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The scale (conformal) anomaly can generate an electric current near the boundary of a system in the presence of a static magnetic
field. The magnitude of this magnetization current, produced at zero temperature and in the absence of matter, is proportional to
a beta function associated with the renormalization of the electric charge. Using first-principle lattice simulations, we investigate
how the breaking of the scale symmetry affects this “scale magnetic effect” near a Dirichlet boundary in scalar QED (Abelian Higgs
model). We demonstrate the interplay of the generated current with vortex excitations both in symmetric (normal) and broken (su-
perconducting) phases and compare the results with the anomalous current produced in the conformal, scale-invariant regime. Possi-
ble experimental signatures of the effect in Dirac semimetals are discussed.

1 Introduction

Quantum anomalies lead to distinctive transport phenomena, such as the chiral magnetic effect and its
generalizations, which produce various currents of electric and axial charges in diverse physical environ-
ments, including systems at finite density and finite temperature, at strong electromagnetic fields, and in
vortical backgrounds [1, 2].
The appearance of anomalous currents is directly related to breaking a classical symmetry by quantum
fluctuations, with the most vivid examples given by the axial anomaly and the mixed axial-gravitational
anomaly [3, 4]. These phenomena involve the axial (chiral) degrees of freedom that are expected to ap-
ply to various physical environments, from quark-gluon plasma created in ultrarelativistic heavy-ion col-
lisions [5] to condensed matter environments [6].
The anomalous breaking of the classical conformal (scale) invariance [7, 8, 9] can also be responsible for
anomalous transport effects [10]. For example, the scale electromagnetic effects generate an electric cur-
rent and produce electric charge accumulation in electromagnetic backgrounds in curved spacetime [11].
In condensed matter context, the curved spacetime can be modeled as a temperature gradient that drives
a system out of equilibrium [12]. The anomalous phenomena are then seen as the Nernst effect [13] in
which the magnitude of the anomalous electric current is controlled by the beta function related to the
renormalization of the electric charge. A purely gravitational conformal anomaly can reveal itself in var-
ious solid-state systems by affecting, for example, thermodynamic characteristics such as pressure gradi-
ents [14] and thermal transport [15, 16].
In a bounded classically conformal system, the scale anomaly can generate another type of anomalous
electric current which reveal itself in the presence of the background magnetic fields [17, 18] (see also
Ref. [19] for an earlier study). The anomalous current flows along the boundary with a magnitude pro-
portional to the beta function of the electric charge, similar to the currents generated by the scale elec-
tromagnetic effects in bulk. In addition, the conformal anomaly leads to the electric charge accumula-
tion, which can have an observable imprint in Dirac semimetals at charge neutrality point [20]. Anomaly-
induced boundary phenomena also include a large variety of other effects associated with different sym-
metries or curved boundaries [21, 22, 23, 24, 25].
The appearance of electric boundary currents in the presence of the background magnetic field is in no
way a new phenomenon. For example, the Meissner current can also be generated by the motion of the
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Cooper pairs in a thin layer of a superconductor in response to the applied magnetic field [26]. As the
magnetic field penetrates the superconductor, it induces a circulating current in the material that flows
in such a way as to generate an opposing magnetic field. This current is carried by the Cooper pairs,
which can flow freely without any resistance due to their superconducting nature.
There are several conceptual differences between anomalous and superconducting boundary currents.
The anomalous current is generated, as the name says for it, by the quantum anomaly in the vacuum.
On the other hand, the Meissner current has a semiclassical non-anomalous nature and is produced in
matter (in the presence of a superconducting condensate). Our paper investigates quantitative differ-
ences between these currents on the unified footing within the same system.
We numerically study, from first principles, the generation of an electric boundary current in the lattice
formulation of the (3+1) dimensional Abelian Higgs model (AHM) following the analysis of Ref. [27].
Our choice of this model is governed by its distinct features. First of all, the AHM possesses two phases:
a phase with a spontaneously broken U(1) symmetry (the condensed or superconducting phase) and an
unbroken (Coulomb) phase with a massive scalar field. In the latter phase, the theory is known as “scalar
QED”. The AHM also possesses a region near a second-order phase transition where the mass gap van-
ishes, so the model effectively approaches a conformal limit. Therefore, all three interesting cases – rep-
resented by the conformal (scale-invariant), symmetric (massive fields with explicitly broken gauge sym-
metry), and broken (gapped phase with spontaneously broken gauge symmetry) regions – can be studied
within the same model.
In the next section, we briefly discuss a qualitative physical picture behind the generation of the bound-
ary current. We show that one can generally expect the existence of both conformal (quantum) and non-
conformal (semiclassical) components to the boundary current. As it follows from their names, the con-
formal electric current is essential in a region of parameter space close to the conformal point. At the
same time, the non-conformal contribution plays a dominant role in a part of the phase diagram with a
mass gap in the spectrum of the matter field(s).
In Section 3, we describe the lattice model, observables, and the parameters of our lattice simulations.
Then, Section 4 is devoted to a detailed description of our numerical results. Finally, our conclusions are
summarized in the last section.

