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Abstract

Tropical forests are a major component of the global carbon cycle and home to

two-thirds of terrestrial species. Upper-canopy trees store the majority of forest

carbon and can be vulnerable to drought events and storms. Monitoring their

growth and mortality is essential to understanding forest resilience to climate

change, but in the context of forest carbon storage, large trees are underrepre-

sented in traditional field surveys, so estimates are poorly constrained. Aerial

photographs provide spectral and textural information to discriminate between

tree crowns in diverse, complex tropical canopies, potentially opening the door

to landscape monitoring of large trees. Here we describe a new deep convolu-

tional neural network method, Detectree2, which builds on the Mask R-CNN

computer vision framework to recognize the irregular edges of individual tree

crowns from airborne RGB imagery. We trained and evaluated this model with

3797 manually delineated tree crowns at three sites in Malaysian Borneo and

one site in French Guiana. As an example application, we combined the delin-

eations with repeat lidar surveys (taken between 3 and 6 years apart) of the four

sites to estimate the growth and mortality of upper-canopy trees. Detectree2

delineated 65 000 upper-canopy trees across 14 km2 of aerial images. The skill

of the automatic method in delineating unseen test trees was good (F1 score=
0.64) and for the tallest category of trees was excellent (F1 score= 0.74). As pre-

dicted from previous field studies, we found that growth rate declined with tree

height and tall trees had higher mortality rates than intermediate-size trees. Our

approach demonstrates that deep learning methods can automatically segment

trees in widely accessible RGB imagery. This tool (provided as an open-source

Python package) has many potential applications in forest ecology and conser-

vation, from estimating carbon stocks to monitoring forest phenology and

restoration.Python package available to install at https://github.com/PatBall1/

Detectree2.
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Introduction

Intact tropical forests are an important component of the

global carbon cycle: they are major carbon stores and sig-

nificant carbon sinks (Pan et al., 2011). However, the

strength of the carbon sink is diminishing as a result of

global warming (Brienen et al., 2015; Hubau et al., 2020)

and there are concerns that forests are reaching a tipping

point beyond which they could switch irreversibly to

open savanna systems (Chai et al., 2021). Forecasting the

future of tropical forests is challenging because little is

known about the ways different species will respond to

changing climate, or the resilience provided by that diver-

sity (Fisher et al., 2018; Gallup et al., 2021; Koven

et al., 2020; Restrepo-Coupe et al., 2021). To understand

the likely responses of forests to further climate change,

ecosystem models need to represent growth and mortality

processes of individual trees more accurately than is cur-

rently the case (Kellner et al., 2019; Piponiot et al., 2022;

Zuidema & van der Sleen, 2022).

Remote sensing of individual upper-canopy trees can

improve estimates of forest carbon (Dalponte &

Coomes, 2016) and provide a means of tracking growth

and mortality over large spatial scales. Traditional monitor-

ing approaches rely on measuring stem dimensions in per-

manent inventory plots, and periodically revisiting those

plots to assess recruitment, growth and mortality (Chave

et al., 2019). However, the coverage of such plots in the tro-

pics is limited (� 0.0002% of tropical forests are sampled

by the main plot networks) and their locations are often

dictated by ease of access rather than by robust statistical

sampling designs (Davies et al., 2021; ForestPlots.net

et al., 2021; Marvin et al., 2014). Furthermore, upper-

canopy trees store the majority of carbon in tropical forests,

but few of them are sampled in inventory plots (Coomes

et al., 2017; Lutz et al., 2018; Meakem et al., 2018). This

under-sampling is particularly problematic when assessing

impacts of climate change because upper-canopy trees are

most vulnerable to periods of water shortage (Gora &

Esquivel-Muelbert, 2021; Stovall et al., 2019) which are

increasing in frequency (IPCC, 2021). Remote sensing has

the potential to overcome these sampling challenges by

providing wall-to-wall maps that can be used to monitor

millions of upper-canopy trees.

Remote sensing of individual trees has mostly focused on

airborne lidar data, which are used by the forestry industry

to map trees at landscape scales (Zhen et al., 2016). Delin-

eating individual trees from airborne lidar datasets is most

successful for conifer because their apical dominance

results in clear local height maxima that make tree crowns

easily distinguishable (Dalponte & Coomes, 2016; Hastings

et al., 2020), but complex tropical canopies have presented

a far greater challenge for lidar delineation (Aubry-Kientz

et al., 2019). Tropical forest canopies are often densely

packed with partially interwoven crowns which point-

cloud clustering algorithms can struggle to distinguish

(Aubry-Kientz et al., 2021). Furthermore, lidar surveys

require expensive aircraft (airplanes, helicopters or high-

end drones) and sensors whereas standard RGB imagery

can be collected cheaply with drones.

