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SUMMARY
In this paper a framework is presented to enhance numerical model of cerebral venous blood flow
using flow-MRI data assimilation. The goal of the technique developed here is to use a parametric
PDE model to catch the physical behavior and use observations to correct the model and obtain more
realistic simulations.
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1 INTRODUCTION

In the context of a project HANUMAN supported by the French National Agency of Research (ANR-
18-CE45-0014), we want to study interaction between blood and cerebrospinal fluid in the brain. In
this work, we focus on venous flows, that are less studied and present features different from the
arterial ones. In particular, venous flows are recently said to be related to high intra-cranial pressure
[1], which plays an important role in the proper functioning of the brain.

As the venous flows are very variable from one individual to the other, we need to work on the patient
specific geometry of the network. On the one hand, in Amiens Hospital, we acquire MRI images of
the main venous vessels consisting in the superior sagital sinus, the straight sinus and the transverse
sinuses (right and left) that end up in the jugulars (see Fig. 1). Moreover, we are able to obtain
measures of the flux in different plane sections of the network during the same acquisition process,
by means of a contrast-phase sequence that links the intensity of the pixel to the velocity of the flow
[2].

Figure 1: Cerebral Venous Network; 1) internal
jugular veins, 2) inferior sagittal sinus, 3) straight si-
nus, 4) confluence of sinuses, 5) lateral sinus (trans-
verse portion), 6) lateral sinus (sigmoid portion), 7)
superior sagittal sinus, 8) internal cerebral vein, 9)
basilar vein, 10) superior cerebral veins, 11) supe-
rior anastomotic veins.

On the other hand, we have developed open source computational fluid dynamics finite element codes
to solve bloodflows in the cerebral networks [3]. The data obtained allow us first to compute the
bloodflow in the patient geometry, then to calibrate our inflow parameters to correspond to the mea-
sures acquired and finally to validate our numerical results.

As the model used which is based on the Navier-Stokes equations can suffer from simplifications
(e.g. rigid tubes, or linearization of the equations), we want then to fully exploit the ”physiological”



measures we have on the patient’s network to correct our in silico results by using data assimilation
and the PBDW framework [4, 5, 6].

In this paper, we present a complete versatile pipeline allowing to compute the venous bloodflow in
the cerebral veins, then reducing the computations with a Proper Orthogonal Decomposition (POD)
and finally using the PBDW framework. We present in the next section the different bricks of the
pipeline, the preliminary results obtained and the perspectives that are opened.

2 METHODOLOGY

2.1 Data acquisition and pre-processing

In order to numerically solve our computational fluid dynamic (CFD) model by a finite element
method (FEM), a first step consists in extracting the anatomical geometry of the cerebral vascular
network from Magnetic Resonance Imaging (MRI) acquisitions. Image segmentation tools have been
developed specifically to take into account the morphology of vessels in MRI images [7]. Segmenta-
tions were performed on different MRI sequences. The spatial discretization for the resolution of the
PDEs of the fluid model is constructed from the generation of a mesh from the surface of the vessel
wall extracted from the 3D segmentations.

Figure 2: Example of the pipeline : from MRI acquisitions to computed bloodflow.

2.2 Fluid flows model

At the macroscopic level corresponding to the size of the concerned vessels, the blood can then be seen
as an incompressible Newtonian fluid. The model considered is then the Navier-Stokes equations.

We present here only the simpler model of the parametric steady Stokes equations which describes a
fluid flow using u the velocity field and p the pressure field. We use a parameter µ ∈ P to encode
a range of viscosity, inflow boundary conditions, outflow resistances respectively denoted by ηµ, ρµ,
gµ and hµ. In this way, the problem statement is as follows: for µ ∈ P , find

(
u(µ), p(µ)

)
such that;

−νµ∆u(µ) +∇p(µ) = 0 in Ω
∇ · u(µ) = 0 on Ω

u(µ) = gµ on Γinput

u(µ) = 0 on Γwall

νnµ
∂u(µ)
∂n + p(µ)n = hµ on Γoutput

(1)

with νµ =
ηµ
ρµ

the kinematic viscosity of the fluid, gµ a given inflow function and a partition of the
boundary Γinput ∪ Γwall ∪ Γoutput = ∂Ω.



