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INTRODUCTION

In the context of a project HANUMAN supported by the French National Agency of Research (ANR-18-CE45-0014), we want to study interaction between blood and cerebrospinal fluid in the brain. In this work, we focus on venous flows, that are less studied and present features different from the arterial ones. In particular, venous flows are recently said to be related to high intra-cranial pressure [START_REF] Lokossou | Extracranial versus intracranial hydro-hemodynamics during aging: a pc-mri pilot cross-sectional study[END_REF], which plays an important role in the proper functioning of the brain.

As the venous flows are very variable from one individual to the other, we need to work on the patient specific geometry of the network. On the one hand, in Amiens Hospital, we acquire MRI images of the main venous vessels consisting in the superior sagital sinus, the straight sinus and the transverse sinuses (right and left) that end up in the jugulars (see Fig. 1). Moreover, we are able to obtain measures of the flux in different plane sections of the network during the same acquisition process, by means of a contrast-phase sequence that links the intensity of the pixel to the velocity of the flow [START_REF] Fall | A semi-automatic software for processing real-time phasecontrast mri data[END_REF]. On the other hand, we have developed open source computational fluid dynamics finite element codes to solve bloodflows in the cerebral networks [START_REF] Miraucourt | Blood flow in the cerebral venous system: modeling and simulation[END_REF]. The data obtained allow us first to compute the bloodflow in the patient geometry, then to calibrate our inflow parameters to correspond to the measures acquired and finally to validate our numerical results.

As the model used which is based on the Navier-Stokes equations can suffer from simplifications (e.g. rigid tubes, or linearization of the equations), we want then to fully exploit the "physiological" measures we have on the patient's network to correct our in silico results by using data assimilation and the PBDW framework [START_REF] Maday | A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics[END_REF][START_REF] Taddei | A Localization Strategy for Data Assimilation; Application to State Estimation and Parameter Estimation[END_REF][START_REF] Gong | PBDW method for state estimation: error analysis for noisy data and nonlinear formulation[END_REF].

In this paper, we present a complete versatile pipeline allowing to compute the venous bloodflow in the cerebral veins, then reducing the computations with a Proper Orthogonal Decomposition (POD) and finally using the PBDW framework. We present in the next section the different bricks of the pipeline, the preliminary results obtained and the perspectives that are opened.

METHODOLOGY

Data acquisition and pre-processing

In order to numerically solve our computational fluid dynamic (CFD) model by a finite element method (FEM), a first step consists in extracting the anatomical geometry of the cerebral vascular network from Magnetic Resonance Imaging (MRI) acquisitions. Image segmentation tools have been developed specifically to take into account the morphology of vessels in MRI images [START_REF] Passat | From Real MRA to Virtual MRA: Towards an Open-Source Framework[END_REF]. Segmentations were performed on different MRI sequences. The spatial discretization for the resolution of the PDEs of the fluid model is constructed from the generation of a mesh from the surface of the vessel wall extracted from the 3D segmentations. 

Fluid flows model

At the macroscopic level corresponding to the size of the concerned vessels, the blood can then be seen as an incompressible Newtonian fluid. The model considered is then the Navier-Stokes equations.

We present here only the simpler model of the parametric steady Stokes equations which describes a fluid flow using u the velocity field and p the pressure field. We use a parameter µ ∈ P to encode a range of viscosity, inflow boundary conditions, outflow resistances respectively denoted by η µ , ρ µ , g µ and h µ . In this way, the problem statement is as follows: for µ ∈ P, find u(µ), p(µ) such that;

               -ν µ ∆u(µ) + ∇p(µ) = 0 in Ω ∇ • u(µ) = 0 on Ω u(µ) = g µ on Γ input u(µ) = 0 on Γ wall ν n µ ∂u(µ) ∂n + p(µ)n = h µ on Γ output (1) 
with ν µ = ηµ ρµ the kinematic viscosity of the fluid, g µ a given inflow function and a partition of the boundary

Γ input ∪ Γ wall ∪ Γ output = ∂Ω.
We introduce the following spaces: X = {v ∈ [H 1 (Ω)] 3 , v |Γ input ∪Γ wall = 0}, with the inner product (., .) X and norm . X = (., .) X , for the velocity and Q = L 2 (Ω), with standard inner product and norm, for the pressure. The mixed problem is then solved using Taylor-Hood (P 2 -P 1 ) finite element to ensure the inf-sup condition and then well-posedness. Some specific solvers for the complete Navier-Stokes system are also developed, using parallel computing to increase computations speed. All codes in Freefem++ [START_REF] Hecht | New development in freefem++[END_REF] are open-source and freely available on a dedicated web page.

