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Abstract

Multi-level methods are widely used for the solution of large-scale problems, because of
their computational advantages and exploitation of the complementarity between the involved
sub-problems. After a re-interpretation of multi-level methods from a block-coordinate point
of view, we propose a multi-level algorithm for the solution of nonlinear optimization problems
and analyze its evaluation complexity. We apply it to the solution of partial differential
equations using physics-informed neural networks (PINNs) and show on a few test problems
that the approach results in better solutions and significant computational savings.

Keywords: nonlinear optimization, multi-level methods, physics-informed neural networks (PINNs),

deep learning.

1 Introduction

Many numerical optimization problems of interest today are large dimensional, and techniques to
solve them efficiently are thus an active field of research. A very powerful class of algorithms for
the solution of large problems is that of multi-level methods. Originally, the concept of a method
exploiting multiple levels, i.e., multiple resolutions of an underlying problem, was introduced for
the solution of large scale systems arising from the discretization of partial differential equations
(PDEs). In this context these methods are known as multigrid (MG) methods for the linear case or
full approximation schemes (FAS) for the nonlinear one [3, 38]. These schemes were later extended
to nonlinear optimization problems, in which context they are known as multi-level optimization
techniques [27, 11, 12, 13, 5]. The central idea of all these approaches is to use the structure of the
problem in order to significantly reduce the computational cost compared to standard approaches
applied to the full unstructured problem.

In this paper we introduce a new interpretation of multi-level methods as block coordinate
descent (BCD) methods: iterations at coarse levels (i.e., low resolution) can be interpreted as the
(possibly approximate) solution of a subproblem involving a set of variables smaller than that
required to describe the fine level (high resolution). We propose a framework that allows us to
encompass multi-level methods for several classes of problems as well as a unifying complexity
analysis based on a generic block coordinate descent, which is simple yet comprehensive.

To illustrate the effectiveness of the proposed approach, we apply our framework in the context
of deep learning. The idea of exploiting multiple scales in learning has been explored for different
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†Université de Toulouse, ANITI, CERFACS, IRIT, Toulouse, and BRLi, France. Email:
valentin.mercier.gratton@enseeiht.fr.
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kind of networks. For instance, [21, 16, 44, 40] propose multilevel methods for the training of
deep residual networks (ResNets), in which the multilevel hierarchy and the transfer operators
are constructed by exploiting a dynamical system’s interpretation. Multi-scale methods for con-
volutional neural networks and recurrent networks have also been proposed in [15, 39] and [7],
respectively. Our focus in this paper is on physics-informed neural networks (PINNs). These
networks have been introduced in [25] and have exhibited good performance in practice, soon
supported by theoretical results [26, 35]. See [4] for a comprehensive review on the topic.

Despite their success, the training of such networks may remain difficult, in particular for
highly nonlinear or multi-frequency problems [41]. In particular, choosing an efficient detailed
network architecture and an associated training procedure is far from obvious, especially if the
problem’s solution involves high frequency components ([45] has described under the name of F-
principle why it might be so, see also [31, 34, 42, 9]). While specific ”frequency aware” network
architectures, such as WWP [41] structures and Mscale networks [24, 22] have been proposed to
circumvent this latter difficulty, the mere size of the networks necessary to represent solutions of
PDEs with sufficient accuracy still make their computationally efficient training very challenging.
Our objective is to make this challenge more tractable.

Contributions. In this context, the specific contributions of this paper may be summarized as
follows.

1. We present a unifying framework for a large class of multi-level problems (Section 2).

2. We then introduce a suitable block-coordinate descent algorithm, and analyze its evaluation
complexity bound under standard assumptions (Section 3).

3. We next investigate how this approach can be applied to PINNs for the solution of Laplace
problems on complex geometries.

(a) In a first step, we show that a multi-level technique based on alternate training of
”coarse” and ”fine” networks may bring substantial computational benefits (Section 4).

(b) We then exploit frequency aware network architectures in this multi-level context, al-
lowing the efficient solution of more complex problems (Section 5).

Compared with standard (single-level) training, both approaches are shown to yield better
solutions at a much reduced computational cost.

Section 6 finally presents some conclusions and perspectives.

2 A block-coordinate perspective on Galerkin multilevel
optimization

Our purpose is to present a new (at least as far as we know) but yet simple perspective on multilevel
optimization using Galerkin approximations. Given some space F of continuous functions from
IRp to IRq and some objective function from F into IR, our global aim is to compute a function y,
which is a (possibly approximate) solution of the variational problem

min
y∈F

f(y). (1)

The objective function f is often given by some norm of the residual of a problem of interest
(PDE, ODE, boundary value problem, linear system or other) but other cases are possible (such
as minimum surface or contact problems, for instance). We assume that F consists of functions
constructed by linearly or nonlinearly combining elemental/basis functions using a parametrization
involving the parameters x ∈ IRn, so that y is denoted by y(x), whereas the value of y(x) at z will
be denoted by y(x)(z). The problem then reduces to finding the value(s) of x such that f(y(x))
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is minimized. In this paper, we focus on a class of “splitting” techniques whose objective is to
reduce the computational cost associated with this minimization. More specifically, we consider
the case where y is viewed as the sum of two terms y1 and y2, themselves depending on their own
sets of parameters x1 ∈ IRn1 and x2 ∈ IRn2 , that is

y(x) = y1(x1) + y2(x2). (2)

This yields the optimization problem

min
(x1,x2)∈IRn

f(y1(x1) + y2(x2)),

where n = n1 + n2. We also associate with the splitting (2) the following “approximation sets”

A12 =
{
y ∈ F | y(x) = y1(x1) + y2(x2) for some (x1, x2) ∈ IRn

}
(3)

as well as
Ai =

{
y ∈ F | y(x) = yi(xi) for some xi ∈ IRni

}
(i = 1, 2). (4)

While our present development is based on an additive structure of the function y, other
formulations could obviously be of interest. We limited the number of terms to two in order to
simplify exposition, but this not restrictive (as we discuss below).

We now discuss some examples of this approach, in which we distinguish two main contexts.

