
Integration of heterogeneous components for
co-simulation*

Jawher Jerray1 , Rabea Ameur-Boulifa1 , and Ludovic Apvrille1

1LTCI, Télécom Paris, Institut Polytechnique de Paris, Sophia-Antipolis, France

Abstract

Because of their complexity, embedded systems are designed with sub-systems or com-
ponents taken in charge by different development teams or entities and with different mod-
eling frameworks and simulation tools, depending on the characteristics of each component.
Unfortunately, this diversity of tools and semantics makes the integration of these heteroge-
neous components difficult. Thus, to evaluate their integration before their hardware or soft-
ware is available, one solution would be to merge them into a common modeling framework.
Yet, such a holistic environment supporting many computation and computation semantics
seems hard to settle. Another solution we investigate in this paper is to generically link their
respective simulation environments in order to keep the strength and semantics of each com-
ponent environment. The paper presents a method to simulate heterogeneous components
of embedded systems in real-time. These components can be described at any abstraction
level. Our main contribution is a generic glue that can analyze in real-time the state of differ-
ent simulation environments and accordingly enforce the correct communication semantics
between components. Once presented in a generic way, our glue is illustrated with Apache
Kafka as the communication facility between simulation engines. It is then applied to two
model and simulation frameworks: TTool and SystemC. Finally, Zigbee serves as a case
study to illustrate the strengths of our approach.

Keywords— Heterogeneous models, Simulation, Formal verification, Integration, System design

1 Introduction
Complex embedded systems are commonly designed using several modeling approaches and tools, be-
cause of the different nature of sub-systems, and because of the use of tiers to provide equipments. In-
tegrating such heterogeneous is known as complex because of the diversity of models. Yet, ideally, this
integration stage should be done as early as possible in the development process of these systems to verify,
e.g., that the interfaces and main data exchanged are as expected, and can provide the expected overall
functions.

Since forcing all suppliers to use the same modeling languages or simulation techniques is a too hard
constraint, integrating together components designed in different formalisms requires either to somehow
connect these formalisms. A first way to do would be to glue the different meta-models of the components
in order to build a unique model from which verifications can be performed. This has already been shown
in the scope of components for which their models of computation are quite similar [ZAM20]. Yet, when
they are too different, a second approach must be used: connecting these components at simulation level.
This is what the paper proposes to do, with a focus on the data exchanges between these components to
ensure that the correct communication semantics are enforced.

In this paper, we define a method and techniques to allow to integrate a set of models designed with
different frameworks and simulated using their own simulator, with no modification on their simulation

*This is the author version of the manuscript of the same name published in the proceedings of the 18th International
Conference on Software Technologies (ICSOFT 2023).

1

https://orcid.org/0000-0001-6170-7489
https://orcid.org/0000-0002-2471-8012
https://orcid.org/0000-0002-1167-4639
https://icsoft.scitevents.org/Home.aspx


engine. To maintain the co-simulation in real-time of these different simulators, we propose a generic ”sim-
ulation glue” based on a distributed event streaming platform to join heterogeneous simulators together.
This work offers an alternative to the socket-based approaches such as the one proposed in [HEF19]. After
having defined this glue, the paper illustrates in a more concrete way how SystemC and TTool [SAV21]
components can be co-simulated, using Apache Kafka as the distributed event streaming platform. A case
study with Zigbee shows the efficiency and limits of our contribution.

2 Related Work
In the area of heterogeneous distributed systems analysis, e.g., [BBS06; LD20], most of the works are
based on co-simulation, but not many of them can support both simulation and formal validation in the
same framework.

For coupling two or more simulation tools in a co-simulation environment, most of the approaches
(e.g., [Nee+14; Tav+16; Mug+19]) rely on the Functional Mockup Interface (FMI) Standard [Blo+11] to
bundle, in a single black-box, the internal computations and the interface descriptions of the simulation
units. One of the most difficult challenges these approaches face is dealing with the gap between the
different semantics [Tri15] of simulation units such as the various semantics of the coordination, which can
refer to continuous time or discrete events. In [LD20], the authors have defined a language for describing
model coordination interfaces. The interface is dedicated to share the elements necessary to coordinate the
execution and communication among the simulation units.

There also exist dedicated platforms for the modelling and the simulation of heterogeneous component-
based systems, examples include [Bal+03; Eke+03; BBS06]. These platforms support several modeling
languages with a variety of component semantics. However, they offer a general and unified framework
for the design and simulation, even for hybrid systems.

Among existing co-simulation solutions for integrating complex systems, the model transformation
from a high-level language to SystemC is proposed in the scope of UML or SysML [RS07; VV09; RS12].
In [Ati+08], the authors propose a tool to transform a high level MARTE description into an executable
platform via a chain of model transformations. These solutions are relatively tedious since the transforma-
tion of high-level languages into traditional simulation or verification must preserve the semantics, which
is commonly tedious for supporting correctly communication and computation semantics. Moreover, all
modeling environments must propose a model transformation to the same target language (e.g., SystemC)
and the simulation specifications obtained from high-level languages must still be integrated together.

3 Contribution: a framework for simulating heterogeneous
models via a distributed event streaming platform

This section presents our contribution: a new framework for the integration of heterogeneous components
using a simulation integration platform. This integration platform is agnostic to the simulation technology,
as long as it (partially) supports the communication semantics described in this section.

3.1 Component model
A model is components interconnected with ports. A model supports 4 types of ports: internal input ports
Ii, external input ports I′j, internal output ports Ok and external output ports O′l . A model M has m internal
input ports, n external input ports, p internal output ports and q external output ports as shown in Fig. 1.
We assume that the objective is to co-simulate a set of components C . We assume that the simulation
engine of each c ∈ C can already handle communications internal to c. Thus, in this paper, we focus on
external input ports I′j and external output ports O′l .