2 Boundary current

2.1 Anomalous generation of the boundary current and conformal symmetry

The scale (conformal) anomaly produces an electric current near a flat boundary in a general class of
spatially bounded quantum field theories with U(1) gauge symmetry [19, 28]. The current takes the fol-
lowing general form [28, 17]:

j(x) = −ν(x)en×B(x) , (1)

where B is the strength of the magnetic field, e = |e| is the elementary electric charge, and n is the out-
ward spatial vector normal to the boundary surface. The anomalous factor

ν(x) ≡ ν(x⊥) =
2β(e)

e3

1

x⊥
, (2)

is a function of the distance x⊥ from the boundary to the point x = (x⊥,x‖) at which the current is
generated. In our notations, x⊥ = x and x‖ = (y, z).
The anomalous coefficient (2) depends on the beta function β associated with the renormalization of the
electric charge. Equation (1) implies that the induced electric current is tangential to the boundary and,
simultaneously, normal to the axis of the magnetic field.
The electric current at the boundary (1) is proportional to the beta function β, which enters the propor-
tionality coefficient (2). The beta function is associated with the renormalization of electric charge:

β(e) = µ
∂e(µ)

∂µ
, (3)
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2.1 Anomalous generation of the boundary current and conformal symmetry

where µ denotes the energy scale at which the electric charge is measured: e = e(µ). Thus, the interac-
tions break the conformal symmetry of the system via renormalization of the electric charge: the prop-
erties of particles interacting at different energies are no more related to each other by a simple rescaling
transformation. The presence of the beta function (3) highlights the scale–anomalous nature of the pro-
duced electric current (1).
The conformal anomaly is also called the scale anomaly because the conformal and scale properties of
reasonably defined field theories are inherently connected to each other [29]. The same type of anomaly
is also often called the trace anomaly because in the presence of the background classical electromag-
netic field F µν , the trace of energy-momentum tensor T µν is nonzero: T µµ = β(e)/(2e)F µνFµν . The last
relation is helpful for first-principle calculations of the equation of state in non-perturbative gauge the-
ories [30]. The loss of tracelessness originates from radiative corrections, as the strength-energy tensor
should otherwise be traceless in classical conformal field theories in 3+1 dimensions. More details on
conformal anomalies and transport can be found in Ref. [10].
Our paper concentrates on scalar QED (sQED), which is much easier to simulate numerically than the
usual QED with massless or light fermions. The one-loop β function of sQED with one bosonic species
coupled to a single Abelian gauge field is four times smaller compared to the conventional QED:

β1-loop
sQED =

e3

48π2
, (4)

The anomalous coefficient (2) is therefore given by the following simple expression:

ν1-loop
cQED (x⊥) =

1

24π2

1

x⊥
. (5)

The direction of the anomalous electric current (1) is tangential to the boundary and normal to the ex-
ternal magnetic field B. Therefore, it is natural to characterize the system by calculating the total cur-
rent density per unit area of the boundary. In the conformal limit, the total electric current density in-
duced at the boundary (1),

Jtot =

∫ ∞
0

j‖(x⊥) dx⊥ , (6)

is a linear function of the background magnetic field:

Jtot = γeB , (7)

where the proportionality coefficient γ, given by the integration of Eq. (1) along the normal direction
x⊥, diverges both in infrared and ultraviolet limits:

γth
conf =

1

24π2
ln
λIR

λUV

. (8)

In the conformal limit, the infrared cutoff λIR in Eq. (8) should be of the order of the size of the sys-
tem, while the ultraviolet cutoff λUV should be determined by a typical shortest scale of the material at
which the continuum description of the particle’s motion is no more applicable (for example, in a crys-
tal, the value of the cutoff λUV is of the order of an interatomic distance). In our simulations, the lat-
tice spacing naturally gives the ultraviolet scale, λUV = a. For a typical lattice size L = 32 (given
in the units of lattice spacing a, with more details given below), the most extended physical size along
any axis is L/2 = 16, implying that in our simulations, the logarithmic factor in Eq. (8) gives a mod-
est multiplicative correction, ln 16 ' 2.8. Despite the ultraviolet divergence both in infrared and ul-
traviolet limits, the total anomalous current (8) gives a reasonable value even in the realistic systems
where the ultraviolet scale, given by an interatomic distance with a typical value of a few Ångströms (we
take λUV = 1 Å ≡ 10−10 m) is many orders of magnitude smaller than the typical crystal size (we take
λIR = 1 cm ≡ 10−2 m). Then, the logarithmic factor is ln(λUV/λIR) ' 18.4 ' 6π.
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2.2 A single model for three regimes

2.2 A single model for three regimes

The anomalous boundary current (1) has been found in the conformal limit where the model has no di-
mensionful parameters that could fix a scale. However, the conformal symmetry can be broken, and this
breaking can proceed via two mechanisms: either perturbatively, via radiative corrections, or non-pertur-
batively, via the condensate. In our paper, we ask a natural question: can the boundary current be gen-
erated in a non-conformal phase that possesses a mass scale so that the conformal symmetry is explicitly
broken? Furthermore, how does the breaking of the U(1) gauge symmetry by the condensate affects the
generation of the current? In the condensate phase, both the conformal symmetry and the continuous
gauge symmetry are broken simultaneously, which allows us to ask yet another question: how does the
interplay between these two symmetries contribute to the generation of the anomalous current?
In order to address all three regimes, we consider the Abelian Higgs model with the Lagrangian:

L = −1

4
FµνF

µν + (Dµφ)∗Dµφ− V (φ) , (9)

where Fµν = ∂µAν − ∂νAµ is the field strength tensor of the gauge field Aµ, Dµ = ∂µ − ieAµ is the
covariant derivative acting on the complex scalar field φ, and

V (φ) = m2|φ|2 + λ|φ|4, (10)

is the potential of the scalar field.
The Abelian Higgs model can host two types of conformally broken regimes corresponding to the sym-
metric and broken phases.1 In the symmetric phase, the Abelian U(1) symmetry is unbroken so that the
physical content of the phase is the massless vector field Aµ and the massive scalar field φ with a van-
ishing condensate 〈φ〉 = 0. In the broken phase, the U(1) symmetry is spontaneously broken by the
nonzero condensate 〈φ〉 6= 0, and both the vector field Aµ and a scalar excitation over the condensate,
δφ ≡ φ− 〈φ〉, acquire masses.
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Figure 1: The illustration of the mechanisms of the electric current generation near the boundary in (a) the conformal
regime and (b) the symmetry-broken phase. (a) Vacuum fluctuations produce particle-anti-particle pairs that follow skip-
ping orbits without mutual annihilation, thus creating a uniform electric current along the reflective boundary. (b) Deple-
tion of the scalar condensate acts as a well that attracts vortices to the boundary, thus enhancing the circular currents of
the vortices and generating a coherent magnetization (Meissner) current along the boundary.

