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WHAT CAN WE COMPUTE WITH KIRCHHOFF FORESTS ?

This extended abstract sketches recent and ongoing work investigating how particular distribution of random forests over graphs can be of use to estimate graph-related quantities.

What are Kirchhoff forests? Let G = {V, E} be a connected, undirected, weighted graph with n nodes and m edges. Recall that a tree in G is a connected subgraph of G that does not contain cycles. A spanning tree of G is a tree that spans all nodes of G. A forest is a union of disjoint trees and a spanning forest is a forest that spans all nodes. A rooted spanning forest, that we will generically denote by ϕ, is a spanning forest in which one node per tree is singled out and called "root". The set of roots of a forest ϕ is denoted by ρ(ϕ) ⊆ V. See Fig. 1 for an illustration of these objects. Now, let us call F the set of all rooted spanning forests. Similarly to the related uniform spanning trees, a classical distribution over F that has been studied in the past is (q > 0)

P(Φ q = ϕ) ∝ q |ρ(ϕ)| e∈ϕ ω e (1) 
where the product is over all edges e in the forest ϕ and ω e > 0 is the weight of edge e. A random forest Φ q drawn from this distribution is usually (and somewhat confusingly) called a random spanning forest in the literature. We prefer to call it a Kirchhoff forest (KF) in tribute to his 1847's theorem [START_REF] Kirchhoff | Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen vertheilung galvanischer ströme geführt wird[END_REF] that identifies the normalization constant of Eq. ( 1) with the characteristic polynomial of the graph's Laplacian. The parameter q tunes the number of trees of the forest: the larger q, the larger the expected number of trees.

Why this distribution? These forests are attractive because:

1. there exists an efficient algorithm that samples from this distribution: a modified version of Wilson's algorithm [START_REF] Bruce | Generating random spanning trees more quickly than the cover time[END_REF] that returns a KF in an expected time upper bounded by n+2m/q. This becomes expensive for small q, but is linear in n for q of the order of (or larger than) the average degree. 2. they are a Determinantal Point Process over the edges and nodes [START_REF] Avena | Two Applications of Random Spanning Forests[END_REF]. As such, KFs are theoretically tractable. We have been (and still are) investigating ways to leverage these facts to estimate graph-related quantities. Section 1 gives naive KF-based algorithms on two examples. Section 2 sketches some improvements and illustrates the performance of one of our methods. Section 3 briefly describes two generalisations of these methods, as well as ongoing work.
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TWO NAIVE KF-BASED ALGORITHMS

Graph Tikhonov regularization

Problem formulation. Given noisy measurements y = (y 1 , y 2 , . . . , y n ) ⊤ of a graph signal x ∈ R n defined over the nodes of G, the Tikhonov regularization of y reads (q > 0):

x = argmin z∈R n q||y -z|| 2 + z ⊤ Lz.
(

) 2 
The solution of this minimization problem is:

x = Ky with K = (L + qI) -1 qI. (3) 
A naive KF-based algorithm. The simple algorithm:

1. Sample a Kirchhoff forest Φ q 2. Within each tree of Φ q , propagate the value of y measured on the root to all nodes of the tree yields a piece-wise constant signal (constant within each tree) that turns out [START_REF] Yusuf | Graph tikhonov regularization and interpolation via random spanning forests[END_REF] to be an unbiased estimator of x.

Remark. Interpolation of graph signals is a closely related problem and also has a simple KF-based naive algorithm.

Trace of the regularised inverse of the Laplacian

Problem formulation. One sometimes needs to compute

t q = Tr (K) = Tr (L + qI) -1 qI . (4) 
This happens for instance in the previous Tikhonov problem when one wishes to select the hyperparameter q with methods such as SURE (Stein's unbiased risk estimator) or AIC (Akaike's Information Criterion): t q is in this context called the degrees of freedom of the smoothing method [START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF].

A naive KF-based algorithm. The following simple algorithm yields an unbiased estimator of t q [6]:

1. Sample a Kirchhoff forest Φ q 2. Count the number of roots of Φ q .

IMPROVEMENTS AND ILLUSTRATION

Improvements. We call the previous propositions naive because they are the simplest we can think of that provide unbiased solutions. Of course, in practice, the crucial quantity is the variance of the estimator and it turns out that these naive estimators have a large variance. Thankfully, the following variance reduction techniques can be advantageously adapted in the scenario of KFs [START_REF] Yusuf | Variance reduction in stochastic methods for largescale regularized least-squares problems[END_REF][START_REF] Yusuf | Variance reduction for inverse trace estimation via random spanning forests[END_REF], due to the particular structure of the estimator and of the sampling algorithm: Rao-Blackwellisation, stratified sampling, control variates.

Illustration on the estimation of t q . The state-of-the-art we compare ourselves to is Hutchinson's estimator [START_REF] Michael F Hutchinson | A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines[END_REF] (a variant of Girard's estimator [START_REF] Girard | Un algorithme simple et rapide pour la validation croisée generalisée sur des problèmes de grande taille[END_REF] that uses random vectors with Rademacher entries rather than Gaussian entries):

1. Sample a random vector with independent Rademacher entries z ∈ {±1} n . Note that it has covariance identity.

Compute z

⊤ Kz = q z ⊤ (L + qI) -1 z
which yields an unbiased estimator of t q . In Fig. 2, we compare 4 methods:

• direct: Hutchinson's estimator with a sparse Cholesky decomposition to compute (L + qI) -1 z in step 2. • cg: Hutchinson's estimator with conjugate gradient to estimate (L + qI) -1 z in step 2. • s st : KF-based method accelerated with stratified sampling • s: KF-based method accelerated with control variates and Rao-Blackwellisation on three different graphs 1 :

• Citation-HEP: A citation network of n = 34401 in Arxiv on high energy physics with m = 420828 links. • 3D Grid: 3-dimensional grid with n = 50 3 = 125000 nodes and m = 375000 edges. • Amazon: A network over n = 262111 products in Amazon with m = 899792.

We plot the effective runtimes of all methods, i.e., the time needed to reach a relative error ϵ, fixed to 0.2%. For each graph, we choose 8 logarithmically spaced values of q such that Tr(K)/n is between 0.01 and 0.7. All experiments are implemented in Julia and run on a single thread of a laptop. found in [START_REF] Yigit | Wilson's Algorithm for Randomized Linear Algebra[END_REF]. We are also studying so-called mixed type spanning forests [START_REF] Fanuel | Sparsification of the regularized magnetic laplacian with multi-type spanning forests[END_REF] that contain both rooted trees and unicycles: these objects enable to generalise our results to complex graph signals and magnetic Laplacians [START_REF] Kenyon | Spanning forests and the vector bundle Laplacian[END_REF], with applications to graph synchronisation and ranking problems [START_REF] Jaquard | Smoothing complexvalued signals on graphs with monte-carlo[END_REF].

GENERALISATION AND ONGOING WORK
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 1 Fig. 1. From left to right: a graph G, a spanning tree on G, a rooted spanning tree on G and a rooted spanning forest on G (roots in red)
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 2 Fig. 2. Effective runtime versus Tr(K)/n