The hierarchical context: The terms y1 and y2 are constructed such that

A2 ⊂ A1 = A12. (5)

This may occur in variety of cases, the simplest being the classical multigrid framework in
which one assumes that f is a strictly convex quadratic and the yi are linear. The quadratic’s
minimization is then equivalent to the solution of a positive definite linear system. The yi
are constructed as linear combination of basis functions {bj}mi=1 of F (typically from a finite-
differences or finite-elements basis), that is

y1(x1) =

m∑
j=1

(x1)j bj and y2(x2) =

m∑
j=1

(Px2)j bj , (6)

where m = n1 is the dimension of F and where P is a (n1 × n2) linear “prolongation”
operator from a “coarse” space of dimension n2 ≤ n1 to the “fine” space of dimension n1.
In the multigrid framework, these coarse and fine spaces often correspond to coarse and
fine discretizations of an underlying continuous problem, but other interpretations such as
domain decomposition, are possible. The quadratic optimization problem then becomes

min
(x1,x2)∈IRn1+n2

1
2 (x1 + Px2)

TA(x1 + Px2) + bT (x1 + Px2) (7)

for some positive definite matrix A and right-hand side b depending of the basis B = {bj}mi=1.
One easily verifies that “restricting” the minimization to the x2 variables amounts to solving
the n2-dimensional problem

min
x2∈IRn2

1
2x

T
2 PAPTx2 + (b+ PTAx1)

Tx2, (8)

which is the usual Galerkin approximation of f at the coarse level. We clearly have that

A2 =


m∑
j=1

(Px2)j bj

 ⊂


m∑
j=1

(x1,j + (Px2)j) bj

 = span(B) = A1 = A12, (9)



Gratton, Mercier, Riccietti, Toint: Multi-level optimization and MPINNs 4

ensuring (5). Classical multigrid methods then alternate approximate resolutions of the
n2-dimensional “coarse level” problem (8) and the n-dimensional “fine level” one given by
(7).

A second, more nonlinear, case is when f may no longer be a convex quadratic, but a smooth
nonlinear function (which we assume is bounded below for consistency), while keeping (6)
and its interpretation in terms of “coarse” and “fine” spaces. Reusing (6) and (9) we may
now consider

f̂(x1, x2)
def
= f

 m∑
j=1

x1,jbj +

m∑
j=1

(Px2)j bj

 = f

 m∑
j=1

(x1,j + (Px2)j) bj

 def
= F (x1 + Px2),

(10)
which is a reformulation of the original objective function incorporating the dependence of
the basis B and, as above, alternatively perform iterations on the problems

min
(x1,x2)∈IRn1+n2

f̂(x1, x2) and min
x2 ∈ IRn2

x1 fixed

f̂(x1, x2)

and note that, because of (9), the first of these problems is equivalent (in the sense that they
yield the same value for y1(x1) + y2(x2)) to the lower-dimensional

min
x1 ∈ IRn1

x2 fixed

f̂(x1, x2).

This second approach has been explored in the framework of nonlinear optimization by the
MG-OPT [27] and RMTR [13] methods. Both these algorithms consider a subproblem where
a coarse-level model of the objective function is approximately minimized. Our hierarchical
approach corresponds to the choice of the Galerkin Taylor models defined (for first and
second order) by

h1(δx2) = σ(PT∇xF (x1 + Px2))
T δx2

and
h2(δx2) = σ(PT∇xF (x1 + Px2))

T δx2 + 1
2σ

2δxT
2 P∇2

xF (x1 + Px2)P
T δx2,

where σ is a fixed positive constant and δx2 is an increment in x2 from the point (x1, x2).
Note that the form of h2 is identical to that of (8).

The framework just described is also closely related to the FAS approach [3, p. 98] for solving
a set of nonlinear equations. If we consider the equation ∇F (x) = 0, the standard FAS ap-
proach would consist in solving at a given fine iterate x1 the problem PT∇F (PTx1+x2)P =
rhs, where the right-hand side rhs is such that if x1 solves the problem (i.e., annihilates the
gradient of F ), x2 is zero. This approach is different from ours in that the correction Px2 in
the coarse problem is added to PPTx1 in the coarse problem definition, and not to x1 itself.
Taking this into account, we may consider the coarse equation in x2, P

T∇F (x1 +Px2) = 0,
for which we obtain a formulation that is now in line with our hierarchical context since the
derivative of this coarse equation are identical to those involved in the above definition of
h2. Note that the right-hand side of this equation is now zero since x2 = 0 solves the coarse
problem when ∇F (x1) = 0.

In what follows, we will be especially interested in the case where

yi(xi) = NNi(xi) (11)

where NNi(xi) is a neural network of input z, parameters (weights and biases) given by
xi ∈ IRni , and output NNi(xi)(z). Neural networks are clearly nonlinear and nonconvex
functions of the parameters xi and the hierarchical context occurs when y2 is a subnetwork
of y1.
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The distributed context: We may now abandon (5) and consider a situation where neither
A1 or A2 is identical to A12. This is for instance the case when (11) holds, but y2 is
not a subnetwork of y1 and n1 and n2 (the number of network parameters in y1 and y2,
respectively) are now independent of m. Our proposal is to use a similar methodology for
this more complex case and alternate approximate minimizations on the “A2 subproblem”
given by

min
x2 ∈ IRn1

x1 fixed

f(y1(x1) + y2(x2)) (12)

with that on the “A1 subproblem” given by

min
x1 ∈ IRn1

x2 fixed

f(y1(x1) + y2(x2)). (13)

In all cases described above, the computational cost of the overall minimization is expected to
decrease because we may choose n2 (and, for the distrubuted case, n1) to be significantly smaller
than n. Alternating standard minimization steps on the fine A1 level with cheap ones at the coarse
A2 level is therefore computationally attractive, provided the coarse steps significantly contribute
to the overall minimization.

We conclude this section by noting that it is obviously possible to consider more general additive
splittings of the form

y(x, z) =

s∑
i=1

yi(xi, z)

in our above developments. In the the hierarchical context, that is in the classical multigrid
approach and in the RMTR/MG-OPT algorithms, this is achieved by considering a hierarchy of
nested approximations sets

A{ℓ,...,s} =

y | y =

m∑
j=1

(xℓ,j + P1(xℓ+1,j + P2(. . . Pk(xs−1,j + Psxs,j) . . .)))bj


for ℓ ∈ {1, . . . , s}, so that A{ℓ+1,...,s} ⊂ A{ℓ,...,s} for each ℓ ∈ {1, . . . , s− 1}.

