
HAL Id: hal-04104379
https://hal.science/hal-04104379

Preprint submitted on 24 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

From multivalued to Boolean functions: preservation of
soft nested canalization

Élisabeth Remy, Paul Ruet

To cite this version:
Élisabeth Remy, Paul Ruet. From multivalued to Boolean functions: preservation of soft nested
canalization. 2023. �hal-04104379�

https://hal.science/hal-04104379
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


From multivalued to Boolean functions: preservation of
soft nested canalization
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Abstract

Nested canalization (NC) is a property of Boolean functions which has been
recently extended to multivalued functions. We study the effect of the Van
Ham mapping (from multivalued to Boolean functions) on this property. We
introduce the class of softly nested canalizing (SNC) multivalued functions,
and prove that the Van Ham mapping sends SNC multivalued functions to
NC Boolean functions. Since NC multivalued functions are SNC, this preser-
vation property holds for NC multivalued functions as well. We also study
the relevance of SNC functions in the context of gene regulatory network
modelling.

Keywords: nested canalizing functions, Boolean functions, multivalued
functions, regulatory network modelling

1. Introduction

Dynamical properties of biological systems, such as stability and robust-
ness, are often associated with the canalyzing property. This notion is at
the basis of the work of Waddington in embryology, which describes, in the
1940s, epigenetic landscapes representing embryogenesis by canalizing con-
figurations [26]. In the 1990’s, S. Kauffman introduced the class of canalizing
Boolean functions [4, 5] to formalize the canalizing behaviour observed in
gene regulatory networks. In short, canalizing Boolean functions are func-
tions f : (Z/2Z)n → Z/2Z (or R) such that at least one input variable, say
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xi (1 ⩽ i ⩽ n), has a value a = 0 or 1 which determines the value of f(x).
Nested canalizing (NC) functions provide a “recursive” version of canaliz-
ing functions: an NC function f is canalizing and, moreover, its restriction
f↾xi ̸=a is itself NC. NC functions are particularly interesting because of
their “low complexity”: in particular, their average sensitivity (a measure
of complexity related to spectral concentration, learning properties, decision
tree complexity [13] and stability properties [4, 6]) is bounded above by a
constant [8, 7].

A natural question is the extension of this canalizing property to multi-
valued functions, involving more than two expression levels, which are often
needed in the modeling of biological systems to circumvent the too restrictive
Boolean representation [23]. The present paper investigates the property of
nested canalization for multivalued functions f : (Z/kZ)n → Z/kZ or R for
some k ⩾ 2. A definition of nested canalizing (NC) multivalued function
has been proposed in [10, 11]. In [16], we introduced a more general class of
multivalued functions, which we called weakly nested canalizing (WNC), for
which we proved that the average sensitivity is bounded above by a constant.

Multivalued modelling allows to distinguish different thresholds of ac-
tion of a gene on its targets, and is of course more complex to analyse than
the Boolean case. Boolean mappings have been proposed, associating one
Boolean variable to each threshold. This gives access to a large number
of theoretical works and numerical tools specific to the analysis of Boolean
models. Thus we are interested in the relationship between the notions of
canalization for multivalued and Boolean functions. Clearly an NC Boolean
function is NC multivalued, but what can we say about the other direction?
More precisely, a mapping β from multivalued functions to Boolean func-
tions have been defined by Van Ham in [25], and it have been proved in
[2, 24] to be in some sense unique (it is the only injective such mapping pre-
serving neighbours in the state space, and for which the regulatory graphs
are unchanged).

We prove here that β maps NC multivalued functions to NC Boolean
functions. To this end, we introduce in Section 2 the notion of softly nested
canalizing (SNC) multivalued functions, and prove that NC⇒ SNC⇒WNC
(Proposition 2 and Section 2.3). Then we actually prove in Theorem 3 that
SNC functions are mapped by β to NC Boolean functions. On the other
hand, we show that Theorem 3 does not extend to WNC functions: we shall
see in Section 3.5 an example of a WNC function which is mapped by β to
a non NC Boolean function.

NC functions appear as appropriate rules in Boolean models of gene reg-
ulatory networks. Indeed, Boolean networks have been proposed as models
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for gene regulatory networks [22], with different nodes corresponding to dif-
ferent genes. The activity of a gene is regulated by the activity of other
genes to which it is connected through a Boolean function. These networks
are built from biological data and knowledge from the literature, and their
associated Boolean functions are far from random. It turns out that NC
functions are predominant in the large databases of Boolean gene networks
[21]. In Section 4 we extract the multivalued genes from this database, and
we study the canalizing properties of their multivalued functions and their
corresponding Boolean functions.

2. Nested canalizing multivalued functions

The concept of nested canalization, originally considered for Boolean
functions [4], has been extended to multivalued functions in [10, 11, 3]. We
first recall here this definition, before introducing soft nested canalization in
Section 2.1.

Let k, n be positive integers, k ⩾ 2. Z/kZ is the ring of integers modulo
k. A function f : (Z/kZ)n → Z/kZ is said to be canalizing with respect
to coordinate i and (a, b) ∈ Z/kZ × Z/kZ if there exists a function g :
(Z/kZ)n → Z/kZ different from the constant b such that

f(x) =

{
b if xi = a

g(x) if xi ̸= a.