In this paper, we consider two modeling frameworks and their corresponding meta-models: TTool [23]
and SystemC.

TTool models TTool can be used to capture SysML components that can be simulated with the internal
simulator [KAP09] of TTool to prove safety and performance properties.

2



Model
M

Ii
i ∈ [1,m]

I′j
j ∈ [1,n]

Ok
k ∈ [1, p]

O′l
l ∈ [1,q]

Figure 1: A model

BROKER

Partition0

Partitionp1

Topic1

012. . .
...

012. . .

...

Topicn

Partition0

Partitionpn

012. . .
...

012. . .

Producer1

Producer2

Producer3

Producer4

...

Producerl

Consumer1

Consumer2

Consumer3

Consumer4

...

Consumerm

Figure 2: Structure of Kafka Server

SystemC models SystemC components, written in C++, can be simulated with the SystemC simulation
engine.

3.2 Distributed event streaming platform
We assume that a facility, part of our platform, can stream events to distributed senders/receivers so as to
ensure data can be sent and received, in real-time, by the simulation engines of components. There are
many event streaming platforms, we cite for example: Apache Spark, Apache Kafka, Apache Flink and
Spring Cloud Data Flow.

Apache Kafka. We decided to rely on the Apache Kafka to forward messages between simulation
engines. We used Kafka because it supports many computing platforms and can also handle distributed and
event-based communications. Yet, Kafka cannot natively support the communication semantics usually
found in modeling frameworks for embedded systems, for instance the exchange of values via FIFO. Yet,
Kafka supports the notion of broker: a broker contains a set of topics, and each topic has a set of partitions
that can be considered as an infinite FIFO buffer, as shown in Fig. 2.

To send messages to a partition, we rely on producers. A producer can send messages to different
partitions in different topics. Consumers can receive messages from partitions configured at co-simulation
setup.

3.3 Communication
In Fig. 3, we give an example of the simulation integration between 3 models via a distributed event
streaming platform, where:

3



Model
M1

I1

I′1
I′2

O1

O′1
O′2

Model
M2

I1

I′1
I′2

O1

O′1

Model
M3

I1

I′1

O1

O′1
O′2

Glued models

Distributed event
streaming platform

Figure 3: Communication between models and the distributed event streaming platform

• Model M1 has 2 external input ports I′1 and I′2 and 2 external output ports O′1 and O′2.

• Model M2 has 2 external input ports I′1 and I′2 and 1 external output port O′1.

• Model M3 has 1 external input port I′1 and 2 external output ports O′1 and O′2.

The distributed event streaming platform must ensure communications from / to:

• External output O′1 of M1 to external input I′1 of M2.

• External output O′2 of M1 to external input I′1 of M3.

• External output O′1 of M2 to external input I′1 of M1.

• External output O′1 of M3 to external input I′2 of M1.

• External output O′2 of M3 to external input I′2 of M2.

Fig. 4 depicts the general approach of our contribution. First, we assume that a user wants to co-
simulate at least two models having possibly different meta-models. From those models, our contribution
automatically updates these models to allow them to interact with our co-simulation framework. Then,
using these Co-simulation models, we start the corresponding simulation of each model at the same time.
We assume we can access to the simulation trace of each simulation when they are running: what is of
interest for us is obviously to identify all the potential read or write transactions on external ports. More
precisely, the co-simulator needs to know about the kind of data being sent or received on each port and at
which simulation step they are to be sent or received. When data is ready to be sent on an external output
port, our co-simulator ensures data are forwarded to the corresponding external input port while enforcing
the communication semantics, e.g., finite or infinite FIFO, exchange of values or exchange of a quantity of
information.

Fig. 5 zooms on the co-simulation box shown in Fig. 4. As we can note all the co-simulation is based
on streaming platform. For each model, the co-simulator manages the sending and receiving of data from
the event streaming platform depending on the port type and the current status of ports.

3.4 Co-simulation models
The purpose of modifying the original models is to facilitate communication between the simulation of a
model and the co-simulation. The Co-simulation model will add new tasks in the functional view, also it
adds new CPUs and memories in the architecture. The Co-simulation models are automatically generated
from a given model. We give below the algorithm that allows to obtain the ”Co-simulation model” box
shown in Fig. 4 for a given TTool model.

Algorithm. A TTool model consists of two views: a functional view and a platform view. In the func-
tional view, SysML blocks are used to describe the functions and their communication. The behaviour of
each function is given with an Activity Diagram. Functions can communicate together using two different
facilities: event and data channels. Events can be used to exchange control values. Data channels are
used to capture the exchange of a quantity of information. In the platform view, functional blocks are
allocated to blocks representing hardware components: processors, buses and memories. Functions are
to be allocated to execution components (e.g., processors), and data communication are mapped to buses

4



<<component>>
Co-simulation

<<component>>
Simulation of Model 1

<<component>>
Model 1

<<component>>
Trace of Model 1

Models ...

<<component>>
Co-simulation Model 1

Co-simulation
Models ...

Text

Automatic adjustment

<<component>>
Model 2

<<component>>
Co-simulation Model 2

Automatic adjustment

<<component>>
Model n

<<component>>
Co-simulation Model n

Automatic adjustment

Simulations

run

<<component>>
Simulation of Model 2

run

<<component>>
Simulation of Model n

run

<<component>>
Trace of Model 2Traces

generate generate

<<component>>
Trace of Model n

generate

parse  parse parse

Glued Models/Event
streaming platform

...

...

retrieve informationretrieve informationretrieve information

Model 1 Model 2 Model n

Figure 4: An overview of the proposed approach

Figure 5: Zoom in the ”Co-simulation” box

5



and memories. Events are not mapped since the traffic induced by control signals is usually considered as
negligible. Events and data channels support different semantics, such as finite FIFO, infinite FIFO, etc.