In the distributed context, one could consider the sets

AS =

{
y | y =

∑
i∈S

yi(xi)

}
(14)

for all nonempty subsets S of {1, . . . , s}. This allows for a wide variety of set architectures such as
the “recursive” one using A{ℓ,...,s} for ℓ ∈ {1, . . . , s}, the “flat” one using A{ℓ} for ℓ ∈ {1, . . . , s},
or any mixture of these. In full generality, the approximation sets (14) need not be disjoint and
it is then useful, for a computationally effective architecture, to identify which subsets S generate
identical AS and to ignore those for which

∑
i∈S ni (the dimension of the associated minimization

problem) is not minimal.
As a consequence of the above discussion, we see that a wide variety of multilevel optimization

methods may be viewed as block-coordinate minimization problems, where the blocks of variables
are given by the xi.

3 A generic BCD algorithm and its convergence

We now examine why splitting minimization into alternate block minimization can be useful, and
consider the associated convergence guarantees. We first note that such guarantees are already
available, for linear multigrid case [3, 17, 38] for FAS-like methods [2], as well as for MG-OPT
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[27] and RMTR [13, 12, 14, 5]. The objective of this section is to motivate and state a simple yet
comprehensive complexity analysis, covering the two contexts described above.

The success of existing multilevel methods is based on exploiting a “complementarity” between
the various minimization problems involved, which we pursue as follows. Given the overall problem
(1), one starts by considering a particular minimization method and isolate a class of problems
for which this method is efficient. In the hierarchical context, this is typically the Gauss-Seidel or
Jacobi method and the class of problems where such “smoothing methods” are efficient is that of
problems involving high-frequency behaviour in the sought y function of the underlying variable
z (see [3, Chapter 2]). This suggests that one might wish to split the problem (if at all possible)
depending of its frequency content. To achieve this, one chooses (at least implicitly) the basis B
(which spans A12 and A1) to be a Fourier basis of F and split the problem into finding the coeffi-
cients of the high-frequency basis functions (using a smoothing method in A12 = A1) and finding
those of the low frequency ones (A2). The key of the approach is to transform the low-frequency
subproblem into a high frequency one by shifting frequencies, making the smoothing algorithm
efficient also for this subproblem. This shift is usually achieved by considering a coarser discretiza-
tion of the underlying continuous problem (the “coarse space”). Classical multigrid methods (and
also nonlinear methods in the hierarchical context) then alternate minimizations steps for the
high-frequency (“fine”) subproblem with minimizations in the low-frequency (“coarse”) one, A2.
Note that, since the frequency shift may be obtained only by considering the underlying geometri-
cal space, an explicit expression in the Fourier basis in unnecessary. Access to the high frequency
basis elements may be unavailable as such, but is included in the contribution of the complete
basis spanning A12 and A1.

We propose to follow the same approach for the distributed context. We then select a particular
minimization method. In our focus example where y(x) is a neural net, first-order training methods
such as variants of gradient descent are a natural choice. Remarkably, it has been shown in [45] that
such methods are significantly more efficient for the solution of problems whose solution involves
low frequencies. This observation, called the “F-principle”, is interesting on two accounts. The
first is that it stresses the fact that frequency content is also significant for neural net training,
and the second is that it acts “in the opposite direction” when compared to a multigrid approach:
low frequencies are favourable instead of being problematic. One is then led to consider using a
Fourier basis also in the new context, split the problem into a part containing the high-frequency
basis (finding a suitable network y1(x1) ∈ A1) and its low frequency part (finding a network
y2(x1) ∈ A2). and then to shift the frequencies of the subproblems to make them more efficiently
solvable. As we will discuss when presenting our numerical examples in Section 5, this can be
achieved by using Mscale networks [24] and WWP [41]. As above, this (fortunately) does not
require the explicit problem formulation in the Fourier basis, although one needs to be somewhat
specific regarding the subproblems’ frequency content.

We also note that, if the objective function f were separable in x1 and x2 in the selected basis
B (the Fourier basis, in our examples), then only one of each subproblem minimization would be
sufficient for solving the overall problem. This is not the case in general, but an argument based
on quadratic approximation shows that a weak coupling within f between x1 and x2 improves the
speed of convergence for the block-coordinate minimization.

At each stage of the minimization of f , we may therefore compute one or more step(s) for a
subproblem defined by selecting a subset of variables or, equivalently, a set of yi, to (approximately)
minimize, in a typical block-coordinate descent (BCD) approach.

Pure cycling between the relevant subproblems is clearly an option, and is the strategy most
often used in the multigrid case, where V or W cycles are defined to organise the cycling. Al-
ternatively, we may opt for some sort of randomized cycling (see [33, 29] for the convex case) or
follow (as we choose to do below) the procedure used in the RMTR algorithm for the hierarchical
case and select a subset of variables for which the expected (first-order) decrease in the objective
function (as measured by the norm of the objective’s gradient with respect to the variables in the
subset) is sufficiently large.

We may therefore consider a simple block-coordinate descent algorithm for minimizing f ,
where we use a second subscript for x to denote iterations numbers, and where we have limited
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the exposition to the bi-level/blocks case.

Algorithm 3.1: Multilevel Optimization (ML-BCD)

Step 0: Initialization: An initial point (x1,0, x2,0) ∈ IRn, a threshold τ ∈ (0, 1) and a
gradient accuracy threshold ϵ ∈ (0, 1] are given. Set k = 0.

Step 1: Termination test. Evaluate the gradients gk = (gT1,k, g
T
2,k)

T where gi,k =

∇1
xi
f(y1(x1,k), y2(x2,k)). Terminate if ∥gk∥ ≤ ϵ.

Step 2: Select a subproblem and a subproblem termination rule.
For instance,
select i such that ∥gi,k∥ > τ∥gk∥ and choose to minimize f(x1, x2) as a function of xi.

Also select a termination rule for the chosen subproblem.

Step 3: Approximately solve the chosen subproblem. Apply a monotone first-order
minimization method to the chosen subproblem, starting from (x1,k, x2,k) and iterate
for p iterations until the selected termination rule is activated. This yields a new iterate
(x1,k+p, x2,k+p) such that f(x1,k+p, x2,k+p) < f(x1,k, x2,k).

Step 4: Loop. Increment k by p and go to Step 1.

In the form stated above, the ML-BCD algorithm requires computing the full gradient at every
major iteration (i.e., iteration where Step 2 is used), at variance with a pure (potentially ran-
domized) cycling where only the successive subproblem’s gradients need to be computed. Thus
the number of major iterations must remain small compared to the total number of iterations (as
indexed by k) for this approach to be useful.