Automatic delineation of trees in RGB photographs can

harness colour and texture information to distinguish

trees, even if they are structurally similar (Almeida

et al., 2021; Iglhaut et al., 2019). Most current methods

of individual tree identification from RGB imagery use

bounding boxes (Figure S3) (Aparecido et al., 2019;

Weinstein et al., 2019, 2021), but more exact delineation

of the edges of tree crowns would provide information

on the crown area and lateral growth and avoid mixing

signals from neighbouring vegetation. Recent advances in

neural network approaches to computer vision provide

opportunities to recognize individual trees from standard

digital photographs taken from drones. A class of

machine learning algorithms called deep convolutional

neural networks (CNNs) is revolutionizing vegetation sci-

ence through its ability to exploit spatial structures and

automatically extract high-level features from image data

(e.g. analyses of satellite imagery) (Kattenborn et al.,

2021; Mugabowindekwe et al., 2022; Zhu et al., 2017). In

the field of computer vision, exactly segmenting individ-

ual objects of interest from an image is known as instance

segmentation. The Mask R-CNN algorithm has shown

promise in tree crown identification and delineation in

plantations (Hao et al., 2021; Kunyong et al., 2022), pine

forests (Gensheng et al., 2022; Ocer et al., 2020), urban

woodlands (Ocer et al., 2020) and forest fragments (Braga

et al., 2020). Mask R-CNN has features that could allow

it to overcome the challenges of delineating crowns in

complex tropical canopies by discriminating based on the

spectral and textural signals which are rich due to the

phylogenetic diversity.

Here, we describe Detectree2, a system that automati-

cally detects tree crowns from aerial RGB imagery. We

adapted Facebook AI’s Mask R-CNN algorithm (the

Detectron2 release), which has models that have been pre-

trained on a wealth of available image data that can be

transferred to new tasks (He et al., 2017; Wu et al., 2019).

We trained and evaluated Detectree2 on four tropical for-

est sites. In total, 3797 manually delineated tree crowns

were used of which 1530 spatially separated crowns were

reserved to evaluate the model. We evaluated the perfor-

mance with F1 scores, which quantify the skill of the

method in delineating individual tree crowns accurately.

We expected a model trained at one site to drop in per-

formance when transferred to making predictions of

crowns at the other sites and that supplying a greater

2 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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variety of training data would boost performance. As an

example ecological application, we deployed the trained

model across 14 km2 of airborne RGB imagery, automati-

cally delineating 65 786 tree crowns. For context, this area

is approximately 40% the total area of forest inventory

plots in the main plot networks across the tropics (Davies

et al., 2021; ForestPlots.net et al., 2021). We then com-

bined these crowns with repeat airborne lidar data to

investigate the growth and mortality rates of upper-

canopy trees in relation to their height. Regional and

global syntheses of forest inventory data suggest that

growth slows down and mortality rates increase with tree

size (Coomes et al., 2003; Hurst et al., 2011; Iida

et al., 2014; Muller-Landau et al., 2006; Richardson

et al., 2009). We therefore expected to find the tallest

trees we sampled to have lower growth rates and higher

mortality rates than shorter trees. The Detectree2 Python

package is available to install and apply on new regions.1

Materials and Methods

Study sites

The analyses were conducted at four locations across

three tropical field sites:

1. Sepilok Forest Reserve (East and West), Sabah, Malay-

sia (5° 500 N, 177° 560 W)

2. Danum Valley Conservation Area, Sabah, Malaysia

(4° 570 N, 177° 410 W)

3. Paracou Field Station, French Guiana (5° 160 N 52°
550 W)

Danum Valley hosts lowland tropical rain forests domi-

nated by dipterocarp species that are among the tallest

forests on the planet (Shenkin et al., 2019). The available

data from Sepilok included ecologically distinctive areas

to the East and West. Sepilok West consists mostly of tall

forest (similar to Danum), while Sepilok East is a heath

forest growing on shallow soils overlying sandstone, con-

taining smaller, more densely packed trees (Coomes

et al., 2017). All three sites in Malaysia experience a simi-

lar climate with approximately 2300 mm rainfall per year

with the wettest months between November and February

(Nilus et al., 2011). Paracou contains lowland tropical

rain forest mostly on shallow ferralitic soils that lay on a

variably transformed loamy saprolite (Gourlet-Fleury

et al., 2004). The mean annual rainfall is approximately

3000mm with a 3-month dry season from mid-August to

mid-November (Wagner et al., 2011). See Supplementary

Note 1 for more details on the study sites.

Remote sensing data

Airborne RGB surveys were conducted at all four sites

using manned aircraft (Table 1). Repeat lidar surveys

were also conducted at all four location (see Table 1, not-

ing different sensors and altitudes between flights in

Sabah). We analysed RGB imagery from 3.85 km2 of

Malaysian forest, with a ground resolution of 10 cm. In

Paracou, we sampled 10.2 km2 of imagery, with an 8 cm

ground resolution. The raw imagery was orthorectified,

georeferenced and collated into homogeneous mosaics

using structure from motion in AgiSoft Metashape (Agi-

Soft, 2021; Westoby et al., 2012) in Sabah. In Paracou the

imagery was orthorectifed using TerraPhoto to the Can-

opy surface model derived from simultaneously acquired

lidar data.

Manual tree crown data

To train and evaluate our automatic delineation

approach, we created a manually labelled dataset of trees

at all four sites. We generated our delineations using both

Table 1. Remote sensing data sources.