2.3 Electric current generation

2.3.1 Conformal current in the conformal regime

In the conformal limit of the zero-temperature model, the quantum fluctuations produce the boundary
current [19, 28, 18]. The mechanism of the current generation is visualized in Fig. 1(a). Initially, vac-
uum fluctuations create particle-anti-particle pairs which, placed far from a boundary, annihilate within

1In a lattice version of the Abelian Higgs model (9) the gauge field may be a compact field, which means the presence of the third, electri-
cally confining phase. Our paper considers a weakly coupled region (e� 1) where the confining phase is not realized.
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2.3 Electric current generation

the time interval stipulated by the uncertainty principle. The presence of the magnetic field background
does not change the fate of these virtual particles, which will, in this case, follow close circular orbits.
However, a virtual particle-antiparticle pair created near the reflective boundary does not close its shared
orbit, provided the magnetic field is directed tangentially to the boundary. As a result, the virtual parti-
cles follow skipping orbits near the wall without mutual annihilation, thus creating an electric current
along the boundary (notice that particles with opposite charges move in opposite directions along the
wall, thus doubling the total current). The current profile near the boundary has an infinite thickness in
the normal direction to the wall because – in the absence of any scales – the current decays polynomially
(not exponentially) at large distances from the boundary.
The produced current has an entirely quantum origin since it originates from the vacuum at zero tem-
perature without matter. The vanishing mass of particles facilitates the creation of their pairs from the
vacuum, thus enhancing the boundary current and enforcing its long-ranged nature. The existence of
the boundary current in the conformal limit has been confirmed numerically from the first principles in
Ref. [27] to which we refer an interested reader. Below, we complete the results in the conformal point
by calculations at the symmetry broken phase where the current generation is governed by an entirely
different mechanism and symmetric phase, where the current generation has similar features to the con-
formal symmetry point.

2.3.2 Meissner current in the broken phase

Outside the conformal region, in the broken phase with a nonzero scalar condensate, the induced bound-
ary current is generated by Abrikosov vortices via a simple semi-classical mechanism visualized in Fig. 1(b).
An external magnetic flux parallel to the boundary creates several Abrikosov vortices equal to the num-
ber of elementary fluxes in the total magnetic flux. At the center of each vortex, the scalar condensate
vanishes, and the magnetic field takes its maximum value. The radial profile of the magnetic field is shaped
by a circular electric current that circumvents the vortex core in the plane normal to the core. The cur-
rent is zero at the center of the vortex, takes its maximal value at the distance of the order of the pene-
tration depth λ, and decays exponentially at longer distances.
The scalar condensate should vanish at the boundary due to the Dirichlet condition on the scalar field.
The condensate is then restored to its vacuum expectation value at a certain distance from the bound-
ary, which is of the order of the coherence length ξ (the correlation length of the scalar field). The Dirich-
let boundary should then attract the Abrikosov vortices because the energy of the vortex is a monotoni-
cally rising function of the value of the scalar condensate, while at the boundary, the condensate is smaller
than in bulk. Therefore the vortices tend to be “pinned” to the Dirichlet boundary so that the two-dimen-
sional density of the vortices is expected to be increased in the vicinity of the boundary. As a result, the
circular electric currents of individual vortices cancel each other in the normal direction to the bound-
ary while simultaneously generating a net electric current along the boundary.2 Thus, we get a boundary
current that should decay exponentially along the normal to the boundary. The boundary current has a
non-anomalous, semi-classical origin in the broken phase. In this semi-classical scenario, the thickness of
the boundary current is set by the penetration depth of the superconductor.
This mechanism should be contrasted to the flux barrier at the surface of realistic superconductors with
a vacuum (insulator) where the vortices experience tunneling due to the energy barrier at the bound-
ary [26]. Likewise, to our example above, the background magnetic field generates the Meissner current
along the boundary of the superconducting samples, although the boundary conditions in these cases
are different. The current is generated despite the difference in the boundary conditions (the Dirichlet
boundary condition in our case vs. the Neumann condition on the charged field in the Ginzburg-Landau
formulation of a superconducting condensate [26]).

2One may expect that the result of our considerations is valid in type-I and type-II superconductivity regimes where vortices, respectively,
attract and repel each other.
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2.3.3 Mixed regime in the symmetric phase

In the symmetric phase, the classical Abrikosov vortex solutions do not exist, as the penetration length
is infinite (the photon is a massless particle), and no topological mechanism exists that could stabilize
the classical solutions. However, the described mechanism will nevertheless work since the external mag-
netic field induces light (quantum) vortices which may be thought of as clumps of magnetic field shaped
by the vacuum currents of a fluctuating scalar field. Such quantum vortices are often observed in the nu-
merical simulations of scalar models [31].
The correlation length of the scalar field sets the size of the effective scalar core of the emergent vortices.
Despite their non-classical nature, the fluctuating vortex lines which would tend to concentrate at the
vicinity of the boundary where the Dirichlet condition naturally suppresses the value of the scalar field,
thus making it close to the vanishing value of the scalar field in the center of the vortex. The elevated
density of vortex lines will induce the (again, non-anomalous) boundary current, which is normal to the
magnetic field. The thickness of the boundary current is set by the correlation length of the scalar field,
which is the only length scale in the theory.