Handling a communication (events, data) with a model outside of TTool means that the hardware
platform modeled in TTool must contain an input/output device connected to a bus from which all system
components can be reached. This is how this is achieved in embedded systems: a communication interface
must be used for input and output operations.

As a consequence, sending information to a component external to the TTool’s model means that
transactions on memories and on buses leading to the communication interface device must be taken into
account when simulating the TTool model. Thus, when connecting TTool’s simulator with another simu-
lator, TTool’s model must first be patched to add one communication device per output or input channel.
Each communication component ce is composed of a function fce mapped to a dedicated processor pce .
Just like for other function block, fce is captured with a SysML block. The activity diagram of fce features
a main loop, which is infinite. In the case of an input device, the loop contains a wait event operator that
makes it possible to receive the number of samples to be read (i.e., the quantity of information). The wait
event is followed by a read channel operator. In the case of an output device, the infinite loop had a send
event to send to the destination the number of samples to be read, and then a write operator. Algorithm 1
formalizes the different steps necessary to prepare a TTool model for external co-simulation: this includes
creating the new tasks fce and their behavior, creating the processor pce , connecting it to the corresponding
bus, and connecting the new ports (ports of fce to the sending ou receiving function).

4 Implementation of our method for sysML and SystemC
models based on Kafka

4.1 An example of Generating automatically an Co-simulation TTool model
Let’s consider an example with 3 external input ports (”evt 1”, ”comm 1” and ”comm 2”) and 2 external
output ports (”evt 2” and ”comm 3”). The top task diagram in Fig. 6 and the top architecture in Fig. 9
depict functional components and the allocation of components to the related architecture, respectively.

The application of Algorithm 1 to this model automatically transforms the component view to the
bottom task diagram given in Fig. 6. Similarly, the activity diagrams of the new tasks of the external
channels ”comm 1” and ”comm 3” are shown in Figs. 7 and 8, respectively. Besides, the activity diagram
of the task of the external channel ”comm 2” is similar to that of the channel ”comm 1”. Also, we give in
the bottom of Fig. 9 the new hardware architecture.

4.2 Handling automatically the communication semantics via Kafka
The general idea behind our contribution is to create automatically the necessary partition to handle the
communication semantics, e.g., to manage the number of events or data samples in transit between two
external ports. At each port, i.e. for each model, we also create consumers and producers. A consumer
intends to collect values from partitions, while a producer add information to partitions. Finally, our
co-simulation framework is based on a set of partitions handled by Kafka and a set of producers and
consumers.

We now review how the different communication semantics of data channels and events can be handled
by the co-simulation framework (”Co-simulation” box in Fig. 4). The paper focuses on two communication
semantics: Blocking Read Blocking Write for data channels and Block Read Non Blocking Write with
finite FIFO for events.

4.2.1 Blocking Read, Blocking Write Channel

Let’s consider a model built upon two components c1 and c2 exchanging data with an external communi-
cation. c1 has an ”external output” port comm of type ”blocking write channel”, c2 has an ”external input”
port comm of type ”blocking read channel”. Because they are external, these two ports must exchange
data via our platform to provide a blocking-read blocking-write channel communication. The platform is
configured as follows.

6



Algorithm 1: Algorithm of the creation of the Co-simulation TTool model

1 for each i input channel in list input channels do
2 disconnect port from origin side (i input channel); /* Disconnect the

external port from its origin. */
3 create new task(); /* Create new task for the external input channel.

*/
4 connect port to new task(i input channel); /* Connect the external port to

the new task. */
5 add event(i input channel); /* Add an event to the new task, this event

will retrieve data from the co-simulator using the avs command
that allows to add signals to a given event. */

6 associate activity diagram to task (i input channel); /* Create the activity
diagram of the new task that contains an infinite loop with a
read event to get the data sent by the co-simulator followed by
a write channel to insert the data to the model. */

7 add CPU in architecture(i input channel); /* Add a new CPU in the
architecture and associate the created task to it. */

8 link CPU to bus(i input channel); /* Link the new CPU to the main Bus.
*/

9 end
10 for each i out put channel in list out put channels do
11 disconnect port from destination side (i output channel); /* Disconnect the

external port from its destination. */
12 create new task(); /* Create new task for the external input channel

*/
13 connect port to new task(i output channel); /* Connect the external port

to the new task */
14 add event(i output channel); /* Add an event to the new task, this event

will retrieve data from the co-simulator using the avs command
that allows to add signals to a given event. */

15 associate activity diagram to task (i output channel); /* Create the activity
diagram of the new task that contains an infinite loop with a
read event, followed by a read channel to remove samples from
the channel. */

16 add CPU in architecture(i output channel); /* Add a new CPU in the
architecture and associate the created task to it. */

17 link CPU to bus(i output channel); /* Link the new CPU to the main Bus.
*/

18 end

7



Input

comm_2

evt_1

comm_1
Output

evt_2

comm_3
comm_3

comm_1

evt_1

comm_2

evt_2Component

evt_1

comm_2 comm_3

evt_2

comm_1
Input

comm_2

evt_1

comm_1
Output

evt_2

comm_3
comm_3

comm_1

evt_1

comm_2

evt_2Component

evt_1

comm_2 comm_3

evt_2

comm_1

—————————————————————————————————————

evt_2

Input

evt_1

TASK_INP_COMMUNIC_CHANNEL_comm_2

- nbr_samples_input_from_kafka_comm_2 = 0 : Natural;