We shall simply say that f is canalizing if it is canalizing with respect to
some i, a, b.

A segment is a subset of Z/kZ of the form {0, . . . , i} or {i, . . . , k−1}. Let
σ ∈ Sn be a permutation, A1, . . . , An be segments, and c1, . . . , cn+1 ∈ Z/kZ
be such that cn ̸= cn+1. Then f is said to be nested canalizing (NC) with
respect to σ, A1, . . . , An, c1, . . . , cn+1 if

f(x) =



c1 if xσ(1) ∈ A1

c2 if xσ(1) /∈ A1, xσ(2) ∈ A2

...
...

cn if xσ(1) /∈ A1, . . . , xσ(n−1) /∈ An−1, xσ(n) ∈ An

cn+1 if xσ(1) /∈ A1, . . . , xσ(n−1) /∈ An−1, xσ(n) /∈ An.

We shall simply say that f is NC if it is NC with respect to some σ,
A1, . . . , An, c1, . . . , cn+1.
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Note that the segment Ai plays the role of a threshold for the variable
xσ(i). For an NC multivalued function f as defined in [10, 11, 3], each
variable xσ(i) is used exactly once in the process of canalization (and the
value of f if determined by the threshold corresponding to Ai). It is possible
to relax the definition by allowing canalization along successive thresholds
for a same variable. This is essentially what we shall do in defining softly
nested canalizing functions below. In doing so, we shall also remove the
condition cn ̸= cn+1.

2.1. Softly nested canalizing multivalued functions

Let n be a positive integer. For each i ∈ {1, . . . , n}, let ki > 0, Ωi be a
set of ki integers, Ω =

∏
iΩi, and f : Ω → R. Note that we do not require

ki ⩾ 2 for all i. If kj = 1 for some j, f could be viewed as a function with
one less variable, i.e. as a function on

∏
i ̸=j Ωi, but we still consider it as a

function defined on
∏

iΩi.
We shall say that f is softly canalizing with respect to coordinate i and

(a, b) ∈ Ωi × R if f(x) = b whenever xi = a, and simply that it is softly
canalizing if it is softly canalizing with respect to some i, a, b.

Note that this definition differs slightly from the usual definition by the
absence of condition on the values of f for xi ̸= a: we do not require the
existence of some x such that xi ̸= a and f(x) ̸= b. In particular, constant
functions are softly canalizing, though not canalizing.

If f is canalizing with respect to i, a, b and ki ⩾ 2, we shall consider

f↾xi ̸=a : Ω ∩ {x | xi ̸= a} → R,

the restriction of f to the set of x ∈ Ω such that xi ̸= a.
The class of softly nested canalizing on Ω =

∏
iΩi is then defined by

induction on the cardinality |Ω| =
∏

i ki of Ω. If |Ω| = 1, i.e. ki = 1 for all i,
any f : Ω → R is softly nested canalizing (SNC) on Ω. If |Ω| > 1, f : Ω → R
is SNC on Ω if there exist i, a, b such that

• ki ⩾ 2,

• a is either the min or the max of Ωi,

• f is softly canalizing with respect to i, a, b,

• f↾xi ̸=a is SNC on Ω ∩ {x | xi ̸= a}, a strict subset of Ω.

Intuitively, a function f : Ω → R is SNC if its domain Ω can be “peeled”
by successively removing coordinate hyperplanes (defined by equations of
the form xi = a with a minimal or maximal) whose points are mapped by
f to the same value, whence the following characterization:
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Proposition 1. Letting K =
∑

i ki − n, f is SNC if and only if there exist
a function v : {1, . . . ,K} → {1, . . . , n}, numbers ai ∈ Ωv(i) and bi ∈ R for
each i ∈ {1, . . . ,K} such that:

f(x) =


b1 if xv(1) = a1

b2 if xv(1) ̸= a1, xv(2) = a2
...

...

bK if xv(1) ̸= a1, . . . , xv(K−1) ̸= aK−1, xv(K) = aK

and for each i ∈ {1, . . . ,K}, Ω′
v(i) = Ωv(i) \ {aj | j < i, v(i) = v(j)} is not a

singleton and ai is either the min or the max of Ω′
v(i).

In decomposing an NC function f : (Z/kZ)n → Z/kZ, each coordinate
i ∈ {1, . . . , n} is considered exactly once (in some order prescribed by a
permutation σ) and the value of f is fixed for xσ(i) in some segment Ai.
This can be realized by successively fixing the value of f for each α ∈ Ai,
and therefore, the class of SNC functions contains the class of NC functions,
as stated in the following Proposition:

Proposition 2. If f : (Z/kZ)n → Z/kZ is NC, then it is SNC.

Proof. Assume f is NC with respect to σ, A1, . . . , An, c1, . . . , cn+1. For each
i ∈ {1, . . . , n}, let

Ai = {α1
i , . . . , α

|Ai|
i }

(Z/kZ) \Ai = {α1+|Ai|
i , . . . , αk−1

i }.

More precisely, the K = n(k− 1) numbers αj
i ∈ Z/kZ are defined according

to the following ordering which depends on the nature of the segment Ai:

• either 0 ∈ Ai, and then we choose the numbers αj
i so that 0 = α1

i <

· · · < α
|Ai|
i and k − 1 = α

1+|Ai|
i > · · · > αk−1

i ;

• or k − 1 ∈ Ai, and we choose the αj
i so that k − 1 = α1

i > · · · > α
|Ai|
i

and 0 = α
1+|Ai|
i < · · · < αk−1

i .