Scan dates Region Modality Resolution Pulse density

Beam divergence

(mrad) Scanning angle Altitude (m) Sensor

23-Oct-2014 Danum RGB 10 cm - - - 796 Leica RCD105

01-Nov-2014 Danum Lidar 1 m 5 pls m-2 <0.22 �14° 2000 Leica ALS50-II

19-Feb-2020 Danum Lidar 1 m 35 pls m-2 <0.5 �30° 200 RIEGL LMS-Q560

10-Oct-2014 Sepilok RGB 10 cm - - - 796 Leica RCD105

05-Nov-2014 Sepilok Lidar 1 m 16 pls m-2 <0.22 �14° 2000 Leica ALS50-II

15-Feb-2020 Sepilok Lidar 1 m 42 pls m-2 <0.5 �30° 200 RIEGL LMS-Q560

19-Sep-2016 Paracou RGB 8 cm - - - 800 IXA180 Phase One

19-Sep-2016 Paracou Lidar 1 m 35 pls m-2 <0.25 �30° 800 RIEGL LMS-Q780

19-Nov-2019 Paracou Lidar 1 m 35 pls m-2 <0.25 �30° 800 RIEGL LMS-Q780

15-Nov-2019 Paracou Lidar 1 m 35 pls m-2 <0.25 �30° 800 RIEGL LMS-Q780

The exact location of the sites is described in “Study sites” section. Resolution is given as ground resolution for the RGB imagery and as the pro-

cessed CHM resolution for the lidar scans. Beam divergence is given at the 1/e2 points. Sepilok West and Sepilok East were separated for analysis

due to the different characteristics of the Sepilok forest in these two areas.

ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 3
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RGB and lidar data and, in the case of Paracou, supple-

mentary hyperspectral layers. We used several techniques

to improve the accuracy of crown delineation, including

manipulating the contrast and saturation of the RGB

image to exaggerate differences between the crowns, and

using a mask of the lidar data to remove irrelevant parts

of the RGB imagery. These techniques meant that the vast

majority of tree crowns were separable by eye but, it

should be noted, that in rare cases, tree crowns were near

impossible to delineate with certainty and the labeller’s

best estimate was used. See Supplementary Note 2 for fur-

ther details.

We trained and tested our model with a total of 3797

manually delineated tree crowns across Paracou (1267),

Danum (521), Sepilok West (1038) and Sepilok East

(971). The crowns from Paracou were validated in the

field with an expert local botanist, whereas the crowns in

Malaysia were drawn by inspection of the remote sensing

products. Four individuals performed the manual delinea-

tions which provided the network with variability in the

inputs.

Data preparation

The orthomosaics and corresponding crown polygons

were tiled into squares of approximately 100 m × 100 m

to be ingested into the network (40 m core area, 30 m

overlapping buffers). To be included in the training and

test sets, a minimum crown polygon area coverage of a

tile was set at 40%. Including overly sparse tiles was likely

to lead to poor algorithm sensitivity while being too strict

with coverage would have limited the amount of training

and testing data available.

If training and test crowns are close to one another,

spatial autocorrelative effects are likely to inflate the

reported performance (Kattenborn et al., 2022). To avoid

this, individual tiles (rather than individual crowns) were

assigned to training and test sets ensuring spatial separa-

tion. Approximately 10% of the tiles from each site were

reserved at random for testing. To avoid contamination

of the test set, tiles with any overlap with the test tiles

(including with the buffer) were excluded from the train-

ing set. The training tiles were further partitioned into 5-

folds for cross validation. This allowed for the tuning of

parameters and the implementation of early stopping (see

“Training and model selection” section) without exposing

the test set. Details of the data processing are described in

Supplementary Note 3.

Model architecture and parameterization

Instance segmentation combines object detection with

object segmentation. Once an object has been detected in

a scene, a region of interest (as a bounding box) is estab-

lished around the object. Then a ‘segmentation’ is then

carried out to identify which pixels within the region of

interest make up the object of interest (and which lie out-

side; see Figure S2 for an example).

We adapted Facebook AI’s Mask R-CNN architecture

as it was the best in class algorithm upon release for

instance segmentation when tested on the Microsoft

COCO (Common Objects in Context) benchmark (He

et al., 2017; Lin et al., 2014) and has since been updated

(as Detectron2) with improved training efficiency, docu-

mentation and transferability for integration into bespoke

tools (Wu et al., 2019). We adapted the Detectron2 com-

puter vision library to handle geospatial inputs/outputs

and perform the delineation of individual tree crowns.

The library performs instance segmentation by generating

object ‘masks’ which exactly circumscribe the objects in

the image (see Figure S2 for an example prediction). It

also has a ‘model zoo’2 from which specific model archi-

tectures with weights from a variety of pre-training

regimes can be loaded. Taking a pre-trained model

(weights) and retraining it to perform a novel task (e.g.

delineating trees from aerial imagery) is an example of

transfer learning which can drastically reduce the amount

of training data required to achieve acceptable perfor-

mance on the new task (Weiss et al., 2016). We selected

the R101-FPN configuration3 as it has ‘the best speed/

accuracy tradeoff’ of the architectures available (Wu

et al., 2019). Each object predicted by Detectron2 is asso-

ciated with a confidence score which relates to how sure

the network is in its prediction. A suitable threshold can

be selected to optimise accuracy or balance precision and

recall. Additional details are given in Supplementary

Note 4 and for full technical specifications, one should

refer to the original papers and the Detectron2 repository

(He et al., 2017; Wu et al., 2019).

Training and model selection

Training, tuning and model selection were performed

with the five folds of training data tiles (see “Data prepa-

ration” section). To test the effect of volume and diversity

of training data on performance we employed three train-

ing regimes: (1) Training on data of a single site, (2).