comm_2

goTM_IN_comm_2 goTM_IN_comm_2

TASK_INP_COMMUNIC_CHANNEL_comm_1

- nbr_samples_input_from_kafka_comm_1 = 0 : Natural;
comm_1

goTM_IN_comm_1 goTM_IN_comm_1

goTM_OUT_comm_3goTM_IN_comm_2

goTM_IN_comm_1

evt_1

comm_3

Output

evt_2

TASK_OUTP_COMMUNIC_CHANNEL_comm_3

- nbr_samples_output_from_kafka_comm_3 = 0 : Natural;

comm_3

goTM_OUT_comm_3 goTM_OUT_comm_3

comm_1

comm_2

Component

comm_1

comm_2 comm_3

evt_1

evt_2
evt_2

Input

evt_1

TASK_INP_COMMUNIC_CHANNEL_comm_2

- nbr_samples_input_from_kafka_comm_2 = 0 : Natural;

comm_2

goTM_IN_comm_2 goTM_IN_comm_2

TASK_INP_COMMUNIC_CHANNEL_comm_1

- nbr_samples_input_from_kafka_comm_1 = 0 : Natural;
comm_1

goTM_IN_comm_1 goTM_IN_comm_1

goTM_OUT_comm_3goTM_IN_comm_2

goTM_IN_comm_1

evt_1

comm_3

Output

evt_2

TASK_OUTP_COMMUNIC_CHANNEL_comm_3

- nbr_samples_output_from_kafka_comm_3 = 0 : Natural;

comm_3

goTM_OUT_comm_3 goTM_OUT_comm_3

comm_1

comm_2

Component

comm_1

comm_2 comm_3

evt_1

evt_2

Figure 6: Top: The original Task diagram of the initial model. Bottom: The auto-generated task
diagram of the Co-simulation model.

chl
comm_1(nbr_samples_input_from_kafka_comm_1)

evt
goTM_IN_comm_1(nbr_samples_input_from_kafka_comm_1) 

for(;;) inside loop

exit loop

chl
comm_1(nbr_samples_input_from_kafka_comm_1)

evt
goTM_IN_comm_1(nbr_samples_input_from_kafka_comm_1) 

for(;;) inside loop

exit loop

Figure 7: The auto-generated activity diagram for Channel comm1

chl
comm_3(nbr_samples_output_from_kafka_comm_3) 

evt
goTM_OUT_comm_3(nbr_samples_output_from_kafka_comm_3) 

for(;;) inside loop

exit loop

chl
comm_3(nbr_samples_output_from_kafka_comm_3) 

evt
goTM_OUT_comm_3(nbr_samples_output_from_kafka_comm_3) 

for(;;) inside loop

exit loop

Figure 8: Generated activity diagram for Channel comm3

8



<<CPURR>>
CPU0

Application::Component

Application::Output

Application::Input

<<BUS-RR>>
Bus0

<<MEMORY>>
Memory0

Application::comm_2

channel

Application::comm_1

channel

Application::comm_3

channel

<<CPURR>>
CPU0

Application::Component

Application::Output

Application::Input

<<BUS-RR>>
Bus0

<<MEMORY>>
Memory0

Application::comm_2

channel

Application::comm_1

channel

Application::comm_3

channel

—————————————————————————————————————

<<CPU>>
CPU_TASK_OUTP_COMMUNIC_CHANNEL_comm_3

Application::TASK_OUTP_COMMUNIC_CHANNEL_comm_3

<<CPU>>
CPU_TASK_INP_COMMUNIC_CHANNEL_comm_2

Application::TASK_INP_COMMUNIC_CHANNEL_comm_2

<<CPU>>
CPU_TASK_INP_COMMUNIC_CHANNEL_comm_1

Application::TASK_INP_COMMUNIC_CHANNEL_comm_1

<<CPU>>
CPU0

Application::Input

Application::Output

Application::Component

<<MEMORY>>
Memory0

Application::comm_3

channel

Application::comm_1

channel

Application::comm_2

channel

<<Bus>>
Bus0

<<CPU>>
CPU_TASK_OUTP_COMMUNIC_CHANNEL_comm_3

Application::TASK_OUTP_COMMUNIC_CHANNEL_comm_3

<<CPU>>
CPU_TASK_INP_COMMUNIC_CHANNEL_comm_2

Application::TASK_INP_COMMUNIC_CHANNEL_comm_2

<<CPU>>
CPU_TASK_INP_COMMUNIC_CHANNEL_comm_1

Application::TASK_INP_COMMUNIC_CHANNEL_comm_1

<<CPU>>
CPU0

Application::Input

Application::Output

Application::Component

<<MEMORY>>
Memory0

Application::comm_3

channel

Application::comm_1

channel

Application::comm_2

channel

<<Bus>>
Bus0

Figure 9: Top: The original architecture of the initial model linked to the top task diagram
in Fig. 6. Bottom: The auto-generated architecture of the Co-simulation model linked to the
bottom task diagram in Fig. 6.

9



T

pr
1

c1

co
2

p1

pr
2

co
1

p2

. .
.
. .
.

c2

Figure 10: External communication between c1 and c2 via a BRBW channel

First of all, a topic denoted T with two partitions p1 and p2 is created to apply the correct communi-
cation semantics between c1 and c2. p1 indicates the current number of samples that can be consumed by
c2 while p2 contains the number of samples that has been already read by c2.

For c1, we create a producer pr1 that puts in p1 the number of samples that have been written. The
producer pr1 detects the written samples by analyzing in real-time the simulation trace of c1. c1 relies on
p2 via consumer co1 to know how many samples have been already read by c2 to figure out how many
samples can be transmitted to p1.

For c2, we create a consumer co2 to get from p1 the number of samples that has been written by pr1,
and we use a producer pr2 to send in p2 the number of samples that have been read based on the simulation
trace of c2. So, the consumer co2 is blocked until a new element is added to p1 or a read is performed by
c2.