If both 0 and k−1 ∈ Ai, i.e. if Ai = Z/kZ, we choose any of the two orders.
Now, for each i ∈ {1, . . . , n} and j ∈ {1, . . . , k − 1}, let

βj
i =

{
ci if j ⩽ |Ai|
cn+1 otherwise.
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To comply with the characterization of SNC functions (Proposition 1), we
relabel the numbers αj

i , β
j
i by identifying the list

α1
1, . . . , α

|A1|
1 , . . . , α1

n, . . . , α
|Ai|
n , α

1+|A1|
1 , . . . , αk

1 , . . . , α
1+|An|
n , . . . , αk−1

n

as the list a1, . . . , aK , and by identifying similarly the list

β1
1 , . . . , β

|A1|
1 , . . . , β1

n, . . . , β
|An|
n , β

1+|A1|
1 , . . . , βk

1 , . . . , β
1+|An|
n , . . . , βk−1

n

as the list b1, . . . , bK . Call φ this relabelling, which maps r ∈ {1, . . . ,K} to
the pair φ(r) = (i, j) such that ar = αj

i and br = βj
i . For instance, φ(1) =

(1, 1) and φ(K) = (n, k − 1). Then finally, a function v : {1, . . . ,K} →
{1, . . . , n} is defined by v(r) = σ(i) if φ(r) = (i, j). Then f clearly enjoys
the characterization of SNC functions, with the choice of function v and
numbers ar, br.

2.2. Some examples

• We have already noticed that constant functions from (Z/kZ)n to
Z/kZ are SNC but not NC.

• An easy induction on k shows that the functions min and max :
(Z/kZ)2 → Z/kZ are SNC. For instance, min = mink : {0, . . . , k −
1}2 → {0, . . . , k − 1} is softly canalizing with respect to 1, 0, 0, then
mink↾x1 ̸=0 is softly canalizing with respect to 2, 0, 0, and mink↾x1 ̸=0,x2 ̸=0

is identical to the function mink−1 : {1, . . . , k − 1}2 → {1, . . . , k − 1},
which is SNC.

However, they are not NC [3]. Intuitively, there is more freedom in
the construction of SNC functions, which can be built by successively
“peeling” coordinate hyperplanes defined on some coordinate i (i.e.
by some equation xi = a), then a coordinate hyperplane defined on
some other coordinate j, and later a coordinate hyperplane defined on
i again.

• For the same reason, the identity from (Z/kZ)n to (Z/kZ)n is SNC
but not NC. As we shall see in Section 4, this applies to the functions
governing the regulation of genes such as Raf, Dsor, Drk, Stat92E.

• In Section 4, we shall see other examples of SNC and non SNC func-
tions occurring in multivalued gene regulatory networks found in the
literature.
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2.3. WNC multivalued functions and average sensitivity

It is possible to consider a slightly more general notion of multivalued
canalization, by removing the condition on canalizing values in the definition
of SNC functions. This is what we do in [16]: weakly nested canalizing
(WNC) functions f : (Z/kZ)n → Z/kZ are defined like SNC functions, but
the values a used to define f(x) for xi = a need not be extreme values
(initially 0 or k − 1), they can be intermediate values: 0 < a < k − 1.

By Proposition 2, NC ⇒ SNC ⇒ WNC, and we prove in [16] that WNC
(hence NC and SNC) multivalued functions have “low complexity” in the
sense that their average sensitivity (see [13, Chapter 8]) is bounded above by
a constant (independent of n), while the average sensitivity of an arbitrary
multivalued function is of order O(n).

It is worth noticing that the above implications are strict. For instance,
the function f : Z/3Z× Z/3Z → Z/3Z defined by the following table:

f(x, y) =

x\y 0 1 2

0 2 0 0
1 1 1 1
2 2 0 2

is WNC but not SNC: the first canalization has to take the intermediate
value x = 1 (and determines f(x, y) = 1), then the second canalization
takes y = 0 (determining f(x, y) = 2) or y = 1 (determining f(x, y) = 0),
and finally x = 0 or x = 2.

3. Preservation of nested canalization under Boolean mapping

3.1. Mapping multivalued functions to Boolean functions

Let n, Ωi = Z/kiZ and Ω =
∏n

i=1Ωi be as above.
The injective mapping β : Ω ↪→ {0, 1}k, with k =

∑
i ki−n, proposed by

Van Ham [25] is defined as follows. For i ∈ {1, . . . , n} and 1 ⩽ a ⩽ ki − 1,
let βi,a : Ω → {0, 1} be defined by

βi,a(x) =

{
1 if xi ⩾ a

0 otherwise,

and
βi(x) = (βi,1(x), . . . , βi,ki−1(x)) = 1xi0ki−1−xi ,
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where 1ℓ = (1, . . . , 1) is the ℓ-tuple of 1’s (and similarly for 0ℓ), and tuples
of 0’s and 1’s are represented by words (without commas and parentheses).
The maps can be combined to define β : Ω ↪→ {0, 1}k by

β(x) = (β1,1(x), . . . , β1,k1−1(x), . . . , βn,1(x), . . . , βn,kn−1(x))

= 1x10k1−1−x1 · · · 1xn0kn−1−xn .