In what follows, we focus on the velocity for the sake of simplicity, but the pressure field and the link between both velocity and pressure are also studied. The information embedded by the parametric model can be described using the manifold M spanned by the parameter µ, denoted as follows:

M = u(µ) ∈ X , µ ∈ P . (2) 
If the model is well suited, we expect the real velocity field u true to be close to the manifold M. But In fact, even with parameter µ as close as possible to the true parameter, denoted µ true , i.e.:

µ true = arg inf µ∈P u(µ) -u true X , (3) 
the model will never catch perfectly the reality. One can express the model error as follows:

u true = u(µ true ) + η, (4) 
with the difference η called the unparametric uncertainty, which depends on the chosen model. Some ideas have been proposed in recent works [START_REF] Maday | A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics[END_REF][START_REF] Taddei | A Localization Strategy for Data Assimilation; Application to State Estimation and Parameter Estimation[END_REF][START_REF] Gong | PBDW method for state estimation: error analysis for noisy data and nonlinear formulation[END_REF] to provide estimation of η using measures with the Parametric Background Data-Weak method (PBDW).

Model reduction and data assimilation

If the parametric model has a simple dependence on the parameter µ, one can used the Reduced Basis Method (RBM) widely documented in [START_REF] Quarteroni | Reduced Basis Methods for Partial Differential Equations[END_REF][START_REF] Hesthaven | Certified Reduced Basis Methods for Parametrized Partial Differential Equations[END_REF], even in the case on non-affine dependence using Empirical Interpolation Method, also described in [START_REF] Quarteroni | Reduced Basis Methods for Partial Differential Equations[END_REF][START_REF] Hesthaven | Certified Reduced Basis Methods for Parametrized Partial Differential Equations[END_REF]. In this way, one can have an exhaustive description of the manifold M spanned by the parametric model with only a few resolutions. This description is exhaustive in the sense that the built reduced space Z N can approach any elements of the manifold with a user-prescribed tolerance:

∀µ ∈ P, u(µ) -Π Z N u X ≤ ε N . (5) 
This strong a posteriori error control, fully monitored by the user, is the best advantage of this approach which can be very expensive in the case where the parameter space P is high dimensional.

An alternative option is to use Proper Orthogonal Decomposition (POD) [START_REF] Quarteroni | Reduced Basis Methods for Partial Differential Equations[END_REF][START_REF] Hesthaven | Certified Reduced Basis Methods for Parametrized Partial Differential Equations[END_REF] to compress data contained in K snapshots {u(µ k )} K k=1 which are generated using the model and some random µ k . This technique has two advantages: 1) it does not require any assumption on the parameter dependence and 2) it can compress data regardless of the model used to generate them. Unlike the RBM, the user can not control the a posteriori error since the snapshots used may not explore the whole space. Here one can only control level of compression, in a sense that we build a reduced space Z N such that:

u(µ k ) -Π Z N u X ≤ ε N , 1 ≤ k ≤ K. (6) 
As an example, with K = 100 snapshots generated by the parametric model shown above we can compress 99.9999% of the information with only N = 3 modes.

Flow-MRI data

In Amiens hospital, we consider Phase-Contrast Velocimetry (PC) flow acquisition sequences in several adapted slices, at the level of the sinuses (straight and sagittal), lateral sinuses and jugulars in order to calibrate our numerical model using data assimilation.

These measures can be seen mathematically as follows:

l m (v) = ωm v • n m dσ, (7) 
where ω m is a neighbourhood of a pixel on a slice, n its normal and v the velocity field. This gives us M measurements to manage: one for each pixel in each slice. These measures provide reliable data on the real velocity field u true and motivate their use to improve the model. One way suggested in the PBDW framework to deal with these linear measures, is to seek the model error η, in (4), in the space U M spanned by the Riesz representer {q 1 , . . . , q M } of measure functions:

U M = span(q 1 , . . . , q M ) ⊂ X , s.t. (q m , v) X = l m (v), ∀v ∈ X . (8) 
It has been shown in [START_REF] Maday | A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics[END_REF] that U M is a reasonable candidate to find an approximation of η. One issue here is that measure functions l m do not belong to the correct space since they act on a slice with a lower dimension (2D) than the full model (3D). We then propose alternatives formulations to approximate l m with volumetric measures in order to deploy the full PBDW framework.

PERSPECTIVES: COUPLING REAL DATA AND MODEL

Preliminary results were obtained numerically on an arbitrary number of observations using assimilated synthetic data. Real data from MRI slices are incorporated in the current framework to fit the reality and compared to ideal case. New MRI sequences recently developed in Amiens Hospital give access to real 3D+t data of the velocity on plane sections of the network [START_REF] Fall | A semi-automatic software for processing real-time phasecontrast mri data[END_REF] and lead us to considerate the extension of the framework to the unstationary case.
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 1 Figure 1: Cerebral Venous Network; 1) internal jugular veins, 2) inferior sagittal sinus, 3) straight sinus, 4) confluence of sinuses, 5) lateral sinus (transverse portion), 6) lateral sinus (sigmoid portion), 7) superior sagittal sinus, 8) internal cerebral vein, 9) basilar vein, 10) superior cerebral veins, 11) superior anastomotic veins.
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 2 Figure 2: Example of the pipeline : from MRI acquisitions to computed bloodflow.