Training on all sites (‘combined’), (3) Training on all

sites and then trained with a fixed training period on the

single site. The idea behind (Hubau et al., 2020) was to

train on the full available data and then ‘hone’ the delin-

eator based on the local context.

Typically, a deep CNN would require several thousand

training examples to learn a new task. This is a challenge

in the case of tree crown delineation as manual delinea-

tion is time consuming. The burden was reduced by

4 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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transferring a model trained on a different instance seg-

mentation task (Lin et al., 2014). Additionally, the train-

ing data were augmented by applying several randomly

applied transformations to the training cases including

vertical and horizontal flips, rotation, and varying the sat-

uration and contrast of the image.

The model hyperparameters (Table S1) were tuned

with a Bayesian hyperparameter sweep implemented on

wandb.ai.4 This is an automated process that allows an

automated agent to iteratively adjust hyperparameters to

optimize accuracy. The best performing models and opti-

mal confidence threshold for a given model (see “Model

architecture and parameterization” section) were selected

based on the F1 score (see “Performance evaluation” sec-

tion) on the validation fold.

See Supplementary Note 4 for more details on model

architecture, training and validation. The Colab (Jupyter)

notebooks in the GitHub repository1 illustrate the best

practices for training and selecting models.

Performance evaluation

After tuning and training, the best performing models

were taken forward to be evaluated against the test tiles.

Matches between predictions and manual crowns (i.e.

true positives) were identified by assessing the degree of

spatial overlap between possible pairs. A minimum area

threshold for valid crowns was set to 16 m2. This removed

fewer than 2% of manual crowns and introduced a level

of consistency between sites and between the effort given

by the manual delineators. The threshold was small

enough to allow for an inclusive analysis of the variation

in performance by tree height. Crown overlap was calcu-

lated as the area intersection over union (Fig. 1):

IoU A,Bð Þ ¼ A∩B
A∪B

(1)

where A is the automatically delineated crown area and B

is the manually delineated crown area. An IoU of an

overlapping pair of more than 0.5 was considered a

match. This is a commonly used threshold in similar

studies (e.g. Aubry-Kientz et al., 2019; Hao et al., 2021)

that allows for small discrepancies in alignment and out-

line. These ‘true positives’ as well as the unmatched pre-

dictions (false positives) and unmatched manual crowns

(false negatives) were used to calculate the precision,

recall and F1 score of the automatic predictions.

Despite the best efforts of the manual delineators and

selecting for tiles with high manual crown coverage, the

manual crowns were inevitably an incomplete representa-

tion, so recall (fraction of relevant instances retrieved)

was an insightful metric. However, to ensure balance with

precision we used the balanced F1 score metric to assess

and compare the accuracy of the models. This approach

is not biased by tree crown area and is widely used in tree

crown segmentation studies (Braga et al., 2020; Hao

et al., 2021). See Supplementary Note 5 for more details

on the evaluation metrics.

To evaluate the performance of Detectree2 across tree

heights, we assigned a height to each test crown (based

on the median pixel value of the initial CHM within the

crown) and arranged them into 5 m height bins. The

shortest bin (0–5m) at each site was iteratively merged

with the next shortest bins until more than 10 individuals

were represented (e.g. at Paracou 17 trees with a median

height of 22.97 m fell into the lowest bin of 0–25 m). An

equivalent process was used to define the highest bin at

each site. The median tree height was calculated within

each bin.

Figure 1. The automatic tree crown delineation workflow. Manually

delineated crowns are randomly split into training and test sets

(though the figure suggests that the sets were determined

geographically, this is purely for visual clarity). The Mask R-CNN

framework combines the training set with the RGB imagery to learn

how to delineate automatically from RGB images. A set of automatic

predictions are produced across the entire RGB image and compared

with the test set to evaluate the performance of the automatic delin-

eations. Intersection over union (IoU) is used to determine when an

automatic crown has been successfully matched with a manual

crown.

ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 5
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Transferability across sites

To determine whether models were able to generalize

across different tropical forest areas, we evaluated the per-

formance of the models when trained on one site and

transferred to others. We compared these performances

against the effect of using the ‘combined’ training regimes

described in “Training and model selection” section.

Application to monitoring growth and
mortality

We applied our best models for each site to their entire

tiled orthomosaics (excluding the very edges where distor-

tion is prominent) to generate site wide crown maps. We

combined these crown delineations with repeat lidar sur-

veys to determine the height changes in individual trees

in our four sites. We determined the relationship between

tree height and tree growth by fitting a robust least

squares regression (Audibert & Catoni, 2011) to the data.

Robust least squares was chosen to minimize the effects

of outliers and mortality events on the regression. We

note that here we are measuring the vertical growth of

trees, instead of the growth in diameter at breast height

(DBH) which is traditionally measured in forest inventory

data.

To estimate mortality rates, we needed a suitable metric

to identify mortality events. We took a statistical

approach defining a mortality event as a negative change

in height of more than three standard deviations below

the robust least squares fit. This allowed for the possibility

that a mortality event may uncover another layer of vege-

tation rather than the forest floor. This choice was ratified

by manual inspection of trees meeting this threshold, and

confirming that they constituted mortality events. Annual

rates were determined by dividing by the time between

lidar scans.