The image β(Ω) of β is a strict subset of {0, 1}k (unless ki = 2 for all i), and
a point x ∈ {0, 1}k is said admissible when x ∈ β(Ω). Given F : Ω → Ω, by
injectivity of β, the equality

F β ◦ β = β ◦ F,

defines F β : β(Ω) → β(Ω), the Booleanization of F .
Clearly, if F is Boolean (i.e. ki = 2 for all i), then β(Ω) = Ω = (Z/2Z)n

and F β = F .
Let us mention that other injective mappings from Ω to {0, 1}k may be

defined but β is the only one preserving neighbours and regulatory graphs
[2, 24]:

• two neighbouring states (i.e. states x, y ∈ Ω whose Hamming distance
equals 1) are mapped by β to neighbouring states in β(Ω),

• the global regulatory graphs G(F ) and G(F β) underlying the dynam-
ics F and F β are isomorphic. We refer to, e.g., [15, 17, 18] for the
definition of G(F ).

The purpose of the remainder of this section is to prove that β maps SNC
multivalued functions to NC (Boolean) functions. Before doing this in The-
orem 3 we need to recall the definition of nested canalization for Boolean
functions.

3.2. Nested canalizing Boolean functions

Let k be a positive integer, σ ∈ Sk be a permutation, and a1, . . . , ak,
b1, . . . , bk ∈ {0, 1}. We recall that a Boolean function f : {0, 1}k → {0, 1} is
said to be nested canalizing (NC) with respect to σ, a1, . . . , ak, b1, . . . , bk if

f(x) =


b1 if xσ(1) = a1

b2 if xσ(1) ̸= a1, xσ(2) = a2
...

...

bk if xσ(1) ̸= a1, . . . , xσ(k−1) ̸= ak−1, xσ(k) = ak.

(∗)
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Note that we slightly modify the usual definition by not requiring f(x) =
1− bk when xσ(1) ̸= a1, . . . , xσ(k−1) ̸= ak−1, xσ(k) ̸= ak.

We shall simply say that f is NC if it is NC with respect to some
σ, a1, . . . , ak, b1, . . . , bk, and that a function F = (F1, . . . , Fk) : {0, 1}k →
{0, 1}k is NC if Fj : {0, 1}k → {0, 1} is NC for all j.

3.3. Nested canalizing partial Boolean functions

In Section 3.4, we shall consider functions f : X → {0, 1} defined on a
subset X ⊆ {0, 1}k. We extend the notion of nested canalization to such
partial functions, by simply saying that f : X → {0, 1} is NC with respect
to the above data if condition (∗) holds for all x ∈ X.

3.4. Relation between β and nested canalization

Theorem 3. If F = (F1, . . . , Fn) : Ω → Ω is SNC, then F β : β(Ω) → β(Ω)
is NC.

Proof. As in the definition of β, we shall use double indices for Boolean
functions, and let

F β = (F β
1,1, . . . , F

β
1,k1−1, . . . , F

β
n,1, . . . , F

β
n,kn−1)

= (F β
1 , . . . , . . . , F

β
n ),

where F β
j,a = βj,a ◦ F : β(Ω) → {0, 1} and

F β
j = βj ◦ F = (F β

j,1, . . . , F
β
j,kj−1) : β(Ω) → {0, 1}kj−1.

Therefore F β
j (β(x)) = 1Fj(x)0kj−1−Fj(x) and F β

j,a(β(x)) = 1 ⇔ Fj(x) ⩾ a.

Let us fix j ∈ {1, . . . , n} and 1 ⩽ a ⩽ kj − 1 and prove that F β
j,a is NC.

By assumption, Fj : Ω → Ωj is SNC, hence by Proposition 1, there exist
a function v : {1, . . . ,K} → {1, . . . , n}, with K =

∑
i ki − n, and numbers

ai ∈ Ωv(i) and bi ∈ Ωj for each i ∈ {1, . . . ,K} such that, for all x ∈ Ω:

Fj(x) =


b1 if x ∈ Ω(1) and xv(1) = a1

b2 if x ∈ Ω(2) and xv(2) = a2
...

...

bK if x ∈ Ω(K) and xv(K) = aK ,

where for all i ∈ {1, . . . ,K}, Ω(i) ⊆ Ω is the set of x such that

xv(1) ̸= a1, . . . , xv(i−1) ̸= ai−1.
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Note that Ω = Ω(1) ⊃ Ω(2) ⊃ · · · ⊃ Ω(K) form a decreasing sequence of
subsets of Ω.

Moreover, by Proposition 1, the numbers ai are assumed to satisfy the
following constraint:

either ai = minΩ
(i)
v(i) or ai = maxΩ

(i)
v(i).

Let εi = 0, a′i = ai + 1 in the first case (min case) and εi = 1, a′i = ai in the
second case (max case). Letting y = β(x), we observe that in the min case,
when x ∈ Ω(i) we have

xv(i) = ai ⇔ xv(i) ⩽ ai ⇔ yv(i),ai+1 = βv(i),ai+1(x) = 0,

and that in the max case, we have

xv(i) = ai ⇔ xv(i) ⩾ ai ⇔ yv(i),ai = βv(i),ai(x) = 1.