3 Lattice model

3.1 Action of the model and dynamical fields

The Euclidean lattice action of the Abelian Higgs model (9) is given by the following formula:

S = βlatt

∑
x

4∑
µ<ν=1

(1− cos θx,µν) +
∑
x

4∑
µ=1

∣∣∣φx − ei(θxµ+θBxµ)φx+µ̂

∣∣∣2 +
∑
x

(
−κ |φx|2 + λ |φx|4

)
, (11)

where x ≡ (x1, x2, x3, x4) is the Euclidean space-time coordinate, φx is the complex scalar field and θxµ
is the dynamical (quantum) vector gauge field. The vector gauge field θBµ is the background (classical)
magnetic field.
The model is characterized by the lattice spacing a, which corresponds to the physical length of an ele-
mentary lattice link. In a naive continuum limit, a → 0, the dimensionless gauge θl and scalar φ fields
are related to their continuum counterparts (both of the dimension of mass) via the relations Aµ(x) =
θx,µ/a and φ(x) = φx/a, respectively. The physical value of the lattice spacing a is usually determined
by matching dimensionless lattice results to known dimensionful quantities (for example, to the mass of
a particular physical excitation).
In the continuum limit (a → 0), the lattice gauge coupling βlatt in Eq. (11) is related to the bare electric
charge e as follows: βlatt = 1/e2 (here, we introduce the subscript “latt” in the lattice coupling “βlatt ”
in order to discriminate it from the beta function β). The bare couplings κ and λ are associated, respec-
tively, with quadratic and quartic terms of the scalar field φ in the interaction potential (10) correspond-
ing to the last line in Lagrangian (11).
Action (11) is invariant under the Abelian gauge transformations for the gauge field, θxµ → θxµ + ωx −
ωx+µ̂, and the scalar field, φx → eiωxφx, where ωx is an arbitrary real-valued scalar function defined at
the sites of the lattice. The background gauge field θBxµ is insensitive to the gauge transformations.
In the lattice model (11), the gauge field θl is a compact field variable because the action is invariant un-
der the discrete shifts θl → θl + 2πnl, where nl ∈ Z is an arbitrary integer. The compactness of the
gauge field automatically implies the existence of Abelian monopoles in the vacuum of the theory. The
monopoles condense in the strong coupling region with e & 1 (small βlatt ), and the vacuum of the model
becomes confining. As we are not interested in the confining effects, we keep the lattice gauge coupling
sufficiently large, thus ensuring that the monopoles rarely appear in our numerical calculations. In other
words, the compactness of the lattice gauge field θl does not influence our results.
The numerical simulations of the present article are similar to the ones of Ref. [27], albeit now we work
in a different region of parameters. We use the symmetric lattice L4 and the elongated lattice L3 × Lx
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3.2 Background: magnetic field and boundary wall

with Lx > L. Both lattices correspond to a zero-temperature theory. We use L = 32 and Lx = 32, 48
with periodic boundary conditions imposed at each direction.
In this article we simulated the model (11) at the fixed parameters βlatt = 4 and λ = 10. We gener-
ated field configurations using a Hybrid Monte Carlo algorithm [32, 33] and performed simulations on
Nvidia GPU cards. To achieve acceptable statistics, we used about 106 . . . 107 trajectories per each value
of the background magnetic field. To accelerate calculations and reduce write operations, we accumu-
lated mean values per every 100 trajectories only, as even in this case, our simulations generated about
1.5 TB of data. We also used binning for correct error estimations for our observables.

3.2 Background: magnetic field and boundary wall

We insert the reflective Dirichlet boundary for the scalar field at the middle of the lattice at x = Lx/2:

φx

∣∣∣∣
x2=Lx/2

= 0 . (12)

The static uniform magnetic background field is introduced along the z ≡ x3 axis:

θBx,12 =
2πk

L2
, (13)

where other components of the field-strength tensor are taken to be zero. We use the following parame-
terization of the background gauge field [34]:

θBx,2 =
2πk

LxLy
x, θBx,1|x=Lx−1 = −2πk

Ly
y , (14)

with θBx,3 = θBx,4 = 0 and k = 0, 1, . . . , LxLy/2.
The integer number k in Eq. (14) determines the strength (13) of the magnetic field. The quantization
of the electromagnetic gauge field (14) is an essential infrared property needed to satisfy the periodic
boundary conditions imposed on the gauge field:

eiθ
B
x+L,µ = eiθ

B
x,µ . (15)

On the contrary, the bound on k from above is an ultraviolet feature related to the presence of the short-
est physical length a as the value k corresponds to the number of elementary fluxes introduced on the
lattice in the xy plane. The maximal value of k in Eq. (14) corresponds to the lattice half-filled with
Abrikosov vortices (so that the physical vortex density is given by the ultraviolet lattice cutoff ρvort ∼
a−2). We will work at weak magnetic fields θB, far from the artificially large values of the integer num-
ber k. The lattice magnetic field (13) is related to the continuum field B via the relation θBx,12 = eBa2.
All dimensionful quantities in the rest of the paper are presented in lattice units, with the lattice spacing
a set to unity.

