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Abstract—The field of neuromorphic computing has been
rapidly evolving in recent years, with an increasing focus on
hardware design and reliability. This special session paper
provides an overview of the recent developments in neuromorphic
computing, focusing on hardware design and reliability. We first
review the traditional CMOS-based approaches to neuromorphic
hardware design and identify the challenges related to scalability,
latency, and power consumption. We then investigate alternative
approaches based on emerging technologies, specifically inte-
grated photonics approaches within the NEUROPULS project.
Finally, we examine the impact of device variability and aging on
the reliability of neuromorphic hardware and present techniques
for mitigating these effects. This review is intended to serve
as a valuable resource for researchers and practitioners in
neuromorphic computing.

Index Terms—augmented silicon photonics, neuromorphic
hardware, artificial neural networks, spiking neural networks,
reliability, phase change materials

I. INTRODUCTION

Artificial Neural Networks (ANNs) have enabled complex
computations but require significant computational resources
for both training and inference [1]. The main bottleneck in
these networks is the transfer of large amounts of data to
support different tasks. However, the trend in computing is
moving towards edge devices, such as the Internet of Things
(IoT), to improve security and reduce power consumption
and latency [2]. Furthermore, there is a growing demand for
powerful yet energy-efficient accelerators in various fields,
including fault detection in microprocessors [3] and intrusion
detection systems [4].

The design space for ANNs is vast, and it involves choices
in four fundamental aspects: the neuron model, the architecture
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structure, the information encoding, and the training method
[5]. These choices can significantly impact the hardware de-
sign and optimization process. Convolutional Neural Networks
(CNNs), Deep Neural Networks (DNNs), and Spiking Neural
Networks (SNNs) are three popular types of ANNs, each with
unique characteristics and applications.

CNNs are commonly used in image recognition and pro-
cessing tasks, and they rely on convolutional layers to extract
spatial features from input images [6]. DNNs, on the other
hand, are used in a wide range of applications, from speech
recognition to natural language processing and game playing
[7]. They are characterized by multiple layers of neurons that
learn increasingly abstract features of the input data.

The limitations of traditional computing architectures, par-
ticularly the communication bottleneck between memory and
processor and the latency of information propagation and
manipulation, have highlighted the need for alternative ap-
proaches to ANNs. While software approaches for ANNs
offer advantages when implemented on specialized hardware
such as Graphical Processing Units (GPUs), these limitations
persist [8].

SNNs have emerged as the next generation of ANNs that
exchange information in spikes, inspired by the behavior of bi-
ological brains [9]. This allows for more efficient computation
and reduced power consumption and is particularly interesting
when working with time sequences such as audio, video, and
electrical signals [10], [11]. The model complexity and internal
parameters determine the model’s suitability to the input
data, with shorter time constants detecting shorter temporal
correlations and higher values catching more prolonged time
effects.

Eventually, the resilience of the ANN is crucial when
designing the entire system and cannot be ignored [12],
[13]. Retaking inspiration from biology, the human brain is
intrinsically resilient to malfunctioning and faults. It loses ap-
proximately 50000 neurons daily but can still perform complex
tasks and learn new ones, creating connections between the
remaining neurons. ANNs have inherited this characteristic at979-8-3503-4630-5/23/$31.00 ©2023 IEEE
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a certain level, but they still need to improve significantly,
particularly in mission-critical and safety-critical applications.
Therefore, a deeper study of ANNs from this perspective is
required.

Neuromorphic computing, which merges memory and pro-
cessing units within neurons and synapses and maps com-
puting architectures more closely to Neural Networks (NNs)
models, offers a promising solution to address the limitations
of traditional computing architectures [14]. Various technolo-
gies, including CMOS, memristors, and optoelectronics/all-
optical approaches, have been explored to develop neuro-
morphic hardware. This paper provides an overview of these
approaches, highlighting their advantages and limitations.
Background on ANNs is given in section II, while section III
discusses the design and performance of the digital version of
ANNs, with a focus on the SNNs. section IV discusses the
potential of silicon photonics for ANNs, and section V covers
reliability challenges in the usage of ANNs.

II. BACKGROUND

The choice of the neuron model, architecture structure,
information encoding, and training method can significantly
impact the hardware design and optimization process for each
of these ANNs. Therefore, it is essential to consider these
aspects carefully when designing and implementing hardware
for ANNs.

CNNs and DNNs use different neuron models. In CNNs, the
neuron model is typically based on the Rectified Linear Unit
(ReLU) function, a non-linear activation function commonly
used in deep learning. The ReLU function is simple and
computationally efficient, making it a popular choice for
CNNs. The ReLU function is f(x) = max(0, x), where x
is the input to the neuron. The output of the ReLU function is
zero if the input is negative and equal to the input if the input
is positive. The ReLU function effectively reduces overfitting
in DNNs and has been used in various computer vision tasks,
such as object detection and recognition [15].