Also note that the subproblem termination criterion may take different forms: the number of
subproblem iterations may be limited, a threshold may be imposed on the norm of the subproblem’s
gradient and/or on the objective function decrease, below which the subproblem minimization is
terminated, or any combination of these. In any case, it does not make sense to continue the
subproblem minimization if the subproblem’s gradient becomes smaller that τϵ.

The convergence theory for block-coordinate optimization has a long history, starting with
a famous paper by Powell [30] showing that the method may fail on nonconvex continuously
differentiable functions. While the theory was further developed for the convex case (see the
excellent survey [43] and the references therein), it was only recently that further progress was
made for nonconvex functions, overcoming Powell’s reservations, and that a worst-case complexity
analysis (implying convergence) was produced [1]. The idea is quite simple and rest on the notion
of “sufficient descent”, which requires, when using first-order methods, that

f(xk)− f(xk+1) ≥ κ∥gk∥2,

for all k ≥ 0, where κ is a positive constant only depending on f itself. This sufficient descent is, in
particular, guaranteed by the Lipschitz continuity of ∇1

xf along the path of iterates ∪k≥0[xk, xk+1]
(see [6, Notes for Section 2.4]), in which case κ is proportional to the inverse of the gradient’s
Lipschitz constant. For the sake of completeness, we give a simple proof in appendix for a version
of the ML-BCD algorithm using fixed-stepsize gradient descent in Step 3 (i.e. when, for all k ≥ 0,

xk+1 = xk − αḡi,k (15)

where ḡi,k = (gT1,k, 0)
T if i = 1 and (0, gT2,k)

T if i = 2). This proof rephrases a standard ”single
block” result (see for instance [28, Example 1.2.3]) for the BCD case. The key complexity result
can be stated as follows.
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Theorem 3.1 Suppose that f is continuously differentiable with Lipschitz continuous gra-
dient on the path of iterates ∪k≥0[xk, xk+1] generated by the ML-BCD algorithm with fixed
stepsize, and that it is bounded below by flow. Suppose also that the stepsize α is small
enough to ensure α < 1/L, where L is the gradient’s Lipschitz constant and that the i-th
subproblem is terminated at the latest as soon as ∥gi,k∥ ≤ ϵ/

√
2, Then the ML-BCD algorithm

requires at most κ∗ϵ
−2 iterations to produce an iterate xk such that ∥∇1

xf(xk)∥ ≤ ϵ, where
κ∗ is a positive constant only depending of α, τ and the initial gap f(x0)− flow.

Other versions of the algorithm including more elaborate globalization techniques such as
linesearches, trust-regions or adaptive regularization are also possible and yield the same κ∗ϵ

−2

complexity bound for different values of the constant κ∗ (we then say that their complexity is
O(ϵ−2)).

The situation is more involved and the complexity bound worse (when it exists) as soon as the
function is not Lipschitz continuous on the path of iterates, and is for instance discussed (for the
single block case) in [18, 37, 46]. The recent paper [20] analyzes the complexity of a “first-order”
monotonic descent method applied to a wide class of functions∗ . The method assumes that one
can evaluate, for any point x and any direction d, the value of f(x), its directional derivative
along d f ′(x, d) and a “directional subgradient” G(x, d) such that its inner product with d returns
f ′(x, d). Under these conditions, the method achieves (Goldstein [10]) ϵ-approximate optimality
in at most O(ϵ−4) such evaluations. Unsurprisingly, the convergence proof once more relies on
showing that it is possible to obtain “sufficient descent”, in this case given by a multiple of ϵ,
albeit at a possible cost of O(ϵ−3) evaluations. We refer the reader to [20] for details. The
monotonic nature of the algorithm then implies (as is the case for the simple proof in appendix)
that sufficient descent obtained in the solution of the subproblem before termination translates
to sufficient descent on the complete problem, so that the complexity result obtained by [20] for
single block minimization extends to the case where there is a (bounded) number of blocks.

Interestingly, Theorem 3.1 subsumes and simplifies the convergence theory for RMTR [3, 13]
by recasting this latter method (when used with first-order Galerkin low-level approximations) as
a trust-region BCD algorithm in the complete space. Also note that the use of Galerkin approx-
imations in this case avoids the need of a ”tau correction” or ”first-order coherency” condition
[3, 13] which is typically requested for less structured low-level approximations.

4 Application to Physics-Informed Neural Networks

In recent years, using neural networks has emerged as an alternative to classical methods for
solving partial differential equations (PDEs). In particular, the physics-informed neural networks
(PINNs) have raised significant interest [25]. They have the advantage of being able to exploit
physical knowledge to solve equations without using simulation data. This is why we choose to
use this technique to illustrate our multilevel approach. Our presentation proceeds in two stages:
after a brief introduction to PINNs and their multilevel version, we first focus on showing the
advantage of alternate training of ”coarse” and ”fine” networks in the hierarchical context of
Section 2, before showing how refined use of the frequency content (in a distributed context) may
yield further benefits.

∗Technically, the objective function must be bounded below, have a bounded directional subgradient map and
a finite nonconvexity modulus.
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4.1 Physics-informed neural networks

Given a domain Ω ⊂ Rd, we consider the following differential system:{
L(u(z)) = r(z) in Ω

B(u(z)) = g(z) on Γ
(16)

where Γ is the boundary of Ω, L and B are two (possibly nonlinear) differential operators and r
and g are two given functions.

PINNs approximate the solution of the problem by a sufficiently smooth neural network y(x) :
Rd → R. The neural network is trained by minimization of a loss that takes into account the
physical information contained in the PDE. Specifically, denoting ZΩ = {zjΩ}

NΩ
j=1, ZΓ = {zjΓ}

NΓ
j=1 a

set of training points sampled in Ω and Γ respectively, the loss function is defined as

f(x) =
λΩ

NΩ

NΩ∑
j=1

[L(y(x)(zjΩ))− r(zjΩ)]
2 +

λΓ

NΓ

NΓ∑
j=1

[B(y(x)(zjΓ))− g(zjΓ)]
2, (17)

where λΩ, λΓ are some positive weights which balance the contribution of the residual of the
PDE and the residual of the boundary conditions. The differentiability properties of the neural
networks are exploited to compute explicitly the differential operators L(y(x)) and B(y(x)), which
are then evaluated on the set of training points.

Our objective is then to use several PINNs in conjunction with the ML-BCD algorithm, broadly
mimicking multigrid methods, in the hope of obtaining similar computational advantages. We
define multi-level PINNS (MPINNs) as follows.