Differences in lidar scanning parameters (pulse density,

scanning angle, flight height etc.) can bias height esti-

mates (Roussel et al., 2017). For this reason, we resisted

reporting a direct comparison of reported growth and

mortality rates between sites. As our focus here was on

demonstrating the use of Detectree2 for locating crowns,

we considered that a detailed exploration of the potential

biases from the lidar data beyond the scope of the current

paper.

Computation

Training deep CNN models can be computationally

expensive and benefits from the availability of GPUs.

Model training and evaluation was performed on the

Google Colab (Pro) platform which employed Intel(R)

Xeon(R) CPU at 2.30 GHz with 12.8 GB RAM and Tesla

P100-PCIE-16GB GPUs. On this platform, model training

always completed within 2 h.

Results

Performance by site and tree height

Detectree2 located and delineated trees well (F1 [ 0.56)

across all sites (Table 2). It performed better in the tall

dipterocarp dominated forests of Danum and Sepilok

West and worse in the more compact forests of Sepilok

East and Paracou. Indeed, Danum, the site with the best

performance, had the greatest proportion of the tallest

class of trees of any of the sites (see “Extended results”

for a full table of results). There was no apparent rela-

tionship between the amount of training data available at

a site and the performance of the automatic delineator

suggesting forest structure was the key determinant of

accuracy. Where predictions were not accurate, it was

slightly more likely to be from under-segmention (0.23–
0.45) than over-segmentation (0.13–0.23) (Clinton

et al., 2010) across all sites (see “Extended results”)

(Fig. 2).

Across all sites, accuracy improved with tree height

(Fig. 3). This is likely due to the increased crown visibility

of tall trees in the RGB images. Paracou has the least well

differentiated canopy of all sites which may explain rela-

tively poor performance there.

Performance between forest types

Danum and Sepilok West have tall dipterocarp dominated

forests whereas Paracou and Sepilok East have a more

compact forest structure. As we expected, performance

degrades when testing a model on a different forest type

to the one it was trained on (Fig. 4A). For example, the

performance at the forests of Sepilok West is significantly

degraded when a model trained on Sepilok East or Para-

cou is used. In contrast, there is no drop in performance

Table 2. Precision, recall and F1 score of Detectree2 tree crown delin-

eations by site as measured against the manual crowns of the test set

tiles.

# test trees Precision Recall F1 score

Paracou 381 0.595 0.543 0.568

Danum 278 0.713 0.662 0.687

Sepilok East 167 0.612 0.653 0.632

Sepilok West 704 0.640 0.656 0.648

Average (sum) (1530) 0.640 0.629 0.634

The unweighted means of the metrics across individual sites are given

as a summary overall performance.

6 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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for predictions at Danum when the Sepilok West model

is used and there is even a slight increase in performance

for Sepilok East predictions when the Paracou model is

used.

In general, the model that was trained on all sites at

once (‘combined’) outperformed the models that were

trained on just a single site with the exception of Paracou

(Fig. 4B). Across the board, the best performing models

were those that were exposed to data from all sites before

being trained for a fixed number of iterations at the site

to be predicted on. This suggests that providing a broad

range of input data helps the networks to learn the key

visual features but further tuning for local context helps

maximize performance.

Application: growth and mortality

One application of Detectree2 is to study tall tree growth

and mortality rates. To do this, we overlaid Detectree2’s

tree crown predictions at the start date for each site on

repeat lidar data (as canopy height models described in

Supplementary Note 1) to retrieve the tree height dynam-

ics over time.

We were able to estimate the relationships between tree

height and tree growth for each site by fitting robust least

squares linear relationships between the two variables for

Danum, Paracou, Sepilok East and Sepilok West (Fig. 5).

The regression coefficients and intercepts are given in

Table S2. The growth rate decreased with tree height in

all sites.

Figure 2. An area of predicted crowns (transparent) overlaid on ground truth crowns (shaded with black outlines) at Danum. Colours and

shading are used to indicate whether individual crowns have been successfully delineated. Some examples of under-segmentation (where a single

prediction encompasses multiple ground truth crowns) and over-segmentation (where multiple predictions false try to split a single ground truth

crown) are visible.
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Figure 3. F1 scores of the tree crown delineations at the four

different sites across tree heights. Bins of 5 m width were used to

calculate F1 score and corresponding median tree height. Point area is

scaled by the number of test trees in the bin.
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We assumed trees had died when their height decreased

substantially. To evaluate this quantitatively, we fitted a

robust least squares to the height change, against the orig-

inal height of the tree, taking trees that were three stan-

dard deviations below the mean of the regression fit to be

mortality events. The robust least squares regression dif-

fers from ordinary least squares as outliers contribute less

to the regression fit. Therefore the robust least squares

weights the fit towards those trees which did not suffer

large height loss, and by taking the threshold to be three

standard deviations we aim to identify only those trees

that are outside the assumed normal distribution of typi-

cal tree growth and measurement error. Furthermore, as

the robust least squares still incorporates outliers when

fitting the data, three standard deviations was considered

sufficient to identify mortality events. Figure 5 illustrates

how certain trees were identified as mortality events and

some visual examples of mortality events from Paracou

are given alongside (see Figure S12 for the other sites).

The mortality rates increased with tree height (Fig. 6).