These two equivalences are summerized in the following property:

xv(i) = ai ⇔ yv(i),a′i = εi whenever x ∈ Ω(i). (P )

Let us prove by induction on i that

x ∈ Ω(i) ⇔


yv(1),a′1 ̸= ε1
...

yv(i−1),a′i−1
̸= εi−1.

(Qi)

Q1 is trivial because Ω(1) = Ω, and by property P , we have

x ∈ Ω(i+1) ⇔
(
x ∈ Ω(i) and xv(i) ̸= ai

)
⇔

(
x ∈ Ω(i) and yv(i),a′i ̸= εi

)
,

henceQi entailsQi+1, and we have shown thatQi holds for any i. Combining
properties P and Qi, we then obtain:

{
x ∈ Ω(i)

xv(i) = ai
⇔


yv(1),a′1 ̸= ε1
...

yv(i−1),a′i−1
̸= εi−1

yv(i),a′i = εi.
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On the other hand, F β
j,a(y) = 1 ⇔ Fj(x) ⩾ a. Hence, letting χb⩾a = 1 if

b ⩾ a and 0 otherwise, we have F β
j,a(y) = χFj(x)⩾a. In particular

Fj(x) = bi ⇒ F β
j,a(y) = χbi⩾a.

Therefore, the condition that Fj is SNC gives, for any y ∈ β(Ω):

F β
j,a(y) =


χb1⩾a if yv(1),a′1 = ε1

χb2⩾a if yv(1),a′1 ̸= ε1, yv(2),a′2 = ε2
...

...

χbK⩾a if yv(1),a′1 ̸= ε1, . . . , yv(K−1),a′K−1
̸= εK−1, yv(K),a′K

= εK .

This means that F β
j,a is NC in the sense of Section 3.3. Since this holds for

all j, a, F β is NC.

3.5. Counterexample for WNC functions

Let f : Ω = Z/3Z × Z/3Z → Z/3Z be the function defined in Section
2.3. It is WNC but not SNC, and β(Ω) ⊆ {0, 1}2 × {0, 1}2. The function
fβ : β(Ω) → {0, 1}2 is given by the following table:

fβ(x, y) =

00 10 11

00 11 00 00
10 10 10 10
11 11 00 11

where pairs in {0, 1}2 are written without commas and parentheses. This
table is simply obtained from the one defining f by the substitutions 0 7→
00, 1 7→ 10, 2 7→ 11.

Now, the two Boolean functions fβ
1 , f

β
2 : β(Ω) → {0, 1} such that fβ =

(fβ
1 , f

β
2 ) are therefore:

fβ
1 (x, y) =

00 10 11

00 1 0 0
10 1 1 1
11 1 0 1

fβ
2 (x, y) =

00 10 11

00 1 0 0
10 0 0 0
11 1 0 1

and it is easy to see that fβ
1 is NC but that fβ

2 is not NC. Therefore Theorem
3 does not extend to WNC functions.
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4. Examples in the regulatory network literature

Boolean NC functions appear predominant in databases of Boolean ge-
netic networks [21]. If this canalyzing property reflects physical character-
istics of biological systems, we wonder whether this property is also present
in multivalued functions that model these same systems. Thus, in order
to have an insight into the characteristics of multivalued functions speci-
fied in the context of biological systems, we have selected the multivalued
genes present in the logical models explored in [21] (45 genes endowed with
a ternary variable) and studied the canalizing properties (NC, SNC, WNC)
of their logical functions. We also applied the Boolean mapping β and stud-
ied the canalizing property of the resulting Boolean functions. The results
of the analysis are collected in Table 1, reflecting four different qualitative
situations:

(a) functions F which are NC (hence SNC, WNC, and with NC Boolean-
ization F β);

(b) functions which are not NC, but SNC (hence WNC, and with NC
Booleanization);

(c) functions which are not WNC (hence neither NC nor SNC) but with
NC Booleanization;

(d) functions which are not WNC and with non NC Booleanizations.

Remark that in this set of functions, all WNC functions are actually SNC.
The logical rules corresponding to these genes are collected in the Ap-

pendix. To simplify the notation in the rules, the name of the gene is written
to represent its activity variable (for instance A : 1 stands for xA = 1), and
the value of FA is defined by means of the usual logical connectives (con-
jonction ∧, disjunction ∨ and negation ¬). For example, the first and third
lines of Table A.2 mean:

FDrk(x) =


1 if xDer = 1

2 if xDer = 2

0 otherwise

FRI(x) =


1 if xDsor1 = 1 and xMsk = 1

2 if xDsor1 = 2 and xMsk = 1

0 otherwise

This means that gene Drk can be activated at level 1 (resp. 2) when its
(unique) regulator Der is at level 1 (resp. 2). Gene RI has two regulators,
Msk (which is Boolean) and Dsor1, and it can be activated at level 1 (resp.
2) if Msk is present (xMsk = 1) and Dsor1 is at level 1 (resp. 2).
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Some situations are more complex. For instance, gene MadMed (ex-
tracted from the model described in [9]) has three regulators: a multilevel
activator Tkv, a Boolean activator Sax and a Boolean inhibitor Dad. The
rule for MadMed is the following (cf Table A.5):

FMadMed(x) =


1 if (xTkv = 1 or xSax = 1) and xDad = 0 and xTkv < 2

2 if xTkv = 2 and xDad = 0

0 otherwise.