Consider a feedforward neural networks with N − 1 hidden layers. Let dj ∈ N be the number
of hidden neurons in the i-th hidden layer for j = 1, ..., N − 1 and let d0 and dN be the number
of neurons of the input and the output layers, respectively. Let W j ∈ Rdj×dj−1 be the matrix of
weights between the (j − 1)-th and the j-th layers for j = 1, . . . , N . We denote the set of all such
networks by HN,{dj}. Assuming a method is selected to minimize the loss functions (17), we may
now use the ML-BCD algorithm by selecting our neural network as

y(x)(z) =

s∑
i=1

yi(xi)(z) (18)

with yi ∈ HNi,{dj,i}.

4.2 Alternating training in a hierarchical context

We start by considering the question of whether imitating the multigrid approach of alternating
between a coarse and a fine grid can be computationally interesting.

4.2.1 Test problems

Inspired by [32], we perform our experiments on several instances of the Poisson problem with
source term r in the domain Ω and Dirichlet/Neumann conditions on its boundary Γ. Moreover,
we assume that Ω contains a closed embedded boundary Γi dividing Ω in Ωe (exterior of Ωi) and
Ωi (interior of Ωi), so that the total boundary is given by Γ = Γe

⋃
Γi. The problem is thus stated

as 
∆u(z) = r(z) in Ω

au(z) + b
∂u

∂n
(z) = g(z) on Γe

cu(z) + d
∂u

∂n
(z) = h(z) on Γi

(19)

where ∂u
∂n = ∇uTn with n being the boundary normal vector pointing into Ω. The domain for

the test problem is the square Ω = [−1, 1]2 with an embedded circle of radius R = 0.5 centered at
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the origin defining Ωi. We consider Dirichlet boundary condition on Γe and Γi. We choose r to
ensure that exact solution is

u(z) = cos(απz1 + πz2) + cos(πz1 + βπz2)

where α and β are integers defining the frequency content of the solution.

4.2.2 Networks architectures

In this first set of experiments, we simplify (18) to

y(x)(z) = y1(x)(z) + y2(x)(z)

where y1 ∈ H3,{dj,1} is the ”fine” network and y2 ∈ H3,{dj,2} is the ”coarse” one. In accordance
with our earlier discussion, we choose y2 smaller than y1 in the sense that y2 is an (independent)
copy of a subnetwork of y1. Thus our setting is hierarchical (in the sense of Section 2) and
A2 ⊂ A1 = A12.

We consider three different MPINNs corresponding to different sizes of the coarse network,
while keeping the size of the fine network fixed. We compare them to a standard PINN network
of size approximately equal to the total number of parameters in the fine and coarse networks, as
well as a network of the same size as the fine network.

Experiment’s Network(s)’ size (d1, d2, d3) Number of parameters
name Fine Coarse
ML1 (140,140,140) (140,140,140) 40,040 + 40,040
ML2 (140,140,140) (100,100,100) 40,040 + 20,600
ML3 (140,140,140) (70,70,70) 40,040 + 10,220
SL1 (140,140,140) 40,040
SL2 (200,200,200) 81,200

Table 1: Network architecture for the experiments with alternating training in the hierarchical
context

Table 1 details the five architectures tested in our experiments and the size of the involved
networks: ML1, ML2 and ML3 are the multilevel ones (training two networks using the ML-BCD

algorithm) and SL1 and SL2 are single level ones (standard training of a single network) provided
for comparison. All hidden layers use the tanh activation function, thereby ensuring the necessary
differentiability properties.

4.2.3 Training setup

Training points are sampled using the Latin hypercube sampling in Ω and ∂Ω. Here we have
chosen to use the same grid to train the coarse and the fine networks with NΩ = 50000 points
sampled in the domain and NΓ = 4000 points sampled on the boundary.

At each epoch we use a random subset of these points composed of 2000 inner points and 500
boundary points. We have chosen the coefficients λΩ = λΓ = 1 to weight internal and boundary
losses.

To evaluate the accuracy of the different models, we consider a set of testing points {zt}Tt=1

with T = 30000, randomly chosen using the Latin hypercube sampling in Ωe, and consider the
mean squared error given by

MSE =
1

T

T∑
t=1

(y(x)(zt)− u(zt))2

All networks are trained with Adam optimizer [19]. The initial learning rate is set at 2× 10−4

with an exponential decay of 0.99999 at each epoch for all networks. All our codes are implemented
in TensorFlow2 (version 2.2.0) and run with a single NVIDIA GeForce GTX 1080 Ti.
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It is important to notice that using an alternate training strategy requires special care when
setting the hyperparameters of the optimizer. Indeed, each time we select a sub-network to
train, the optimization problem also changes. To ensure a fair comparison with standard network
training procedures, we decided to maintain the current learning rate when restarting the solver.
This allowed us to maintain the property that the learning rate gradually decreases over time,
which is a common technique used to prevent the model from overshooting the optimal values
and enhances convergence. By keeping the decayed learning rate consistent across restarts, we
were able to compare the performance of the alternate training strategy with the standard one
in a consistent manner. For other parameters, we decide to use Adam as a black box and to
restart it each time we change subproblem, that is we do not transfer the specific hyperparameters
that are specific to this optimization method, such as momentum. This means that we have to
initialize the optimizer from scratch with default hyperparameters (except for the learning rate)
for each subproblem. The consequence of such a restart is a peak in the loss at the first iteration
of the optimization process, which is a common behavior when initializing an optimizer with
random or default values. However it remains an open question to find the best strategy to tune
these hyperparameters: is it better to restart the optimizer or to find a good way to transfer the
parameters from one subproblem to the other? We also estimate the number of floating-point
operations performed as the number of FLOPs required for the matrix-vector product operations
during the forward pass. For MPINNs, it takes into account both the operations performed at
fine and at coarse levels. For instance, for a network with two layers, dh neurons in the layers, an
output size of 1, and N training points of size d, the number of FLOPs for the forward pass would
be computed as:

FLOPs = N × (2d× dh + d2h + dh × 1)

We select the subnetwork to train at each cycle according to Step 2 of the ML-BCD algorithm.
Moreover, we chose to terminate the subproblem training after a fixed number of epochs on each
problem (see numerical results). We also chose α = 2 and β = 4. For each experiment, we
alternately performed 2000 epochs on y1 and 2000 epochs on y2.

4.2.4 Results

The results of the test are reported in Figures 1 and 2. We see that, at equivalent computational
cost, MPINNs (MLs) converge significantly faster than conventional PINNs (SLs). It is worth
noting that the PINN with fewer parameters (SL1) converges faster than the larger one (SL2).
The choice of the coarse network’s dimension also seems to affect the speed of convergence, smaller
coarse networks yielding better results in these tests.