Fig. 10 depicts the communication between c1 and c2 and presents the different producers and con-
sumers that are used to maintain correct communication semantics.

Algorithm 2 features how the channels at output side (component c1) are handled for a BRBW channel
and Algorithm 3 shows how to handle channels at input side (component c2) for a BRBW channel.

Algorithm 2: Algorithm of the output side (component c1) for a BRBW channel

1 search← search write trans in trace(channel name); /* Check if there is a write

transaction of this output channel in the trace. */

2 if search is True then
3 nb samples written← get from trace number of samples written (channel name);

/* Parse, from the trace, the number of samples of the external output channel that has

been written. */

4 send message(pr1, T , 0, nb samples written); /* Send the number of samples in p1 of T

created for this channel using its producer pr1. */

5 end
6 nb samples read by c2← read first message no blocking (co1); /* Check if there is a

new message in p2 since the last consumption and return the value of the first new message

(element). */

7 if nb samples read by c2 != ”” then
8 exec command(”avs ”+ name of event created for channel output + ” 1 ” +

nb samples read by c2); /* Add the number of samples obtained from p2 to the event of

the new task that was created for the output external channel. Thanks to the avs command

of the simulator that allows to add virtual signals for a given event. By adding the

number of the samples read by c2 to the event a read transition will be succeeded to

remove the obtained number of samples from the output channel buffer. */

9 end

10



Algorithm 3: Algorithm of the input side (component c2) for a BRBW channel

1 check new data← check new data in topic(channel name); /* Check if there is new

data since the last consumption in p1 of the topic T that was created for this channel. */

2 if check new data is True then
3 nb samples← read first message blocking(co2); /* Consume the first new message

since the last consumption and return the number of samples found in p1 using the consumer

co2 created for this input channel. */

4 exec command(”avs ”+ name of event created for channel input + ” 1 ” +
nb samples); /* Add the number of the new samples obtained from p1 to the event of the

new task that was created for the input external channel (for example the event

goTM OUT comm 1 in Fig. 7). By adding the number of the samples written by c1 to the

event, a write transition will be succeeded to add the obtained number of samples to the

input channel buffer. */

5 end
6 search← search read trans in trace(channel name); /* Check if there is a read

transaction of this input channel in the trace. */

7 if search is True then
8 nb samples read← get from trace number of samples read (channel name);

/* Parse, from the trace, the number of samples of the external input channel that has

been read. */

9 send message(pr2, T , 1, nb samples read); /* Send the number of read samples in p2 of

the topic T using the producer pr2. */

10 end

4.2.2 Blocking Read, No Blocking Write with finite FIFO Event

Let’s consider two components c1 and c2. c1 has an external output port of type ”no blocking write event
with finite FIFO”, and c2 has an external input port of type ”blocking read event”. Because they are
external, these two ports must exchange events via our platform. The platform is configured as follows.

First of all, a topic T with two partitions p1 and p2 is created. p1 indicates the number of events that
can be received while p2 is used to store the parameters of each sent event.

At sending side (component c1), we create two consumers co11 and co12 . co11 is responsible to get
the current number of events to be read from partition p1 and Consumer co12 handles parameters values
stored in p2. Thus, if the FIFO is not full and the simulation trace has a sending event transition, then p1
adds the corresponding event to p1 and the parameters of this event to p2. For instance, if the event is
evt(1, true), and p1 contains the value 2, then value value in p1 is now set to 3 (one more event), and 1 and
true are added to p2. We also create a producer pr1 to update the new current number of samples in the
first partition p1 each time a new send command is successfully performed by c1. When this is the case,
the producer pr1 puts the corresponding parameters of the event in p2.

At receiving side (component c2), we create also two consumers co21 and co22 . co21 is responsible
for reading parameters values from p2 while consumer co22 gets from the first partition p1 the number of
currently events to be read. Also, we create a producer pr2 that sends in p1 the new current number of
samples when an event is read by c2. Thus, co21 blocks until p1 contains a value greater than 0. When this
is the case the second consumer co21 reads parameters from p2 and the event is forwarded to component
c2.

Fig. 11 summarizes the communication between c1 and c2 and presents the different elements used to
maintain correct communication semantics.

Algorithm 4 gives the algorithm to handle events at output side for BRNBW events with finite FIFO.
Algorithm 5 gives the algorithm used at input event side for BRNBW events with finite FIFO.

11



T

p1 p2

c1

pr
1

co
21

pr
2

co
11

c2 co
22

co
12

. .
.
. .
.

Figure 11: External communication between c1 and c2 via a BRNBW event with finite FIFO

Algorithm 4: Algorithm of the output side (component c1) for a BRNBW event with
finite FIFO
1 search← search send trans in trace(event name); /* Check if there is a send transaction

of this output event in the trace. */

2 if search is True then
3 parameters values← get from trace parameters values (event name); /* Parse,

from the trace, the values of the parameters of the external output event that has been

send. */

4 send message(pr1, T , 1, parameters values); /* Send the parameters values in p2 of the

topic T created for this event using its producer pr1. */

5 last nb samples, list indexes to ignore← read last message no blocking no offset
(co11 ); /* Get the last current number of samples and the current list of the indexes of

parameters values to ignore from p1. */

6 if last nb samples < FIFO size then
7 send message(pr1, T , 0, str(last nb samples+1)+list indexes to ignore); /* Send

the new current number of samples with the list of indexes of parameters values to

ignore in p1. */

8 else
9 index parameters to ignore = offset last message no blocking no offset (co12 );