3.3 Observables: vortices and currents

The lattice density of the Abrikosov vortices is given by the integer number [35]

ρx,µν =
1

2π
(lx,µ + lx+µ̂,ν − lx+ν̂,µ − lx,ν) , (16)

defined at every plaquette P = Px,µν of the lattice. The vortex density (16) is the lattice curl of the
gauge-invariant link variable

lx,µ = arg
[
φ∗xe

i(θxµ+θBxµ)φx+µ̂

]
. (17)

The variable ρP is equal to zero, ρP = 0, if no vortex pierces plaquette P , and it gives ρP = +1 (ρP =
−1) if a vortex (an antivortex) pierces the plaquette P .
The electric current is given by the variation of the action (11) with respect to the gauge field θxµ:

jxµ = −2
〈

Im
[
φ∗xe

i(θxµ+θBxµ)φx+µ̂

]〉
. (18)
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4 Numerical results

This section reports the results of the first-principle numerical simulations on the boundary current in
both the symmetric and broken phases of the Abelian Higgs model defined in Section 3 and compares
them with our theoretical expectations described earlier in Section 2.3.

4.1 Phase transition

First, we examine the symmetric phase far from the conformal regime. To eliminate the presence of Abelian
monopoles and make the gauge field behave similarly to the continuum theory (9), we set the large gauge
coupling to a fixed value of β = 4. In addition, we choose a small value for the quartic constant, namely
λ = 0.01, which guarantees the absence of a second-order phase transition at any value of the two-point
coupling κ. We work at the lattices 324 and 323 × 48. In the middle of the lattice, at y = 16, we put the
Dirichlet boundary (12) to simulate a reflective wall.

λ=0.01

β=4

0.1200 0.1205 0.1210 0.1215 0.1220 0.1225 0.1230
0.0

0.1

0.2

0.3

0.4

0.5

κ

〈|
ϕ
2 〉

Figure 2: The (unrenormalized) quadratic fluctuations of the scalar field as the function of the lattice hopping parameter κ
in the vicinity of the first-order phase transition at fixed quartic coupling λ = 0.01 and the gauge coupling β = 4 at 324

lattice at a vanishing magnetic field, B = 0. The discontinuity in the quadratic fluctuations marks the first-order phase
transition.

The behavior of the quadratic fluctuations of the scalar field 〈|φ|2〉 as the function of the hopping cou-
pling κ, Fig. 2, demonstrates the existence of a first-order phase transition at κc ' 0.121 with the sym-
metric (broken) phase at smaller κ < κc (larger κ > κv) values of the coupling, separated by a disconti-
nuity in 〈|φ|2〉.
Therefore in the symmetric and broken phases, we choose the following set of lattice parameters, respec-
tively:

β = 4, λ = 0.01, κ = 0.12 [symmetric] , (19)

β = 4, λ = 0.01, κ = 0.2 [broken] . (20)

The presence of the background magnetic field can also influence the position of the phase transition
point by restoring the symmetric (normal) phase from the broken (superconducting) phase. At the cho-
sen point of parameters (20), this transition happens at a relatively large value of the magnetic field,

eBc ' 0.87 , (21)

which is seen as a discontinuity in the expectation value 〈|φ|2〉, Fig. 3. Therefore, we consider the effect
of the current generation with the fields lower than the critical value, B < Bc. On the contrary, the
model expectedly remains in the symmetric phase at all considered values of the background magnetic
field at our set of parameters (19). Below, we study these phases in more detail.
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4.2 Symmetric phase

323×48

Broken phase Symmetric phase

λ=0.01

β=4

κ=0.2

0.00 0.05 0.10 0.15
0

1

2

3

4

5

eB

〈|
ϕ
2 〉

Figure 3: The quadratic fluctuations of the scalar field as the function of the magnetic field strength eB at fixed cou-
plings (20) corresponding to the broken phase at 323 × 48 lattice. The thin red vertical line approximately marks the
position of the critical magnetic field, which corresponds to the first-order phase transition from the broken phase to the
symmetric phase.

4.2 Symmetric phase

First, we consider the symmetric phase represented by the set of parameters (19). In Fig. 4, we show the
expectation value of the scalar field fluctuations 〈|φ|2〉 at a zero magnetic field. As expected, the fluctu-
ations vanish at the boundary and recover quickly to the bulk value in a few lattice spacings from the
boundary wall. This picture is practically independent of the strength of the background magnetic field.

Figure 4: Symmetric phase: The mean value of the scalar field. The light magenta line marks the position of the boundary.
Simulations are performed at the parameter set (19).

Figure 5 shows the expectation value of the electric current (18), revealing the presence of the electric
current perpendicular to the external magnetic field. We calculated by averaging the local current over a
moderate number of configurations to highlight the magnitude of quantum fluctuations. When the mag-
netic field is zero, the current appears as a small random vector (top panel in Fig. 5), with a vanishing
expectation value if averaged over a sufficiently large number of configurations. However, as a nonzero
magnetic field is applied tangentially to the boundary, the presence of the boundary electric currents be-
comes evident. The currents flow opposite directions at opposite sides of the boundary (two lower panels
in Fig. 5). Increasing the strength of the magnetic field reduces the relative randomness of the generated
boundary current while amplifying its intensity.
In Fig. 6, we show the local density of the boundary current jy as the function of the distance from the
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4.2 Symmetric phase

Figure 5: Symmetric phase (19): The (normalized) electric current in the xy plane in the vicinity of the wall (positioned at
x = 16 and directed along the y axis) at three values of increasing magnetic field. The current is calculated with a mod-
erate number of lattice field configurations which allow us to highlight the magnitude of its fluctuations. The color of the
arrows corresponds to the sign of the y-component of the current.