Figure 1: Evolution of the MSE as a function
of the computational cost for our different
models

Figure 2: Evolution of the loss as a function
of the computational cost for our different
models

These result may seem encouraging, but this approach remains limited in that it does not
overcome a limitation inherent to classical neural network training: high-frequency fitting. This
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is highlighted in Figure 3 where we test our method on problem (19) with parameters α = 2 and
β = 20.

Figure 3: Results of our method on the Poisson problem (19) for different frequencies. The method
indicated as FAML (Frequency-Aware-Multilevel) is the method proposed in the forthcoming
Section 5.

An alternative approach is thus warranted, which we develop in the next section.

5 A “frequency-aware” distributed approach

In the hierarchical cases detailed in Section 2, the reduction in computational cost is typically di-
rectly proportional to the separation of frequencies. For instance, in multigrid methods, switching
to a coarse grid helps to target low frequencies that converge slowly in the fine problem. This
does not seem to be the case for neural networks. The F-Principle [45] states that ”deep neural
networks often fit target functions from low to high frequencies during the training process”, which
is problematic in some cases and seems to affect also MPINNs, leading to a slow convergence, as
illustrated at the end of the previous section. The simple alternation of coarse and fine problems
doesn’t seem to be sufficient in the context of neural networks.

Several papers have addressed the issue related to the F-Principle by proposing architectures
that transform high frequencies of the problem into low frequencies, thereby allowing a more
efficient use of the neural networks. Inspired by these papers, we propose a frequency-aware
architecture that retains the computational cost savings of multilevel training while incorporating
the frequency separation aspect of classical methods.

5.1 A frequency-aware network architecture

Our architecture proposal is mainly inspired by Multi-scale deep neural networks (MscaleDNNs)
[24] and WWP [41], which were designed to mitigate the effect of the F-principle in the standard
(single level) context. The basic idea is to transform high frequency learning in low frequency
learning and to facilitate the separation of the frequency contents of the target function. As a
result, these networks show uniform convergence over multiple scales.

The MscaleDNNs architecture achieves this objective thanks to two main ingredients:
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• radial scaling in the frequency domain: the first layer is separated intoN parts, each receiving
a differently scaled input. Several variants of MscaleDNNs have been proposed, we choose
to focus here on the most efficient one, which uses parallel sub-networks, each dedicated to
a specific input scaling.

• the use of wavelet-inspired and frequency-located activation functions. These functions, with
compact support, have good scale separation properties.

WWP networks were proposed by Wang, Wang, and Perdikaris. They use the same principle
of input scaling, combined with soft Fourier mapping (SFM):

γ(z) = s

[
cos(z)
sin(z)

]
with s ∈ [0, 1) a relaxation parameter.

A ”Fourier features network” was first proposed in [36], which uses a random Fourier features
mapping γ as a coordinate embedding of the inputs, followed by a conventional fully-connected
neural network. This method did mitigate the pathology of spectral bias and helped networks
learn high frequencies more effectively. Recent advancements have made it possible to model fully
connected neural networks (and thus PINNs) as kernel regression. The authors of [36] suggested
that using Fourier mapping affects the width of the kernels and thus the network’s capacity
to capture high frequencies. This idea was extended to PINNs in [41] with convincing results,
provided that the fixed scalings are too far from the frequencies contained in the solution.

Inspired by their success, we propose here an architecture that combines the positive features of
both methods. Our architecture’s output is the sum of several networks that use different scaling
vectors, specializing each network for different frequency scales matching the structure presented
in our theory in Section 2. To mitigate possible convergence problems arising from a bad choice
of the fixed scalings, we have chosen to add learnable weights to the input scaling integers using
SFM as a classic activation function.

For low frequency resolution, we choose a classical network using hyperbolic tangent activation
functions. For the other networks, we use SFM activation functions for the first layer associated
with a scaling from a centred normal distribution whose variance grows with the targeted frequen-
cies. The other layers of the networks use hyperbolic tangent activation functions, thus ensuring
our differentiability requirements. We refer to this architecture as Parallel-WWP (P-WWP). Un-
fortunately, the wavelet-based and frequency-based activation functions utilized in the MSCALE
are not continuously differentiable, and thus fail to satisfy our theoretical assumptions. We have
however included some (successful) experiments conducted using these functions in Appendix B.

A similar architecture, based on a lower number of subnetworks, has been proposed in [23] for
the deep Ritz method [8], which produces a variational solution to problem (16). To the best of
our knowledge, this is the first time this architecture has been proposed for PINNs.
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Figure 4: An example of P-WWP architecture

An example of our architecture is illustrated in Figure 4, which consists of three sub-networks,
targeting three different frequency ranges defined by their input scaling Λi. The lowest frequency
network employs tanh activation functions, while the others use SFM and tanh.

To be effective, this architectures must cover most of the frequencies contained in the a priori
unknown PDE’s solution. Therefore, a broad range of frequencies must be covered, employing a
large number of neurons, as the target frequencies are defined by the input scalings. As a result,
the considerable improvement in accuracy provided by parallel frequency-aware architectures is
obtained at the price of a significant increase in the training’s computational cost, making it an
ideal candidate for our multilevel approach.

These architectures can be easily incorporated into our framework, where the global network
is defined as a sum of yi sub-networks, each responsible for a frequency range defined by its
input scaling. Because of this latter characteristics, the resulting approach now belongs to the
distributed context discussed in Section 2. In particular, we refer to the combination of the P-
WWP network with the ML-BCD algorithm as the FAML (Frequency Aware Multi-Level) method.
We use the same selection and termination criteria as in Section 4.2. When several sub-networks
are available, the network with the highest ratio ∥gi,k∥/∥gk∥ is chosen.

5.2 Numerical results

We now illustrate the efficiency of the FAML method on some examples of the form (19) defined
in [32]. We first describe the test problems themselves, then specify the considered network
architectures and the training setup before describing and commenting the obtained results.
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5.2.1 Test problem 1: Circle embedded in a square domain

The domain for the first problem is the square Ω = [−1, 1]2 with an embedded circle of radius
R = 0.5 centered at the origin defining Ωi. We consider Neumann boundary conditions on Γi and
Dirichlet boundary condition on Γe.