/* Get the index of parameters to ignore according to p2. */

10 send message(pr1, T , 0, str(last nb samples+1) + list indexes to ignore +
index parameters to ignore); /* Send the new current number of samples with the

updated list of indexes of parameters values to ignore in p1. */

11 end
12 end

12



Algorithm 5: Algorithm of the input side (component c2) for a BRNBW event with
finite FIFO
1 cur nb samples, indexes to ignore← read last message no blocking no offset (co22 );

/* Get the current number of samples and the indexes to ignore from p1. */

2 if cur nb samples > 0 then
3 offset message, parameters values = read offset first message blocking (co21 );

/* Get the index of the current message and its value in p2. */

4 while offset message ∈ indexes to ignore do
5 offset message, parameters values = read offset first message blocking (co21 );

/* Get the index of the current message and its value in p2. */

6 end
7 exec command(”avs ”+ name of external input event + number of parameters +

parameters values); /* Add to the external output event the new sample with the values

of its parameters that has been send by c1 using avs command. */

8 end
9 search← search wait trans in trace(event name); /* Check if there is a wait transaction

of this input event in the trace. */

10 if search is True then
11 cur nb samples, indexes to ignore← read last message no blocking no offset

(co22 ); /* Get the current number of samples and the indexes to ignore from p1. */

12 send message(pr2, T , 0, str(cur nb samples-1)+indexes to ignore); /* Update the

current number of samples in p1. */

13 end

5 Co-simulation of SysML and SystemC models
In this section, we show how our platform can be used to co-simulate components designed in TTool
(SysML) and others designed in SystemC. A ZigBee decoder serves as case study: we use the version
described in [EAP17]. ZigBee is a wireless communication scheme adapted to low-power devices.

In this example, we have divided the ZigBee decoder into 5 components, as shown Fig. 12:

• Source is modeled and simulated by TTool.

• symbol2ChipSeq is modeled and simulated using SystemC. This component gets data from Source
by the channel Symbol2ChipSeqChIn and the event Symbol2ChipSeqEvtIn.

• Chip2Octet is modeled and simulated using TTool. This component gets data from symbol2ChipSeq
by the channel Chip2OctetChIn and the event Chip2OctetEvtIn.

• CW is modeled and simulated using SystemC, it contains 3 components CWL, CWP I and CWP Q.
This sub-system gets data from Chip2Octet by the channel CWLChIn and the event CWLEvtIn.

• Sink is modeled and simulated using TTool. This component gets data from CW by the channels
CWP IChOut, CWP QChOut and the events CWP IEvtOut and CWP QEvtOut.

All the external channels, in this example, are of type blocking read blocking write with size 2 and the
external events are of type blocking read, no blocking write with infinite FIFO. Also, we set the control
parameter size to 13.

After having modeled all the above-mentioned sub-systems, we first apply our model update approach.
Then, our approach starts all five simulation engines (one for each component) and our platform, thus
including all the necessary Kafka consumers and producers. Fig. 13 shows the resulting simulation traces
for the five components, where

• ”W” denotes a write in a channel.

• ”R” denotes a read operation from a channel.

• ”S” denotes a send event.

• ”G” denotes a get event.

13



CWP_I

X_CWP_I

+ size : Natural;

CWP_IReqIn

CWP_IChIn
CWP_IChOut

F_CWP_I

+ size : Natural;
CWP_IEvtIn

CWP_IReqOut

CWP_IEvtOut

CWP_Q

X_CWP_Q

+ size : Natural;

CWP_QReqIn

CWP_QChOut CWP_QChIn

F_CWP_Q

+ size : Natural;

CWP_QEvtIn
CWP_QEvtOut

CWP_QReqOut

CWL

X_CWL

+ size : Natural;

CWLChOut

CWLRqIn

CWLChIn

F_CWL

+ size : Natural;

CWLEvtOut1

CWLEvtOut2

CWLEvtInCWLReqOut

Chip2Octet

X_Chip2Octet

+ size : Natural;

Chip2OctetReqIn

Chip2OctetChOut
Chip2OctetChIn

F_Chip2Octet

+ size : Natural;
Chip2OctetEvtIn

Chip2OctetEvtOut

Chip2OctetReqOut

Symbol2ChipSeq

X_Symbol2ChipSeq

+ size : Natural;
Symbol2ChipSeqCHOut

Symbol2ChipSeqReqIn

Symbol2ChipSeqChIn

F_Symbol2ChipSeq

+ size : Natural;

Symbol2ChipSeqEvtOut
Symbol2ChipSeqEvtIn

Symbol2ChipSeqReqOut

Source

F_Source

+ size = 64 : Natural;

SourceReqOut

SourceEvtOut

X_Source

+ size : Natural;
SourceChOut

SourceReqIn

Sink

X_Sink

+ size : Natural;

SinkReqIn

SinkChIn

F_Sink

+ size : Natural;
+ size_1 : Natural; SinkEvtIn2

SinkEvtIn1

SinkReqOut

CWP_I

X_CWP_I

+ size : Natural;

CWP_IReqIn

CWP_IChIn
CWP_IChOut

F_CWP_I

+ size : Natural;
CWP_IEvtIn

CWP_IReqOut

CWP_IEvtOut

CWP_Q

X_CWP_Q

+ size : Natural;

CWP_QReqIn

CWP_QChOut CWP_QChIn

F_CWP_Q

+ size : Natural;

CWP_QEvtIn
CWP_QEvtOut

CWP_QReqOut

CWL

X_CWL

+ size : Natural;

CWLChOut

CWLRqIn

CWLChIn

F_CWL

+ size : Natural;

CWLEvtOut1

CWLEvtOut2

CWLEvtInCWLReqOut

Chip2Octet

X_Chip2Octet

+ size : Natural;