wall x⊥. We consider only positive values of x⊥ since the current is perfectly anti-symmetric with re-
spect to the inversion x⊥ → −x⊥. It turns out that the dependence of the boundary current on the dis-
tance from the wall x⊥ can be excellently (with χ2/d.o.f. . 1) described by the following fitting func-
tion:

jfit
y (x⊥) =

2MJtot

π cosh(Mx⊥)
signx⊥ , (22)

with two fitting parameters: the mass parameter M and the total current Jtot.
The mass parameter M controls the thickness of the current in the normal direction, λ⊥ = M−1, an es-
sential feature of the current profile in the broken phase. For example, an attempt to describe the data
with a conformal-like fit jfit

y ∼ 1/|x⊥| with either infrared or ultraviolet cutoffs (or even with both) gives
us unreliable results with poor qualities of the fits. The last fact is a natural consequence of the absence
of conformal symmetry in a deep symmetric phase (19) which calls us to introduce the mass parameter
M , which breaks the conformal symmetry. The fitting parameter Jtot corresponds to the total current,
obtained by integration of the current (22) along the whole transverse direction (6). The total current is
a finite quantity, both in infrared and ultraviolet limits.
The localization of the electric current in the vicinity of the boundary is determined by the value of the
mass of the fit (22), which is shown in Fig. 7(a) as the function of the magnetic field strength eB. The
localization mass M increases with the background magnetic field, which is not an unusual effect since
masses of elementary electrically charged scalar excitations should be rising, in a relativistic free field
theory, as M(eB) =

√
m2 + |eB|. The last property suggests us the form of the fit of the numerical

data:

Mfit(eB) =
√
M2

0 + g|eB| , (23)
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eB = 0.15
0.1
1
0.11

0.07

0.05

Figure 6: Symmetric phase (19): The local electric current jy at the function of the distance x⊥ from the boundary at
various values of the magnetic field eB, Eq. (13). The dashed lines correspond to the best fits by function (22). The inset
shows a zoom-in on the region close to the wall.

where the factor g takes into account the fact that the particles are interacting, and the increase of mag-
netic field drives the system deeper into the symmetric phase. The best fit, shown in Fig. 7(a) by the
dashed line, gives us the parameters M0 = 0.53(1) and g = 2.2(1). Thus, the stronger the magnetic
field, the thinner the current density distribution at the wall.

λ=0.01

β=4
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M J to
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β=4
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      0.0

      0.5

      1.0

      1.5
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(a) (b)

Figure 7: Symmetric phase (19): (a) The screening mass factor M of the current density near the boundary (22) vs. the
magnetic field strength. The dashed line represents the best fit (23). (b) The total electric current generated at the bound-
ary vs. the external magnetic field. The line represents the best fit by the linear function (24).

In Fig. 7(b), we show the total boundary current as the function of the magnetic field. In a qualitative
agreement with the general linear-response arguments (1), we find that the total current, similarly to the
local current density, is a linear function of the background magnetic field:

Jfit
tot = γ eB . (24)

Function (24) matches our numerical data very well (χ2/d.o.f. ∼ 1.), as it seen in Fig. 7(b).
The best fit gives us for the proportionality coefficient γ = 0.0074(1) which matches well the order of
the theoretical coefficient (8) as, theoretically, we expect to obtain γth = 1/(24π2) ≈ 0.0042. Formally,
if it is the conformal anomaly that was responsible for the generation of the boundary current, then the
relation between the infrared and ultraviolet cutoffs in Eq. (8) would be quite reasonable as well: λIR ≈
6λUV.
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4.3 Broken phase

Figure 8: Symmetric phase (19): The (normalized) local vortex density as the function of the distance to the wall at the
323 × 48 lattice with an extended spatial direction Lx = 48.

The conformal anomaly cannot contribute much to the boundary current in a deep symmetric phase
due to a large mass gap. In order to check the alternative, vortex-based semi-classical mechanism dis-
cussed in the introduction, in Fig. 8, we plot the local vortex density (16) as the function of the distance
to the boundary. We normalize the local vortex density to the mean vortex density on the whole lattice.
The numerical data is consistent with the vortex mechanism of the current generation represented in
Fig. 1(b): the density of the vortices is elevated close to the boundary, implying that the circular electric
currents that circumvent the vortex cores are generating the boundary current. Figure 8 also demon-
strates the existence of a repulsion force between the vortices as the boundary layer of the vortices repels
the vortices from the bulk, causing a noticeable drop in the vortex density deeper in bulk.
In other words, vortices are attracted to the wall causing a small, of the order of one percent, excess of
the vortex density at the wall. In the symmetric phase, the quantum vortices repel each other similarly
to the type-II superconductor. Therefore, some of the vortices are concentrated precisely at the position
of the wall, making the vortex density elevated exactly at the boundary. Those boundary-pinned vertices
are repelling the other vortices that emerge from the bulk, thus causing the drop in the vortex density
near, but not strictly at, the position of the wall. This mechanism, highlighted qualitatively in Fig. 1(b),
is responsible for the physical picture observed in Fig. 8.
We finish the study of the current in the symmetric phase by addressing the question whether the near-
boundary behaviour of the current, determined numerically by the fitting function (22), related to the
conformal behaviour, predicted analytically by Eqs. (1) and (2). The naive zero mass limit, M → 0, does
not recover the conformal 1/x⊥ behavior from the functional form 1/ cosh(Mx⊥). Our attempts to fit
the data by the function (22) with sinh(Mx⊥) instead of cosh(Mx⊥) lead to inconsistent results with a
poor quality of fit. In detail, we found d.o.f ' 10 . . . 20 for the sinh-like behaviour in comparison with
good d.o.f ' 0.5 . . . 1.5 for the cosh-fit function (22). These results imply that the point of the coupling
space considered in this article (19) lies deeply in the symmetric phase which does not allow for this sim-
ple continuation to the conformal point (1).