The given uncertainty estimates were determined by

bootstrapping. A detailed table of the growth and mortal-

ity rates can be found in “Extended results.”

Discussion

Improved tropical crown delineation

Accurately delineating trees in remote sensing data is a

long-standing problem in ecology and conservation, and

would enable us to efficiently monitor large areas of for-

ests. Detectree2 addresses this problem, delineating indi-

vidual trees in aerial RGB imagery with high precision

and recall. We used Detectree2 to automatically delineate

65 786 trees across three tropical forests. We found that

the accuracy of Detectree2 increased with tree height,

meaning that that the tall trees which store the most car-

bon are also the most reliably delineated.

Detectree2 performed well across a range of challeng-

ing, dense, closed canopy forests. It is able to exactly

delineate highly irregular crowns within the jigsaw of the

canopy rather than simply identifying a bounding box.

This opens up new opportunities for tracking dynamic

processes including growth and demographics (as demon-

strated here) as well as phenology (where bounding boxes

would risk mixing signals). Furthermore, Detectree2 is

relatively accessible since it requires a low number of

manually delineated trees as training data compared with

other methods (Braga et al., 2020; Weinstein et al., 2019).

These advantages are partly due to Detectree2 being built

on a state-of-the-art pre-trained model. While direct

comparison is impossible due to the different test data

and the differing tasks (instance detection vs. segmenta-

tion), our method performs comparably with the results

of Weinstein et al. (2019), which reported a tree crown

recall of 0.69, a precision of 0.61 and an F1 score of 0.65.

Our results did not match the Mask R-CNN performance

reported in Braga et al. (2020) but this study is based on

semi-synthetic images (i.e. constructed by stitching

together existing images) of forests and so is not directly

comparable.

Generalizability across sites

There was no obvious relationship between the amount

of training data available at a site and the accuracy

attained there. Rather, forest type and tree height distri-

bution seemed to be the key factors for determining accu-

racy. The well differentiated forest at Sepilok West and

Danum were the easiest to delineate while the lowest

accuracy was in Paracou which has little variation in the

height of the visible canopy. Furthermore, at Paracou it is

common to observe crowns mixing and growing into

each other which makes visually separating the crowns
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Figure 4. Sensitivity of Detectree2 delineation accuracy to the

training data used. In (A), ‘Same’ indicates that training and testing

took place at the same site. Sepilok West and Danum are ‘similar’

forest types in that they are tall dipterocarp dominated forests in

contrast to Sepilok East and Paracou that are shorter forests with a

larger number of trees per hectare. As each site has two ‘different’

sites and an average was calculated for the F1 score. (B) shows the

change in performance that occurs through employing different

combinations of the training data. That can be just a single site, all

sites at once (‘combined’) or all sites at once followed by a limited

number of iterations on the site to be tested on.
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challenging. This in turn is down to soil type and other

biogeographic factors.

We found that the accuracy dropped when transferring

a model trained on one forest type to predict on another.

However, we found that Detectree2 can be quickly trained

to perform well on new areas of forest using around 10

images (each � 1 ha in scale) with all visible tree crowns

manually delineated. This manual delineation represents

approximately 4 h work. The best performing models

were those that were exposed to training data from all the

sites and then ‘honed’ with a limited number of training

iterations on the site to be predicted on. This suggests

that our trained models (provided freely with the Python

package5) could be transferred to a new site with very lit-

tle manual data or training iterations.

We note that the manual delineations were done by dif-

ferent people focusing on different parts of the sites. There

was no clear effect of different delineators on the results but

this would be somewhat confounded with site differences.

Application: growth and mortality rates

Tall trees store the majority of forest carbon and domi-

nate many important forest nutrient cycles. However, they

are rare and therefore poorly represented in traditional

field inventories (Hurst et al., 2011) which makes estimat-

ing their growth and mortality rates particularly challeng-

ing (Coomes et al., 2003; Iida et al., 2014; Muller-Landau

et al., 2006; Richardson et al., 2009). Tall trees are also

particularly sensitive to the effects of climate change, such

as increased wind speeds and drought (Gora & Esquivel-

Muelbert, 2021), and as such tracking their dynamics over

time is increasingly important. Recent remote sensing

studies are bringing new insights into disturbance pat-

terns by mapping the gaps left in the forest canopy after a

tree (or multiple trees or branches) have fallen (Araujo

et al., 2021; Cushman et al., 2022; Huertas et al., 2022).

Tracking individual trees over time instead of gaps will

make it easier to interpret our results in an ecological

context and also to compare the results more directly

with the available field inventory data.