Chip2OctetReqIn

Chip2OctetChOut
Chip2OctetChIn

F_Chip2Octet

+ size : Natural;
Chip2OctetEvtIn

Chip2OctetEvtOut

Chip2OctetReqOut

Symbol2ChipSeq

X_Symbol2ChipSeq

+ size : Natural;
Symbol2ChipSeqCHOut

Symbol2ChipSeqReqIn

Symbol2ChipSeqChIn

F_Symbol2ChipSeq

+ size : Natural;

Symbol2ChipSeqEvtOut
Symbol2ChipSeqEvtIn

Symbol2ChipSeqReqOut

Source

F_Source

+ size = 64 : Natural;

SourceReqOut

SourceEvtOut

X_Source

+ size : Natural;
SourceChOut

SourceReqIn

Sink

X_Sink

+ size : Natural;

SinkReqIn

SinkChIn

F_Sink

+ size : Natural;
+ size_1 : Natural; SinkEvtIn2

SinkEvtIn1

SinkReqOut

TTool TTool

TTool

SystemC

SystemC

Figure 12: Overall view of Zigbee application

• The red arrows show the communication and the data exchanged between components from the first
one (Source) until the last component (Sink) which proves that our platform was able to ensure the
communication between the different simulation engines.

By analyzing the simulation trace, we can easily verify that our platform respects the simulation semantics.
For instance, the channel SourceChOut of the component ”X Source” sends 2 samples to ”X Symbol2chipSeq”
on every write transaction which matches with the size of the external channels, only in the last transaction
where 1 sample was sent (at t ∈ [40,41]). Starting with the second write transaction in ”X Source”, these
write transactions are performed after read operators in ”X Symbol2chipSeq”. A total of 13 samples were
sent to ”X Symbol2chipSeq”. In this use case, we showed an example of communication between compo-
nents modeled and simulated by different platforms. The overall execution time of the Zigbee simulation
is equal to 23 seconds, this time is calculated between the first sending by the component Source and the
last signal received by the component Sink. The high value of the execution time is due to the latency of
Kafka broker. Other alternatives can be used to improve the performance of the approach, for example by
using Sockets instead of Kafka.

14



6 Conclusion
In this paper, we highlighted the need to integrate components together without common modeling lan-
guages nor model transformations. Thus, we presented a method that allows to co-simulate, in real-time,
embedded systems with heterogeneous components while respecting usual communication semantics be-
tween the components to be integrated. Our approach is based on simple model updates, on Kafka, and on
the use of consumers and producers.

We have shown that our method applies to mid-size systems such as Zigbee.
Having a distributed co-simulation has a cost in term of simulation time: we intend to lower the

extra latency as much as possible: an option is to experiment with other brokers, even if Kafka has the
advantage to be a recognized platform for distributed data exchange and is platform agnostic. We also
intend to experiment with more modeling and simulation environments like AADL.

References
[23] TTool. https://ttool.telecom-paris.fr. [Online]. 2023 (cit. on p. 2).

[Ati+08] Rabie Ben Atitallah, Philippe Marquet, Éric Piel, Samy Meftali, Smaı̈l Niar, Anne Etien, Jean-Luc
Dekeyser, and Pierre Boulet. “Gaspard2: from MARTE to SystemC Simulation”. In: Workshop on Mod-
eling and Analyzis of Real-Time and Embedded Systems with the MARTE UML. 2008 (cit. on p. 2).

[Bal+03] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-Vincentelli. “Metropo-
lis: an integrated electronic system design environment”. In: Computer 36.4 (2003), pp. 45–52. DOI:
10.1109/MC.2003.1193228 (cit. on p. 2).

[BBS06] Ananda Basu, Marius Bozga, and Joseph Sifakis. “Modeling Heterogeneous Real-time Components in
BIP”. In: Software Engineering and Formal Methods (SEFM). IEEE Computer Society, 2006, pp. 3–12
(cit. on p. 2).

[Blo+11] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, H. Elmqvist, A. Junghanns, J. Mauss, M. Monteiro, T.
Neidhold, D. Neumerkel, H. Olsson, J. V. Peetz, S. Wolf, and C. Claub. “The Functional Mockup In-
terface for Tool independent Exchange of Simulation Models”. In: Proceedings of the 8th International
Modelica Conference. 2011, pp. 105–114. DOI: 10.3384/ecp11063105 (cit. on p. 2).

[EAP17] Andrea Enrici, Ludovic Apvrille, and Renaud Pacalet. “A Model-Driven Engineering Methodology to
Design Parallel and Distributed Embedded Systems”. In: ACM Trans. Des. Autom. Electron. Syst. 22.2
(Jan. 2017), 34:1–34:25. ISSN: 1084-4309. DOI: 10.1145/2999537 (cit. on p. 13).

[Eke+03] J. Eker, J.W. Janneck, E.A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Yuhong
Xiong. “Taming heterogeneity – the Ptolemy approach”. In: Proceedings of the IEEE 91.1 (2003),
pp. 127–144. DOI: 10.1109/JPROC.2002.805829 (cit. on p. 2).

[HEF19] Eman Hammad, Mellitus Ezeme, and Abdallah Farraj. “Implementation and development of an offline
co-simulation testbed for studies of power systems cyber security and control verification”. In: Interna-
tional Journal of Electrical Power & Energy Systems 104 (2019), pp. 817–826. ISSN: 0142-0615. DOI:
https://doi.org/10.1016/j.ijepes.2018.07.058 (cit. on p. 2).

[KAP09] Daniel Knorreck, Ludovic Apvrille, and Renaud Pacalet. “Fast Simulation Techniques for Design Space
Exploration”. In: Objects, Components, Models and Patterns: 47th International Conference, TOOLS
EUROPE 2009, Zurich, Switzerland, June 29-July 3, 2009. Proceedings. Ed. by Manuel Oriol and
Bertrand Meyer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 308–327. ISBN: 978-3-642-
02571-6. DOI: 10.1007/978-3-642-02571-6_18 (cit. on p. 2).