4.3 Broken phase

Now we repeat all our calculations in the broken phase given by the initial set of parameters (20) at a
larger lattice volume 323× 48, where the longer lattice size extends one of the directions of the boundary,
Lx = 48. This theory corresponds to zero temperature.
First, we visualize in Fig. 9 the electric current generated near the wall at increasing values of the back-
ground magnetic field. While the produced electric current has the same direction as in the symmetric
phase, Fig. 5, one immediately notices the difference between the broken phase and the symmetric phase
in the form of the current density profiles. In the symmetric phase, the current density reaches its maxi-
mum at the wall, but in the broken phase, the maximum takes place at a certain distance from the wall.

12



4.3 Broken phase

Figure 9: Broken phase (20): The (normalized) electric currents generated close to the wall as in Fig. 5 at various values
of the background magnetic field B. Notice that the lowest panel corresponds to the symmetry restored phase at B > Bc

with the critical magnetic field Bc given in Eq. (21).

Figure 9 also shows that the current maximum occurs at longer distances from the boundary as the mag-
netic strength increases. However, at the highest magnetic field shown in the lowest panel of the same
figure, the electric current changes its profile again by shifting its maximum to the boundary in close
similarity with the symmetric phase. This sudden change in the behavior is not unexpected since the
system experiences the transition to the symmetric phase as the magnetic strength achieves the critical
value (21), and at B > Bc, the gauge symmetry is restored. Therefore, the lowest panel of Fig. 9 mimics
the results in the symmetric phase qualitatively, Fig. 5. Notice that these figures show the normalized
electric current, thus highlighting the shape of the current rather than its magnitude.

Figure 10: Broken phase (20): The electric density current jy at the function of the distance x⊥ from the boundary at
various values of the magnetic field eB. The dashed lines correspond to the best fits by function (25).

The electric density current jy as a function of the distance from the boundary is shown in Fig. 10 at
various magnetic field values below the critical value (21). This figure shows that the current density
profile, which takes its maximum at a certain distance from the wall, can be described very well by the
function

jfit
y (x⊥) =

M1+ν |x|νJtot

Γ(1 + ν) exp(Mx⊥)
signx⊥ , (25)
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4.3 Broken phase

where the total current Jtot, the effective mass M and the power ν are the fitting parameters. The pref-
actors of Eq. (25) are chosen in such a way that the quantity Jtot corresponds to the total current ac-
cording to the standard normalization (6).
Figure 10 shows that the generated electric current increases in magnitude and takes its maximum fur-
ther from the wall as the magnetic field increases. This picture works while the strength of the mag-
netic field still resides below the critical value (21). The total current, shown in Fig. 11(a), confirms this
observation by showing a linear growth and the saturation of the current below the critical magnetic
field (21), featuring, at the same time, the sudden drop of the current as the magnetic field exceeds the
critical value above which the symmetry gets restored.
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Figure 11: Broken phase (20): (a) The total current density Jtot, (b) effective mass parameter M and (c) the exponent ν
as functions of the magnetic field eB. The inset in the upper plot shows the zoom-in on the symmetric phase above the
critical magnetic field (21).

Remarkably, Fig. 11 shows that in the symmetry-restored phase, the electric current is three (!) orders
of magnitude smaller than in the symmetry-broken phase. In other words, the semi-classical mechanism
of the current generation based on the semi-classical vortex solutions drastically exceeds the mechanism
based on the quantum vortices, which emerge in the symmetric phase as unstable excitations. Both these
mechanisms, illustrated qualitatively in Fig. 1(b), differ from the anomalous current generation catalyzed
by the conformal anomaly [28].
Notice that the magnitude of the electric current produced in the symmetric phase, which is, in turn,
generated by the strong magnetic field – corresponding to high values of the magnetic field in Fig. 11(a)
– and the magnitude of the electric current in the genuine symmetric phase show in Fig. 7(b), are the
same. This fact highlights some universality of our results, distinguishing clearly the mechanism of the
current generation in the symmetric phase from the one in the broken phase.
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Moreover, the total current that emerges in the conformal region – according to the earlier results of
Ref. [27] – appears to be of the same order as the current generated in the symmetric phase. Therefore,
while the mechanisms of the current generation in the conformal region and the symmetry restored phase
are different – given by Fig. 1(a) and Fig. 1(b), respectively – they produce the current of the same mag-
nitude which is, in turn, much smaller than the Meissner current generated in the symmetry broken phase.
The effective mass obtained from the current distribution with the help of the fit (25) raises with the in-
crease of magnetic field in agreement with a general tendency (23) of the mass of the charged scalar par-
ticle in the magnetic field background. The mass, shown in Fig. 11(b), experiences a sudden drop at the
critical magnetic field (21) due to the disappearance of the condensate and then again raises with eB fol-
lowing the same qualitative behaviour (23).
The power factor ν of the current density profile (25) increases with the increase of magnetic field as
shown in Fig. 11(c), raising from a modest ν ' 3 to a very high value ν ' 15 close to the transition
point (21).

0.049
0.025 
0

0.082

(a) (b)

Figure 12: Broken phase (20): (a) the scalar field fluctuations
〈
|φ|2

〉
and (b) the normalized vortex density at a few values

of the background magnetic field.