Across all sites taller trees had higher mortality rates and

lower growth rates. This aligns with large scale analyses of

field-based studies (Iida et al., 2014). The apparent higher

growth and mortality rates in French Guiana compared

with the sites in Malaysia was potentially a result of biases

introduced to the variation in scan parameters (flight

height, pulse density, time of year etc.) and so the values

should not be directly compared across sites. Inventory

data show that mean DBH growth for trees at Paracou was

1.2 mm year-1 (Wagner et al., 2010) compared with 0.9

mm year-1 in Sepilok East, 1.1 mm year-1 in Sepilok West

and 0.5 mm year-1 in Danum (Ordway et al., 2022; Piponiot

et al., 2022). We note that these inventory measured DBH

growth rates may not be directly comparable with the

height growth measured in this study. Another caveat is

that we defined mortality as a drop in height of more than

a statistically determined threshold. We do not verify

Figure 5. (A) shows the robust least squares fit for change in height and tree height for Paracou. The dashed lines indicate three standard

deviations either side of the best fit and red points below the lower bound indicate likely mortality events. (B) Illustrates how predictions were

overlaid on lidar data and shows mortality events clearly visible in the lidar and the RGB imagery. The 2016 imagery is shown on the left, 2019

on the right. Crown delineations are based on the earlier imagery.
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J. G. C. Ball et al. Tropical Tree Crown Delineation Mask R-CNN and RGB

 20563485, 0, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.332 by Inrae - D

ipso, W
iley O

nline L
ibrary on [24/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



directly that the tree has died, although it is likely that it

has snapped or uprooted. Further analysis would help to

understand the discrepancy in observed height change at

Paracou in comparison with the other sites but is not the

focus of the current study. Nevertheless, we believe this

example application demonstrates the utility of Detectree2

in expanding the sample of trees under observation.

Future methodological developments and
applications

Detectree2 performs impressively when delineating tall

trees but it fails to delineate a significant proportion of

trees. There is considerable scope to increase the quantity

and variety of training data by labelling more trees by

hand. A more robust approach to compensating for

shadowed regions may also support the detection of trees

otherwise obscured by their neighbours.

The fact that Detectree2 can be quickly trained to per-

form well on a new type of forest and imagery demon-

strates that it is a useful tool for forest management.

Many conservation or restoration projects have access to

low-cost imagery from drones or satellites. Detectree2

would allow them to quickly quantify and track the num-

ber and size distribution of trees across an entire land-

scape. In combination with other remote sensing data

sources, this could allow for improved carbon stock and

dynamics estimation. Estimating carbon stocks in forests

has traditionally been done using area-based methods

which discard considerable granular information at the

individual tree level (Coomes et al., 2017).

We focused on aerial RGB imagery which is the cheapest

and most widely available imaging source for tropical for-

ests. We also benefited from the variety of pre-trained

models that come with this data type. However, different

data sources may provide additional information that

would help to discern differences between crowns. In par-

ticular, multi-spectral imagery that typically includes addi-

tional bands in the near-infrared is commonly used to

study differences between trees due to the optical properties

of vegetation (Knipling, 1970). Alternatively, the canopy

surface (a raster expressing the height of the canopy) is

commonly used in traditional segmentation techniques

(e.g. watershed algorithms) and is produced with photo-

grammetry as a step in generating an orthomosaic. Includ-

ing this as a layer would add an additional dimension of

information that could help to distinguish fine differences

in structure. It would be straightforward to include addi-

tional (or different) bands to the Detectree2 framework but

it would forego the utility of the pre-trained models. There-

fore, it is likely that significantly more training data and

computational resources would be required to train a

model (from scratch) to the desired performance.

Ideally, we could apply this approach to satellite imag-

ery to perform global analyses. Preliminary tests suggest

that Detectree2 can accurately delineate trees in RGB

imagery at 2 m resolution (Supplementary Note 7) which

is equivalent to modern high-resolution satellite imagery.

If this proves possible it will help answer many long-

standing questions in forest ecology as well as provide an

important tool for forest management. A ‘random resiz-

ing’ augmentation step would further help improve gen-

eralizability across resolutions and incorporating ‘small

object’ detection features (Tong & Yiquan, 2022) would

improve the sensitivity to shorter trees.

While we studied the delineation of a single class (tree),

Detectree2 can be trained and make predictions on multi-

ple classes. This may allow for low-cost species identifica-

tion and mapping. It may also help to automatically
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Figure 6. (A) shows the distribution of tree heights per site. (B)

shows the mortality rates of trees of different heights in each site,

and (C) gives the growth rate of trees split by height bin. Due to

biases in tree height measurements that can arise from differences in

lidar scan parameters we advise against a direct comparison of

growth and mortality rates between sites. Uncertainty estimates were

determined by bootstrapping.
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assess liana infestation occurrence. Previously, hyperspec-

tral data have been employed to address this problem but

with limited success due to the phylogenetic and spectral

diversity of lianas and relatively low spatial resolution of

hyperspectral imagery (Grabska et al., 2020; Wessel

et al., 2018). The availablility of Detectree2 as an open-

source Python package means other research groups can

test its efficacy on their own research questions.
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1 https://github.com/PatBall1/Detectree2.
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EL_ZOO.md.

3 https://github.com/facebookresearch/detectron2/blob/main/configs/

COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml.

4 https://wandb.ai/detectree/tune/sweeps/.

5 See https://github.com/PatBall1/Detectree2.
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in the Supporting Information section at the end of the

article.

Figure S1. An original RGB image is displayed on the left,

while a stretched RGB image is displayed on the right of

this figure. Stretching the colours of the image to the

values allows for easier identification of individual trees

when carrying out manual tree crown delineations. The

effect is particularly noticeable in the lower left corner of

the images.

Figure S2. Illustration of the Mask R-CNN predictions

and architecture from He et al. (2017).

Figure S3. (A) Crown bounding boxes predicted by

DeepForest (Weinstein et al., 2019), and (B) crowns pre-

dicted by Detectree2. The colours in plot B merely distin-

guish predicted trees. A comparison of manually

delineated crowns, overlaid on lidar (C) and RGB (D).