The source term and boundary term are given by
r(ρ, ω) = D(k2 − n2)ρk−2 sin(nω) in Ω

g(ρ, ω) = −Dk

n

( ρ

R

)(n−k)

ρk sin(nω) +Rq log ρ on Γe

h(ρ, ω) = 1 on Γi

(20)

where ρ, ω are the polar coordinates in the plane, n ∈ Z, z ∈ N and D = (
√
2)−max(k,n). We

choose k = 1 and n = −5. The solution is given by u(ρ, ω) = −Dk
n

(
ρ
R

)(n−k)
ρk sin(nω) + R log ρ.

The solution and the source terms are depicted in Figure 5.

Figure 5: Test problem 1 (cf. (19), (20)). Left: the domain Ω and its subdomains. Center: the
solution u. Right: the source term r.

Notice the variation in angular frequency as a function of the radius.

5.2.2 Test problem 2: Four-lobe structure

The domain for the second problem is the unit square Ω = [0, 1]2 with an embedded surface
defined by ρ(ω) = Rm + Rd cos(4ω) with Rm = 0.0305, Rd = 0.117. We consider Dirichlet
boundary conditions for both Γe and Γi. The source term and boundary term are given by

r(ρ, ω) = 12(10ρ2 − 1)e−102 +

4∑
k=1

40(10r2k − 1) in Ω

g(ρ, ω) = 0.3e−10ρ2

+

4∑
k=1

e−10r2k on Γe ∪ Γi

rk =
√
(x± 0.45)2 + (y ± 0.45)2, k = 1, . . . , 4

(21)

where ρ and ω are the polar coordinates, and x and y the corresponding Cartesian coordinates.
The solution is given by u(ρ, ω) = 0.3e−10ρ2

+
∑4

k=1 e
−10r2k . The solution and the source terms

are depicted in Figure 6.
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Figure 6: Test problem 2 (cf. (19), (21)). Left: the domain Ω and its subdomains. Center: the
solution u. Right: the source term r.

5.2.3 Test problem 3: Annulus domain with homogeneous source

We now consider a domain defined by an annulus with inner radius Ri = 0.25 and outer radius
Ro = 0.75, and consider a Neumann boundary condition on Γi and a Dirichlet boundary condition
on Γe. The source term and boundary term are given by

r(ρ, ω) = 0 in Ω

g(ρ, ω) = 0 on Γe

h(ρ, ω) = 1 on Γi

(22)

where ρ and ω are the polar coordinates. The solution is given by u(ρ, ω) = Ri log(
ρ
R0

), which
is depicted in Figure 7.

Figure 7: Test problems 3 (cf. (19), (22)) and 4 (cf. (19), (23)). Left: the domain Ω and its
subdomains. Center: the solution u for Test Problem 3. Right: the solution u for Test Problem 4.

5.2.4 Test problem 4: Annulus domain with inhomogeneous source

We finally consider again the domain defined by an annulus with inner radius Ri = 0.25 and the
outer radius Ro = 0.75 with Neumann boundary condition on Γi and Dirichlet boundary condition
on Γe. The source and boundary terms now given by

r(ρ, ω) = 1 in Ω

g(ρ, ω) = 0 on Γe

h(ρ, ω) = 1 on Γi.

(23)

The solution is then given by u(ρ, ω) =
ρ2−R2

0

4 +Ri(1− Ri

2 ) log( ρ
Ro

).
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5.3 Network architectures

We now give the details of the network architectures used in our second set of experiments. It is
important to notice that our method is not just applicable to P-WWP networks, but can be used
to train any architecture composed of sum of subnetworks.

input scaling First Activation Other Activations
subnetwork 1 None tanh tanh
subnetwork 2 N (0, 20) SFM(0.5) tanh
subnetwork 3 N (0, 40) SFM(0.5) tanh
subnetwork 4 N (0, 60) SFM(0.5) tanh

Each of the subnetworks is composed of 3 hidden layers of 100 neurons each. In order to
assess computational performance, we also consider the standard single level training applied on
the complete network.

5.4 Training setup

We will use the same setup as in Section 4 except for the coefficients λΩe
= 1, λΓe

= 100 and
λΓi

= 1 that weight internal and boundary losses.
In order to compare the convergence speeds of the training methods, we decided to consider the

computational cost of the training, as the epochs for the two training methods do not have the same
cost. For this purpose, we consider as a unit of cost the price of optimising our complete neural
network over an epoch. When a subnetwork is selected in the course of the ML-BCD algorithm,
the unselected part of the complete network is cached in memory and does not contribute to the
subnetwork optimization cost. Since the cost per iteration is linear in the number of parameters
when using first-order methods, the cost of optimizing for an epoch one of four subnetworks of
identical sizes is 1

4 = 0.25 cost units. For these experiments we chose to do 1000 epochs in full
network cycle and 4000 epochs in sub-network cycle. Thus the cost of the full and partial training
is similar. We do a total of 9 cycles with 1000 epochs on the full network to start the training, for
a total computational cost of 1000 + 9 × (1000 + 4000

4 ) = 19000 units. For each problem we first
compute the curve of the median values over 10 runs of the loss and of the MSE, as a function
of epochs and for two different computational budgets (10k and 19k units). We then select the
lowest median loss obtained for a given budget and record the associated median MSE.

5.5 Numerical results

Table 2 reports the results just described, obtained with the Frequency-Aware-Multilevel (FAML).

Problem Budget MSE MSE FAML Loss Loss FAML
Test pb 1 10000 1.40E-05 2.54E-07 1.64E-01 1.18E-02

19000 7.70E-06 2.49E-07 6.33E-02 4.89E-03
Test pb 2 10000 1.66E-05 3.99E-07 1.45E-01 1.17E-02

19000 7.77E-06 2.57E-07 5.38E-02 4.42E-03
Test pb 3 10000 1.05E-05 1.36E-07 1.04E-01 6.76E-03

19000 3.81E-06 1.11E-07 3.71E-02 2.55E-03
Test pb 4 10000 9.53E-06 1.62E-07 1.02E-01 7.40E-03

19000 3.58E-06 1.32E-07 3.75E-02 2.63E-03

Table 2: Best median the loss and associated MSE for standard single-level and FAML training
(10 independent runs)

In each case, the proposed multi-level training yields lower losses than the standard one. The
differences are particularly significant for a small computational budget where the improvement is
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of several orders of magnitude. The multi-level training also always results in a lower associated
MSE.