Finally, in Figs. 12(a) and (b), we show the behavior of the scalar field and the normalized vortex den-
sity, respectively, as functions of the normal distance to the wall. The increasing magnetic field widens
the hollow in the condensate near the boundary and creates a double layer of vortices near the wall. This
nontrivial structure appears due to the specific geometry of our problem and the mutual repulsion of the
vortices interacting through the wall. In addition, the vortices create a strong electric Meissner current
due to the mechanism depicted in Fig. 1(b).

5 Summary and Conclusions

Our paper is concentrated on first-principle numerical results for electric current induced by a background
magnetic field close to a boundary in the vacuum of the Abelian Higgs model. This model represents a
scalar counterpart of quantum electrodynamics with charged scalar fields instead of electrically charged
spinors (therefore, it is also called “scalar QED”). Our investigation is carried out at zero temperature.
In the conformal limit of the zero-temperature model, the boundary current arises from quantum fluctu-
ations [19, 28, 36] due to a simple mechanism [28]. Initially, vacuum fluctuations generate particle-anti-
particle pairs which move along closed circular paths in a magnetic field background and then annihilate.
However, their mutual orbit remains open when a virtual particle-anti-particle pair is formed near a re-
flective boundary with the magnetic field oriented tangentially to the boundary. Consequently, the vir-
tual particles follow skipping orbits without fast annihilation, thus establishing the generation of electric
current along the boundary. The masslessness of particles facilitates the creation of particle pairs from
the vacuum, amplifying the boundary current and enforcing its long-range nature. The strength of the
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current is proportional to the beta function responsible for the renormalization of the electric charge.
Outside the conformal limit, the scalar electrodynamics can reside either in the symmetry-restored phase
featuring a massive scalar field or in the regime with spontaneous symmetry breaking in which the charged
scalar field is condensed. We found that in the symmetry-unbroken regime, the current-generation effect
gets suppressed in its amplitude far from the boundary because of the short-range nature of fluctuations
of the massive virtual particles in agreement with the analytical expectations [24]. However, the total
current that emerges in the conformal region appears to be of the same order as the current generated in
the symmetric phase.
Our numerical calculations show that the quantum boundary current gets drastically enhanced in the
symmetry-broken phase due to the condensation of charged particles. We consider the reflective bound-
ary condition of the Dirichlet type, which enforces the vanishing of the scalar field at the boundary and
is qualitatively different from the superconducting (Neumann-type) boundary conditions.
We consider a superconducting regime with a transparent semi-classical vortex-based mechanism to gen-
erate the non-conformal regime’s boundary current. We find that the vortices are attracted to the bound-
ary, and their circular currents at up coherently, thus generating the global magnetization current along
the boundary of the material. The mechanism is similar to the standard Meissner effect in which the
vortices are forced to flow around the surface, creating a circulating current that shields the supercon-
ductor from the external magnetic field [26]. As the superconducting condensate is forced to vanish at
the boundary, the vortices near the boundary are more energetically favorable than in the bulk of the
material.
The boundary current in the conformal regime possesses a much smaller amplitude than the current in
the symmetry-broken phase since the former effect is a purely quantum phenomenon while the latter has
a semi-classical nature. Despite the fact that the origin and magnitude of these effects differ, they lead
to the same phenomenon, the dissipationless magnetization current along the boundary.
Finally, we would like to discuss experimentally observable consequences of the induced magnetization
current due to the conformal anomaly in Dirac semimetals. In one-component massless QED, the mag-
netization current (1) leads to the enhanced edge conductivity which can be estimated as

δσxy =
2β

e~
ln
LIR

LUV

, (26)

where LIR and LUV are infrared and ultraviolet distance scales, respectively. Outside the conformal limit,
which is typical for most of the Dirac semimetals, the former length scale is inversely proportional to the
mass which breaks the scale invariance. The ultraviolet length scale in Eq. (26) can be taken to be the
inter-atomic distance LUV ' a, which can be taken a few Angstroms. Taking, for the sake of estimation,
the mass scale to be equal about 10 K (in temperature units) and a of the order of a few Angstrom, one
can estimate the logarithmic factor in Eq. (26) as ln(LIR/LUV) ' 4π, which gives us

δσxy =
4c

3εvF
σHall , (27)

where σHall = e2/h is the Hall conductivity. Due to the nature of logarithm function, a order-of-magnitude
change in LIR does not affect the prefactor of Eq. (27) significantly. Notice that the QED beta function
is four times bigger than the one in the scalar QED (3).
In Eq. (27), which takes peculiarities of the running of electric charge in Dirac semimetals [37], ε ' 10 is
a dielectric constant and vF ' c/300 is the Fermi velocity. The slowness of electrons enhances the beta
function and makes significant contribution to the magnetization current resulting in the large value of
conductivity associated with the magnetization current:

δσxy ' 40σHall . (28)

Notice that this estimation (28) does not refer to the Hall effect but to the magnetization current, which
is confined to the boundaries to material and, therefore, does not generate any net transverse current.
The persistent boundary current creates accompanying magnetic field which can be probed, for example,
using scanning probe based on a nitrogen-vacancy (NV) defect in a diamond as an atomic-size quantum
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magnetometer [38]. The NV-based measurement is very sensitive to the magnetic field through the Zee-
man effect, which allowed, for example, to probe the hydrodynamic transport of electrons in bulk crys-
tals WTe2 [39] at low temperatures. Another, perhaps, less complicated option is to measure the en-
hanced local conductivity at the edge of the crystal using microwave impedance microscopy which has
been employed to observe the quantum spin Hall edges in monolayer WTe2 in Ref. [40].
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