We introduce the following spaces: X = {v ∈ [H1(Ω)]3, v|Γinput∪Γwall
= 0}, with the inner product

(., .)X and norm ‖.‖X =
√

(., .)X , for the velocity and Q = L2(Ω), with standard inner product and
norm, for the pressure. The mixed problem is then solved using Taylor-Hood (P2−P1) finite element
to ensure the inf-sup condition and then well-posedness. Some specific solvers for the complete
Navier-Stokes system are also developed, using parallel computing to increase computations speed.
All codes in Freefem++ [8] are open-source and freely available on a dedicated web page.

In what follows, we focus on the velocity for the sake of simplicity, but the pressure field and the link
between both velocity and pressure are also studied. The information embedded by the parametric
model can be described using the manifoldM spanned by the parameter µ, denoted as follows:

M =
{
u(µ) ∈ X , µ ∈ P

}
. (2)

If the model is well suited, we expect the real velocity field utrue to be close to the manifoldM. But
In fact, even with parameter µ as close as possible to the true parameter, denoted µtrue, i.e.:

µtrue = arg inf
µ∈P
‖u(µ)− utrue‖X , (3)

the model will never catch perfectly the reality. One can express the model error as follows:

utrue = u(µtrue) + η, (4)

with the difference η called the unparametric uncertainty, which depends on the chosen model. Some
ideas have been proposed in recent works [4, 5, 6] to provide estimation of η using measures with the
Parametric Background Data-Weak method (PBDW).

2.3 Model reduction and data assimilation

If the parametric model has a simple dependence on the parameter µ, one can used the Reduced
Basis Method (RBM) widely documented in [9, 10], even in the case on non-affine dependence using
Empirical Interpolation Method, also described in [9, 10]. In this way, one can have an exhaustive
description of the manifoldM spanned by the parametric model with only a few resolutions. This
description is exhaustive in the sense that the built reduced space ZN can approach any elements of
the manifold with a user-prescribed tolerance:

∀µ ∈ P, ‖u(µ)−ΠZNu‖X ≤ εN . (5)

This strong a posteriori error control, fully monitored by the user, is the best advantage of this ap-
proach which can be very expensive in the case where the parameter space P is high dimensional.

An alternative option is to use Proper Orthogonal Decomposition (POD) [9, 10] to compress data con-
tained in K snapshots {u(µk)}Kk=1 which are generated using the model and some random µk. This
technique has two advantages: 1) it does not require any assumption on the parameter dependence
and 2) it can compress data regardless of the model used to generate them. Unlike the RBM, the user
can not control the a posteriori error since the snapshots used may not explore the whole space. Here
one can only control level of compression, in a sense that we build a reduced space ZN such that:

‖u(µk)−ΠZNu‖X ≤ εN , 1 ≤ k ≤ K. (6)

As an example, with K = 100 snapshots generated by the parametric model shown above we can
compress 99.9999% of the information with only N = 3 modes.

2.4 Flow-MRI data

In Amiens hospital, we consider Phase-Contrast Velocimetry (PC) flow acquisition sequences in sev-
eral adapted slices, at the level of the sinuses (straight and sagittal), lateral sinuses and jugulars in
order to calibrate our numerical model using data assimilation.



These measures can be seen mathematically as follows:

lm(v) =

∫
ωm

v · nm dσ, (7)

where ωm is a neighbourhood of a pixel on a slice, n its normal and v the velocity field. This gives us
M measurements to manage: one for each pixel in each slice. These measures provide reliable data
on the real velocity field utrue and motivate their use to improve the model. One way suggested in
the PBDW framework to deal with these linear measures, is to seek the model error η, in (4), in the
space UM spanned by the Riesz representer {q1, . . . ,qM} of measure functions:

UM = span(q1, . . . ,qM ) ⊂ X , s.t. (qm,v)X = lm(v), ∀v ∈ X . (8)

It has been shown in [4] that UM is a reasonable candidate to find an approximation of η. One
issue here is that measure functions lm do not belong to the correct space since they act on a slice
with a lower dimension (2D) than the full model (3D). We then propose alternatives formulations to
approximate lm with volumetric measures in order to deploy the full PBDW framework.

3 PERSPECTIVES: COUPLING REAL DATA AND MODEL

Preliminary results were obtained numerically on an arbitrary number of observations using assimi-
lated synthetic data. Real data from MRI slices are incorporated in the current framework to fit the
reality and compared to ideal case. New MRI sequences recently developed in Amiens Hospital give
access to real 3D+t data of the velocity on plane sections of the network [2] and lead us to considerate
the extension of the framework to the unstationary case.
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