[LD20] Giovanni Liboni and Julien Deantoni. “CoSim20: An Integrated Development Environment for Ac-
curate and Efficient Distributed Co-Simulations”. In: ICISE 2020 - 5th International Conference on
Information Systems Engineering. Manchester/Virtual, United Kingdom, Nov. 2020 (cit. on p. 2).

[Mug+19] Chuma Francis Mugombozi, Rawad Zgheib, Thierry Roudier, Anthony Kemmeugne, Dmitry Rimorov,
and Innocent Kamwa. “Collaborative Simulation of Heterogeneous Components as a Means Toward a
More Comprehensive Analysis of Smart Grids”. In: 2019 7th Workshop on Modeling and Simulation of
Cyber-Physical Energy Systems (MSCPES). 2019, pp. 1–6. DOI: 10.1109/MSCPES.2019.8738794 (cit. on
p. 2).

[Nee+14] Himanshu Neema, Jesse Gohl, Zsolt Lattmann, Janos Sztipanovits, Gabor Karsai, Sandeep Neema,
Ted Bapty, John Batteh, and Hubertus Tummescheit. “Model-Based Integration Platform for FMI Co-
Simulation and Heterogeneous Simulations of Cyber-Physical Systems”. In: Lund University. 2014,
pp. 235–245 (cit. on p. 2).

[RS07] Waseem Raslan and Ahmed Sameh. “Mapping SysML to SystemC”. In: Forum on specification &
Design Languages FDL. ECSI, 2007, pp. 225–230 (cit. on p. 2).

15

https://ttool.telecom-paris.fr
https://doi.org/10.1109/MC.2003.1193228
https://doi.org/10.3384/ecp11063105
https://doi.org/10.1145/2999537
https://doi.org/10.1109/JPROC.2002.805829
https://doi.org/https://doi.org/10.1016/j.ijepes.2018.07.058
https://doi.org/10.1007/978-3-642-02571-6_18
https://doi.org/10.1109/MSCPES.2019.8738794


[RS12] Elvinia Riccobene and Patrizia Scandurra. “Integrating the SysML and the SystemC-UML profiles in a
model-driven embedded system design flow”. In: Design Automation for Embedded Systems 16 (2012),
pp. 53–91 (cit. on p. 2).

[SAV21] Pierre de Saqui-Sannes, Ludovic Apvrille, and Rob Vingerhoeds. “Checking SysML Models Against
Safety and Security Properties”. In: Journal of Aerospace Information Systems (Nov. 2021), pp. 1–13.
DOI: 10.2514/1.i010950 (cit. on p. 2).

[Tav+16] Jean-Philippe Tavella, Mathieu Caujolle, Charles Tan, Gilles Plessis, Mathieu Schumann, Stéphane
Vialle, Cherifa Dad, Arnaud Cuccuru, and Sébastien Revol. Toward an Hybrid Co-simulation with the
FMI-CS Standard. Research Report. Apr. 2016 (cit. on p. 2).

[Tri15] Stavros Tripakis. “Bridging the semantic gap between heterogeneous modeling formalisms and FMI”.
In: Embedded Computer Systems: Architectures, Modeling, and Simulation SAMOS. IEEE, 2015, pp. 60–
69 (cit. on p. 2).

[VV09] Roberto Varona-Gómez and Eugenio Villar. “AADL Simulation and Performance Analysis in Sys-
temC”. In: 2009 14th IEEE International Conference on Engineering of Complex Computer Systems.
2009, pp. 323–328. DOI: 10.1109/ICECCS.2009.11 (cit. on p. 2).

[ZAM20] Hui Zhao, Ludovic Apvrille, and Frédéric Mallet. “A Model-Based Combination Language for Schedul-
ing Verification”. In: Model-Driven Engineering and Software Development. Ed. by Slimane Ham-
moudi, Luı́s Ferreira Pires, and Bran Selić. Cham: Springer International Publishing, 2020, pp. 27–49.
ISBN: 978-3-030-37873-8 (cit. on p. 1).

16

https://doi.org/10.2514/1.i010950
https://doi.org/10.1109/ICECCS.2009.11


F_Source Send 

Req
S X_Source Get 

Req
Execi W W W W W W W

Source:

F_Symbol2chipSeq X_Symbol2chipSeq

Symbol
To

Chip:

F_Chip_to_Octet G Send 

Req
S X_Chip_to_Octet Get 

Req
R R R R R R R Execi W W W W W W WChip

To
Octet:

F_CWL
X_CWL

F_CWP_I X_CWP_I

F_CWP_Q X_CWP_Q

CW:

F_Sink G G Send 

Req

X_Sink

Get 

Req
R R R R R R R R R R R R RSink:

0 1 2 0 2 3 16 18 20 22 24 26 28 30 32 34 36 38 40 41

0 1 2 3 0 2 3 11 19 27 35 43 51 55 68 70 72 74 76 78 80 81

0 1 2 3

0 3 4 11 15 20 24 29 33 38 42 47 51 56 60 65 69 74 78 83 87 92 96 101

105

110

114

119

123

Figure 13: Zigbee: communication between the components

17


	Introduction
	Related Work
	Contribution: a framework for simulating heterogeneous models via a distributed event streaming platform
	Component model
	Distributed event streaming platform
	Communication
	Co-simulation models

	Implementation of our method for sysML and SystemC models based on Kafka
	An example of Generating automatically an Co-simulation TTool model
	Handling automatically the communication semantics via Kafka
	Blocking Read, Blocking Write Channel
	Blocking Read, No Blocking Write with finite FIFO Event


	Co-simulation of SysML and SystemC models
	Conclusion