Figure S4. Examples of training data provided to Mask

R-CNN. The different colours help to distinguish between

trees.

Figure S5. These plots are taken from He et al. (2016)

and they illustrate that deeper neural networks do not

necessarily learn as well as shallower neural networks.

Figure S6. The total training and validation loss of Mask

R-CNN as the model trained. Both total training and vali-

dation loss were calculated every 20 iterations.

Figure S7. Example delineation results at Danum.

Figure S8. Example delineation results at Sepilok West.

Figure S9. Example delineation results at Sepilok West.

Figure S10. Example delineation results at Paracou.

Figure S11. The sensitivity of the accuracy of the segmen-

tations to the resolution of images used in training and

testing.

Figure S12. Shows the robust least squares fit for change

in height and tree height for Sabah (Danum, Sepilok

West and Sepilok East). The dashed lines indicate three

standard deviations either side of the best fit and red

points below the lower bound indicate likely mortality

events.

Table S1. Tunable hyperparameters (with their optimised

value) and a description of their purpose.

Table S2. The coefficients and intercepts for the robust

least squares fit between original tree height and the

change in tree height.

Supplementary Note 1. Study sites and remote sensing

data collection.

Supplementary Note 2. Tree crown data.

Supplementary Note 3. Data preparation and processing.

Supplementary Note 4. Model architecture, tuning and

training.

Supplementary Note 5. Evaluation metrics.

Supplementary Note 6. Maps of predictions.

Supplementary Note 7. Sensitivity to image resolution.

Supplementary Note 8. Growth and mortality details.

Table S3. Model accuracies and parameters across sites.

Table S4. A comparison of the contribution of over/

undersegmentation to the accuracies across sites.

Table S5. The accuracy of predictions by tree height.

Table S6. The estimated growth and mortality by tree

height across the sites.

14 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Tropical Tree Crown Delineation Mask R-CNN and RGB J. G. C. Ball et al.

 20563485, 0, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.332 by Inrae - D

ipso, W
iley O

nline L
ibrary on [24/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.agrformet.2011.04.012
https://doi.org/10.1016/j.agrformet.2011.04.012
https://doi.org/10.1111/j.1744-7429.2010.00644.x
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.3390/rs8040333
https://doi.org/10.1109/MGRS.2017.2762307
https://doi.org/10.1111/nph.18144

	 Abstract
	 Introduction
	 Materials and Methods
	 Study sites
	 Remote sensing data
	 Manual tree crown data
	 Data preparation
	 Model architecture and parameterization
	 Training and model selection
	 Performance evaluation
	rse2332-fig-0001
	 Transferability across sites
	 Application to monitoring growth and mortality
	 Computation

	 Results
	 Performance by site and tree height
	 Performance between forest types
	 Application: growth and mortality
	rse2332-fig-0002
	rse2332-fig-0003

	 Discussion
	 Improved tropical crown delineation
	 Generalizability across sites
	rse2332-fig-0004
	 Application: growth and mortality rates
	rse2332-fig-0005
	 Future methodological developments and applications
	rse2332-fig-0006

	 Acknowledgements
	 Data Availability Statement

	 References
	rse2332-bib-0001
	rse2332-bib-0002
	rse2332-bib-0003
	rse2332-bib-0004
	rse2332-bib-0005
	rse2332-bib-0006
	rse2332-bib-0007
	rse2332-bib-0008
	rse2332-bib-0009
	rse2332-bib-0010
	rse2332-bib-0011
	rse2332-bib-0012
	rse2332-bib-0013
	rse2332-bib-0014
	rse2332-bib-0015
	rse2332-bib-0016
	rse2332-bib-0017
	rse2332-bib-0018
	rse2332-bib-0019
	rse2332-bib-0020
	rse2332-bib-0021
	rse2332-bib-0022
	rse2332-bib-0023
	rse2332-bib-0024
	rse2332-bib-0025
	rse2332-bib-0026
	rse2332-bib-0027
	rse2332-bib-0028
	rse2332-bib-0030
	rse2332-bib-0031
	rse2332-bib-0032
	rse2332-bib-0033
	rse2332-bib-0034
	rse2332-bib-0035
	rse2332-bib-0036
	rse2332-bib-0037
	rse2332-bib-0038
	rse2332-bib-0039
	rse2332-bib-0040
	rse2332-bib-0041
	rse2332-bib-0042
	rse2332-bib-0043
	rse2332-bib-0044
	rse2332-bib-0045
	rse2332-bib-0046
	rse2332-bib-0047
	rse2332-bib-0048
	rse2332-bib-0049
	rse2332-bib-0050
	rse2332-bib-0051
	rse2332-bib-0052
	rse2332-bib-0053
	rse2332-bib-0054
	rse2332-bib-0057
	rse2332-bib-0058
	rse2332-bib-0059
	rse2332-bib-0060
	rse2332-bib-0061
	rse2332-bib-0062
	rse2332-bib-0063
	rse2332-bib-0064
	rse2332-bib-0065
	rse2332-bib-0066
	rse2332-bib-0067
	rse2332-bib-0068
	rse2332-bib-0069
	rse2332-bib-0070
	rse2332-bib-0071
	rse2332-bib-0072
	rse2332-bib-0073