To provide further insight, we finally provide a typical example allowing the comparison of
standard and multi-level training: for Test problem 3, we illustrate in Figure 5.5 the decrease
of the total loss and of its boundary and interior components as well as that of the MSE as a
function of computational cost. The multi-level approach clearly outperforms the standard one.
(We remind the reader that peaks correspond to the restarts of the optimizer.)

Figure 8: Evolution of MSE and loss values for a typical run on Test problem 3

6 Conclusion and perspectives

We first developed a new point of view on multilevel optimization methods, arguing they can be
seen as block-coordinate minimization methods in a higher dimensional space. Distinguishing two
contexts (hierarchical and distributed), we reformulated a class of multilevel algorithms in block
form and showed how convergence results for block-coordinate methods can be applied to the
multilevel case.

We next illustrated this approach for the approximate solution of partial differential equations,
using physics-informed neural networks as a block solver, and presented numerical experiments
with a method using pure alternating training (in the hierarchical context) and a more elabo-
rate frequency-aware technique (in the distributed one) on complex Poisson problems. On these
problems, both resulting multilevel PINNS methods consistently produced lower losses than those
obtained using conventionally trained networks. Convergence was also shown to be much faster
allowing a considerable reduction of the computational cost to obtain good solutions (often better
than those obtained by a classical training).

While these initial results are encouraging, more research remains desirable for a better under-
standing of the algorithms. Their dependence on techniques to transfer algorithmic hyperpareme-
ters between levels is of particular interest. Applying our approach to more general operator
learning is also worth further investigation.
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Appendix

A Proof of Theorem 3.1

Consider applying the ML-BCD algorithm to the minimization of the objective function f , which we
assume is bounded below by flow and has a Lipschitz continuous gradient (with Lipschitz constant
L). Let α < 1/L be the fixed stepsize used by the algorithm. Consider iteration k and suppose
that this iteration occurs in the minimization of subproblem Ai on the variables given by xi. From
the Lipschitz continuity of the gradient and (15), we obtain that

f(xk+1) ≤ f(xk)−α∇xf(xk)
T ḡi,k+

α2L

2
∥ḡi,k∥2 = f(xk)−α∥ḡi,k∥2+

α2L

2
∥ḡi,k∥2 < f(xk)−

α

2
∥ḡi,k∥2.

Since the minimization of subproblem Ai has not yet terminated, we must have that ∥ḡi,k∥ =
∥gi,k∥ ≥ τϵ, and thus

f(xk+1) < f(xk)−
ατ2ϵ2

2
.
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Summing this inequality on all iterations, we deduce that, for all k before termination of the
ML-BCD algorithm,

f(x0)− flow ≥ f(x0)− f(xk+1) =

k∑
j=0

(
f(xj)− f(xj+1)

)
≥ (k + 1)ατ2ϵ2

2
.

This implies that the algorithm cannot take more than

2(f(x0)− flow)

ατ2ϵ2
− 1

iterations before it teminates, proving the theorem with

κ∗ =
2(f(x0)− flow)

ατ2
>

2L(f(x0)− flow)

τ2
.

2

B A Mscale FAML variant and its performance

B.1 Another frequency-aware architecture

This appendix reports on tests conducted using a frequency-aware network architecture based on
MscaleDNN defined in [24], instead of the WWP networks used in Section 5. A large part of the
success of Mscale networks is due to their wavelet-inspired activation functions. These compactly-
supported have good scale separation properties and are constructed so that the bandwidth of
their Fourier transform increases with their input scaling. Several activation functions have been
proposed in [24], but the most efficient one from a practical point of view has been introduced in
[22] and is given by

s2ReLU(z) = sin(2πz)ReLU(−(z − 1))ReLU(z), (24)

where z is the input scaling. This is a continuous function which decays faster and has better
localization property in the frequency domain than the previously proposed sRelu. The amplitude
peaks of the differently scaled s2ReLU in the frequency domain are well separated in the Fourier
domain. They are indicated by black stars in Figure 9, and we observe their expected monotonic
growth with scaling.

Figure 9: The s2Relu activation function (left) and its Fourier transform for several scalings (right).
The black stars highlight the amplitude peaks.

As in Section 5, we use these functions to create a neural network composed of a sum of
subnetworks each targeting a different frequency range (analogously to Figure 4). In this modified
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architecture, the lower frequency networks still use tanh activation functions while the higher
frequency networks now use (24). For each subnetwork, the first activation function is a SFM
function associated with a fixed input scaling, as in standard Mscales networks. The details of
this architecture are given in Table 3. Each of the subnetworks is composed of 3 hidden layers of
100 neurons each.

input scaling First Activation Other Activations
subnetwork 1 (0.5,1,1.5,...,10) SFM(1.0) tanh
subnetwork 2 (11,12,...,29,30) SFM(0.5) s2ReLU
subnetwork 3 (31,32,...,50,51) SFM(0.5) s2ReLU
subnetwork 4 (51,52,...,69,70) SFM(0.5) s2ReLU

Table 3: Details of the parallel Mscale architecture

Associated with the ML-BCD algorithm (exactly as in Section 5), this modified architecture
defines an Mscale variant of the FAML approach.

B.2 Numerical results

We tested this approach using the same experimental setup and methodology as that of Section 5
and again compared its performance to that the standard single level training applied on the
complete network. The results are reported in Table 4.

Problem Budget MSE MSE FAML Loss Loss FAML
Test Pb 1 10000 1.33E-05 2.76E-06 2.49E-01 7.98E-03

19000 1.85E-06 2.51E-06 4.53E-03 2.50E-03
Test Pb 2 10000 1.22E-05 3.87E-07 1.73E-01 8.14E-04

19000 6.11E-07 2.74E-08 1.22E-05 3.87E-07
Test Pb 3 10000 1.06E-05 1.85E-07 2.80E-01 1.06E-03

19000 4.09E-07 1.23E-08 6.17E-04 2.09E-04
Test Pb 4 10000 1.56E-05 1.98E-07 2.84E-01 1.04E-03

19000 5.24E-07 1.21E-08 6.26E-04 1.85E-04

Table 4: Best median the loss and associated MSE for standard single-level and Mscale-FAML
training (10 independent runs)

As was the case when using P-WWP networks, the Mscale FAML variant produced lower
losses than the standard training in each case. The differences are particularly significant for a
small computational budget where the improvement is of several orders of magnitude. This is also
almost always the case for the associated MSE. These results thus remain excellent, despite the
fact that our complexity theory does not formally cover the Mscale FAML variant because of the
non-smoothness of (24).


