Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes - Archive ouverte HAL
Article Dans Une Revue Nature Communications Année : 2022

Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes

Résumé

The study of chemo-mechanical stress taking place in the electrodes of a battery during cycling is of paramount importance to extend the lifetime of the device. This aspect is particularly relevant for all-solid-state batteries where the stress can be transmitted across the device due to the stiff nature of the solid electrolyte. However, stress monitoring generally relies on sensors located outside of the battery, therefore providing information only at device level and failing to detect local changes. Here, we report a method to investigate the chemo-mechanical stress occurring at both positive and negative electrodes and at the electrode/electrolyte interface during battery operation. To such effect, optical fiber Bragg grating sensors were embedded inside coin and Swagelok cells containing either liquid or solid-state electrolyte. The optical signal was monitored during battery cycling, further translated into stress and correlated with the voltage profile. This work proposes an operando technique for stress monitoring with potential use in cell diagnosis and battery design.
Fichier principal
Vignette du fichier
s41467-022-28792-w.pdf (5.93 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04104534 , version 1 (24-05-2023)

Identifiants

Citer

Laura Albero Blanquer, Florencia Marchini, Jan Roman Seitz, Nour Daher, Fanny Bétermier, et al.. Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes. Nature Communications, 2022, 13 (1), pp.1153. ⟨10.1038/s41467-022-28792-w⟩. ⟨hal-04104534⟩
60 Consultations
70 Téléchargements

Altmetric

Partager

More