Thus, in the absence of the inhibitor Dad, the presence of one of the two
activators at level 1 (max level for Sax and intermediate for Tkv) allows
MadMed to be activated at its level 1. MadMed can be activated at its
maximum level as soon as its activator Tkv is at its maximum level 2 and
the inhibitor Dad is absent.

The structure of multivalued logical rules varies greatly. A quite current
situation is when the level of only one regulator determines the target value
of the gene: {

A = 1 if B ∧ φ

A = 2 if ¬B ∧ φ
(S)

with B a regulator of A, and φ a “context” (conditions on the presence or
absence of other regulators). This concerns the genes listed in Tables A.2,
A.3, A.4. We can see in Table 1 that the rules satisfying this structure
(S) generally have strong canalyzing properties: situations (a) or (b). In
particular, their Booleanizations are all NC. Then, depending on the context,
we distinguish three situations:

• if φ depends on multivalued variables and is expressed only with ∧,
then the function behaves according to situation (b); this is the case
of, e.g., Stat92E; these functions are listed in Table A.2;

• if φ is expressed with at least one ∨, then the function behaves ac-
cording to situation (c) (functions listed in Table A.3);

• if φ depends on Boolean variables and is expressed only with ∧, then
the function behaves according to situation (a) (functions listed in
Table A.4). Note that nodes IL4RA and E2F3 are controlled by a
multivalued gene (resp. STAT5 and CHEK), but their level depends
only on one threshold (to be above or below level 2).
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Gene NC SNC WNC Bool. NC Struct.

E Spl Yes Yes Yes Yes
mQH2 Q Yes Yes Yes Yes (S)
mdH Yes Yes Yes Yes (S)
mGR Yes Yes Yes Yes
mGSH GSSG Yes Yes Yes Yes (S)
mTRX Yes Yes Yes Yes (S)
cGSH GSSG Yes Yes Yes Yes (S)
cGR Yes Yes Yes Yes
E2F3 Yes Yes Yes Yes (S)
IL12RB1 Yes Yes Yes Yes (S)
IL4RA Yes Yes Yes Yes (S)
Drk No Yes Yes Yes (S)
Dsor1 No Yes Yes Yes (S)
Pnt No Yes Yes Yes (S)
Stat92E No Yes Yes Yes (S)
Raf No Yes Yes Yes (S)
RI No Yes Yes Yes (S)
Sos No Yes Yes Yes (S)
Tkv No Yes Yes Yes
mNNT No Yes Yes Yes
mCa No Yes Yes Yes (S)
mGPX No Yes Yes Yes (S)
mTR No Yes Yes Yes
cGPX No Yes Yes Yes (S)
cTR No Yes Yes Yes
cTRX No Yes Yes Yes (S)
STAT5 No Yes Yes Yes
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Gene NC SNC WNC Bool. NC Struct.
Ras No No No Yes
MadMed No No No Yes
Hop No No No Yes
mNADPH NADP No No No Yes
mNADH NAD No No No Yes (S)
cCa No No No Yes
KrebsCycle No No No Yes (S)
VIM No No No Yes
CDH1 No No No Yes
EMT No No No Yes
IL2R No No No Yes (S)
IL4R No No No Yes (S)

mROS No No No No
Der No No No No
cROS No No No No
cNADPH NADP No No No No
E2F1 No No No No
Spi1 No No No No

Table 1: Multivalued genes occurring in logical models from
database considered in [21]. The two rightmost columns indi-
cate whether the Booleanized functions are nested canalizing,
and which rules satisfy structure (S).

The rules that do not satisfy structure (S) are collected in Tables A.5
and A.6. In particular, Table A.6 gathers all the rules in situation (d), for
which even the Booleanized functions are not NC.

The study of these multivalued functions suggests a certain relevance of
canalization, notably SNC, among models arising in the modelling of gene
networks. But it should be noted that we have not specified the assumptions
for updating the system while they play an important role in the dynamical
behavior of the system and its properties. Implicitly, we here considered
that the gene directly reached its target value: for instance, Drk can be
activated at level 2 when Der is at level 2, and if the current state of Drk is
0, it will update directly to value 2. However, in such context of biological
systems, it is not a realistic hypothesis, steps of 1 are more common: in the
previous example, if Der is at level 2 and Drk is not active, its activity will
first reach level 1. The introduction of the “steps of 1” hypothesis in the
definition of the function would obviously change the canalizing properties.
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Appendix A. Logical rules

Gene i xi Rule Ref

Drk
1 Der : 1

[9]

2 Der : 2

Dsor1
1 Raf : 1
2 Raf : 2

RI
1 Dsor1 : 1 ∧Msk
2 Dsor1 : 2 ∧Msk

Pnt
1 RI : 1
2 RI : 2

Sos
1 Drk : 1
2 Drk : 2

Stat92E
1 Hop : 1 ∧ φ

[9]
2 Hop : 2 ∧ φ where φ = ¬Suvar ∧ ¬Ptp61F ∧

¬Ken ∧ ¬Brwd3 ∧ ¬Socs44A

Raf
1 Ras : 1 ∧ Cnk ∧ Src42 ∧Ksr
2 Ras : 2 ∧ Cnk ∧ Src42 ∧Ksr

mCa
1 cCa : 1

[19]

2 cCa : 2

mGPX
1 mGSH GSSG : 1 ∧ ¬mROS
2 mGSH GSSG : 2 ∧ ¬mROS

cTRX
1 cTR ∧ cROS : 1
2 cTR ∧ ¬cROS

cGPX
1 cGSH GSSG : 1 ∧ ¬cROS
2 cGSH GSSG : 2 ∧ ¬cROS

Table A.2: Rules associated to multivalued genes from databases
considered in [21], satisfying structure (S) and behaving according
to situation (b).

