, FD, and ResFD are
the best-performing models with an expected cost of 0.72
EUR/MWh, closely followed by RF.



TABLE I
MEAN IMBALANCE COST (EUR/MWH) WITHOUT MISSING FEATURES.

SAA EV FD RF ResFD

2.32 0.72 0.72 0.77 0.72
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Fig. 2. Performance versus the number of missing feature groups.

Next, we evaluate performance when features are missing
at test time. For each test observation, we randomly remove
Γ NWP features, repeating the experiment 10 times.

Fig. 2 plots the mean imbalance cost over all the exper-
iments versus the different values of missing features. Note
that for zero missing features, all models perform according to
Table I. As expected the overall trading performance decreases
when data are missing at the time. The proposed ResFD is the
best-performing model when data are missing and showcases
fairly consistent performance with a relatively small increase
in imbalance cost. The only exception is for the extreme
case when Γ = 13, when SAA slightly outperforms ResFD.
Regarding the impute-then-regress benchmarks, RF is fairly
resilient for up to 3 missing feature groups, while both EV and
FD are considerably worse for even a single missing feature
group. Overall, ResFD leads to approximately 25% improved
trading performance against the second-best model when data
are missing.

We further conduct a sensitivity analysis w.r.t. the number
of test observations that incur missing data. To this end, we
sample a percentage of observations with missing data, and
for each observation, we sample a number of missing feature
groups, repeating the experiment 10 times.

Table II summarizes the results of the sensitivity analysis.
Overall, ResFD outperforms the impute-then-regress methods,
and the effect is more pronounced as the percentage of
observations with missing data increases. Specifically, the
average improvement over the second-best method, RF, is
approximately 10%.

rier

V. CONCLUSION

In this work, we developed a feature-driven model that di-
rectly forecasts the trading decisions for a renewable producer

TABLE II
MEAN IMBALANCE COST (EUR/MWH) VERSUS PERCENTAGE OF

OBSERVATIONS WITH MISSING FEATURES.

Percentage SAA RF EV FD ResFD

5 2.33 0.82 0.86 0.86 0.76
10 2.33 0.88 1.01 1.01 0.81
25 2.33 1.03 1.44 1.44 0.94

participating in a day-ahead market and is resilient to missing
features. Specifically, we formulated a model that minimizes
the worst-case trading cost when a subset of features is missing
at test time. To validate the proposed approach, we com-
pared performance against a number of impute-then-regress
benchmarks considering a day-ahead market with a dual-price
balancing mechanism. Overall, the proposed approach led to
approximately 25% reduction in trading costs compared to the
best impute-then-regress method when data were missing from
the test set. A sensitivity analysis examined performance when
a subset of the test set had missing data and further validated
the efficacy of the proposed method.

Future work could focus on trading applications in electric-
ity markets with a single-price balancing mechanism. Further,
the proposed methodology could also be applied to robustify
the data-driven methods that aim at forecasting the solutions to
constrained optimization problems given associated features.
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