Gene i xi Rule Ref
mNADH 1 (KrebsCycle ∨mPDH ∨ FAO) ∧ ETC

[19]

NAD 2 (KrebsCycle ∨mPDH ∨ FAO) ∧ ¬ETC

KrebsCycle

1 ¬mCa ∧ ¬mNADH NAD ∧
(AcetylCoA ∨ GLUTAMINOLYSIS)

2 mCa ∧ ¬mNADH NAD ∧
(AcetylCoA ∨ GLUTAMINOLYSIS)

IL2R
1 ¬IL2RA ∧ CGC ∧ IL2RB ∧ (IL2 ∨ IL2 e)

[12]
2 IL2RA ∧ CGC ∧ IL2RB ∧ (IL2 ∨ IL2 e)
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Gene i xi Rule (continued) Ref

IL4R
1 IL4RA : 1 ∧ CGC ∧ (IL4 ∨ IL4 e)

[12]
2 IL4RA : 2 ∧ CGC ∧ (IL4 ∨ IL4 e)

Table A.3: Rules associated to multivalued genes from databases
considered in [21], satisfying structure (S) and behaving according
to situation (c).

Gene i xi Rule Ref

IL12RB1
1 ¬IRF1

[12]
2 IRF1

mGSH 1 mGR ∧mGPX

[19]
GSSG 2 mGR ∧ ¬mGPX

mdH
1 ETC ∧ ATPSyn
2 ETC ∧ ¬ATPSyn

mQH2 Q
1 ETC ∧ ¬mdH

[19]

2 ETC ∧mdH

mTRX
1 mTR ∧mROS
2 mTR ∧ ¬mROS

cGSH 1 cGR ∧ cGPX
GSSG 2 cGR ∧ ¬cGPX

IL4RA
1 ¬STAT5 : 2

[12]
2 STAT5 : 2

E2F3
1 ¬CHEK : 2 ∧ ¬RB1 ∧ RAS

[14]
2 CHEK : 2 ∧ ¬RB1 ∧ RAS

Table A.4: Rules associated to multivalued genes from databases
considered in [21], satisfying structure (S) and behaving according
to situation (a).

Gene i xi Rule Ref

Ras
1 (Sos : 1 ∧ ¬(Sty ∧ Gap1)) ∨ (Gap1 ∧ Sty ∧ Sos : 2)

[9]
2 Sos : 2 ∧ ¬(Sty ∧ Gap1)

Tkv
1 (Dpp : 1 ∨ Scw ∨ Gbb) ∧ Punt ∧ ¬(Sog ∨ Tsg)
2 Dpp : 2 ∧ Punt ∧ ¬(Sog ∨ Tsg)

mNNT

1 mNADH NAD : 1 ∧mdH : 1

[19]

2 (mNADH NAD : 2 ∧mdH : 1) ∨
(mNADH NAD : 2 ∧mdH : 2) ∨
(mNADH NAD : 1 ∧mdH : 2)

mNADPH 1 (¬mNNT ∧mIDH2) ∨ (mNNT : 1 ∧ ¬mIDH2)
NADP 2 mNNT : 2 ∨ (mNNT : 1 ∧mIDH2)
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Gene i xi Rule (continued) Ref

mGR

1 (mNADPH NADP : 1 ∨mNADPH NADP : 2) ∧

[19]

(¬mGSH GSSG ∨mGSH GSSG : 1)
2 (mNADPH NADP : 1 ∨mNADPH NADP : 2) ∧

mGSH GSSG : 2

mTR
1 (mNADPH NADP : 2 ∧ (¬mTRX ∨mTRX : 1)) ∨

mNADPH NADP : 1
2 mTRX : 2 ∧mNADPH NADP : 2

cCa

1 (IP3R ∧ ¬ORAI1 ∧ ¬TRPM2 ∧ ¬PMCA) ∨
(¬IP3R ∧ ¬ORAI1 ∧ TRPM2 ∧ ¬PMCA) ∨
(¬IP3R ∧ORAI1 ∧ TRPM2 ∧ ¬PMCA) ∨
(¬IP3R ∧ORAI1 ∧ ¬TRPM2 ∧ ¬PMCA)

2 (IP3R ∧ORAI1 ∧ TRPM2 ∧ ¬PMCA) ∨
(IP3R ∧ORAI1 ∧ ¬TRPM2 ∧ ¬PMCA) ∨
(IP3R ∧ ¬ORAI1 ∧ TRPM2 ∧ ¬PMCA)

cGR

1 (cNADPH NADP : 1 ∨ cNADPH NADP : 2) ∧
(¬cGSH GSSG ∨ cGSH GSSG : 1)

2 (cNADPH NADP : 1 ∨ cNADPH NADP : 2) ∧
cGSH GSSG : 2

cTR
1 (cNADPH NADP : 2 ∧ (¬cTRX ∨ cTRX : 1)) ∨

cNADPH NADP : 1
2 cTRX : 2 ∧ cNADPH NADP : 2

Hop
1 Dome ∧ ¬ET ∧ [(Stam ∧Hrs ∧ Socs36E) ∨

[9]

(¬(Stam ∧Hrs) ∧ ¬Socs36E)]
2 Dome ∧ ¬ET ∧ Stam ∧Hrs ∧ ¬Socs36E

MadMed
1 ((Tkv : 1 ∨ Sax : 1) ∧ ¬Dad : 1 ∧ ¬Tkv : 2) ∨

(Tkv : 2 ∧Dad : 1)
2 Tkv : 2 ∧ ¬Dad : 1

E Spl
1 ¬(Nicd ∧Mam)
2 Nicd ∧Mam ∧ ¬H ∧ ¬Gro ∧ ¬CtBP

STAT5
1 ¬(IL4R : 2 ∨ IL2R : 2) ∧

[12](IL4R : 1 ∨ IL2R : 1 ∨ IL15R)
2 IL4R : 2 ∨ IL2R : 2

VIM
1 (SNAIL1 ∨ ZEB1) ∧ ¬(ZEB1 ∧ SNAIL1)

[20]

2 ZEB1 ∧ SNAIL1

CDH1
1 ¬ZEB1 ∧ ¬SNAIL1
2 (SNAIL1 ∨ ZEB1) ∧ ¬(ZEB1 ∧ SNAIL1)

EMT
1 (VIM ∨ ¬CDH1) ∧ ¬(VIM ∧ ¬CDH1)
2 VIM ∧ ¬CDH1

Table A.5: Rules associated to multivalued genes from databases
considered in [21], not satisfying structure (S) and behaving ac-
cording to situations (a), (b) or (c).

18



Gene i xi Rule Ref

mROS

1 ((¬mPRX ∧mGPX) ∨ (mPRX ∧ ¬mGPX)) ∧

[19]

(ETC ∨mGR ∨mTR) ∧ ¬cROS
2 [(ETC ∨mGR ∨mTR ∨ cROS) ∧

¬(mPRX ∨mGPX)] ∨ [cROS ∧
(mPRX ∨mGPX ∨ ETC ∨mGR ∨mTR)]

cROS

1 ((cPRX ∧ ¬cGPX) ∨ (¬cPRX ∧ cGPX)) ∧
(NOX2 ∨DUOX1 ∨ cTR ∨ cGR) ∧ ¬mROS

2 [¬(cPRX ∨ cGPX) ∧
(NOX2 ∨mROS ∨DUOX1 ∨ cTR ∨ cGR)] ∨
[mROS ∧ (cPRX ∨ cGPX ∨
NOX2 ∨DUOX1 ∨ cTR ∨ cGR)]

cNADPH

1 (mShuttle ∧ ¬PPP ∧ ¬GLUTAMINOLYSIS) ∨

[19]

(¬mShuttle ∧ PPP ∧ ¬GLUTAMINOLYSIS) ∨
(¬mShuttle ∧ ¬PPP ∧ GLUTAMINOLYSIS)

NADP 2 (mShuttle ∧ PPP ∧ GLUTAMINOLYSIS) ∨
(¬mShuttle ∧ PPP ∧ GLUTAMINOLYSIS) ∨
(mShuttle ∧ ¬PPP ∧ GLUTAMINOLYSIS) ∨
(mShuttle ∧ PPP ∧ ¬GLUTAMINOLYSIS)

Der

1 [(Spi : 1 ∨ Vein) ∧ ¬Aos : 1 ∧ ¬Kek : 1 ∧

[9]
¬Cbl ∧ ¬Spi : 2 ∧ Shc] ∨
[Spi : 2 ∧ Shc ∧ (Kek : 1 ∨ Aos : 1 ∨ Cbl)]

2 Spi : 2 ∧ ¬Kek : 1 ∧ ¬Aos : 1 ∧ ¬Cbl ∧ Shc

E2F1

1 [(¬(CHEK : 2 ∧ ATM : 2) ∧ (RAS ∨ E2F3)) ∨

[14]
(CHEK : 2 ∧ ATM : 2 ∧ ¬RAS ∧ E2F3 : 1)] ∧
¬RB1 ∧ ¬RBL2

2 ¬RB1 ∧ ¬RBL2 ∧ ATM : 2 ∧ CHEK : 2 ∧
(RAS ∨ E2F3 : 2)

Spi1

1 [Spi1 ∧ Runx1 ∧

[1]

¬(((Cebpa ∨ Cebpb) ∧ Csf1r) ∨
(Foxo1 ∧ ¬Ikzf1) ∨ ¬Gfi1)]
∨ (Foxo1 ∧ Ebf1 ∧ Ikzf1 ∧ ¬(Spi1 ∨ Runx1))

2 (Spi1 ∧ Runx1 ∧ (Cebpa ∨ Cebpb) ∧ Csf1r) ∨
(Spi1 ∧ Runx1 ∧ ¬(Gfi1 ∨ (Foxo1 ∧ Ikzf1)))

Table A.6: Rules associated to multivalued genes from databases
considered in [21], not satisfying structure (S) and behaving ac-
cording to situation (d).
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