In DNNs, the neuron model is typically based on a non-
linear activation function. The sigmoid function, defined as
f(x) = 1

1+e−x , where x is the input to the neuron, is
one of the simplest. The output of the sigmoid function is
between 0 and 1, which makes it useful for tasks such as
classification. Another popular activation function in DNNs is
the hyperbolic tangent (tanh) function, similar to the sigmoid
function but outputs values between -1 and 1. The choice of
activation function depends on the task at hand and the NNs’s
architecture. For example, the sigmoid and tanh functions
were commonly used in early DNN architectures, such as the
Multilayer Perceptron (MLP) [16] but have since been largely
replaced by the ReLU function in more recent architectures.
However, the sigmoid and tanh functions are still used in
certain NNs, such as Recurrent Neural Networks (RNNs) and
autoencoders [17].

State-of-the-art implementations of CNNs and DNNs often
use 32-bit floating-point numbers in software or model-based

approaches. However, implementing such algorithms in hard-
ware is challenging due to their extensive data requirements,
high energy consumption, and large memory bandwidth. To
address these challenges, quantization, and regularization tech-
niques have been explored, using fixed-point computations
with 16 bits, 8 bits, or lower precision. Although these meth-
ods reduce the precision of synaptic weights and inter-layer
signals, IBM’s TrueNorth [18] chip has achieved acceptable
precision using only five synaptic states, albeit at high design
and energy costs [19], [20].

In the case of SNNs, the neuron models and architectures
are the most complex to target due to the nature of the
information they carry and how they treat it. Many different
mathematical models describe and mimic the behavior of
biological neurons, such as the Hodgkin-Huxley model [21],
the Izhikevich model [22], the Leaky Integrate and Fire (LIF)
model [23], and the Integrate and Fire (IF) model [24].
These models range from very complex and detailed to much
simpler and more suitable for machine learning and hardware
applications, with varying degrees of biological plausibility
and computational efficiency.

Neurons in SNNs are generally treated as leaky integra-
tors where input spikes are integrated over time after being
weighted by corresponding synapses, affecting the neuron’s
state, usually the electrical potential across its membrane. The
neuron membrane depolarizes due to internal charge leakage
without spikes, except in the IF model, where it is kept at a
constant value. A new spike is generated when the membrane
potential exceeds a specific threshold value, causing the neuron
to fire, and the potential drops suddenly into a reset state.

The architecture of the SNN can also be very flexible. The
literature reports Fully-Connected (FC) Feed-Forward (FF)
SNN [25], regularly recurrent structures [10] or randomly
recurrent architectures [26], used for example, in Reservoir
Computing (RC). There can be only excitatory connections,
with positive weights, or adding inhibitory connections, with
negative weights [25], or in more detailed models, separated
excitatory and inhibitory neurons, as observed in some regions
of the human brain.

RC is an efficient technique where a randomly initialized
RNN trains only a linear combination of the signals at each
node. It has shown promising results in various applications,
including photonics [27]. Different RC architectures have been
investigated using photonics, such as spatial-multiplexing and
time-multiplexing approaches. Spatial-multiplexing involves
physically separating the nodes, while time multiplexing re-
quires a faster sampling speed and more complex processing
of the read-out layer.

The choice of input encoding can significantly affect the
performance of the CNN or DNN. It often requires careful
consideration and experimentation to determine the optimal
encoding for the given task. Factors to consider when selecting
an input encoding include the nature and complexity of the
input data, the available computational resources, and the
application’s performance requirements.

The most common input encoding for CNNs is raw pixel



values, where each pixel in the image is represented as a
numerical value. In contrast, for DNNs that process non-
image data, input encoding may involve feature engineering
techniques such as transforming the raw input data into a
set of meaningful features more amenable to learning by the
network [15]. For example, in natural language processing,
input encoding may involve converting text into a numerical
representation, such as bag-of-words or word embeddings.

Due to their nature, SNNs require more advanced meth-
ods for encoding and interpreting information. The main
approaches are rate coding [28], temporal coding [29], and
population rank coding [30]. Rate coding uses the average
spike frequency to encode information and is suitable for static
input data. It is less efficient regarding spike activity but more
robust to noise. Temporal coding encodes information in the
precise arrival time of spikes or their relative distance, requir-
ing fewer spikes to process information, and is suitable for
encoding time-varying signals. However, it is more sensitive
to noise. Population rank coding uses the joint activity of a
group of neurons to process information.

Training approaches involve optimizing the model parame-
ters to minimize a given loss function for CNNs and DNNs.
In supervised learning, this involves iteratively adjusting the
weights and biases of the network to reduce the difference
between the predicted output and the ground truth labels.
The optimization is typically performed using gradient descent
methods, which involve calculating the gradient of the loss
function concerning the model parameters and updating them
in the direction of the negative gradient. Commonly used
gradient descent methods include Stochastic Gradient Descent
(SGD) [31], AdaGrad [32], etc.

Regularization techniques such as Dropout [33], etc., are
often used to prevent overfitting and improve generalization.
Additionally, data augmentation methods such as flipping,
rotating, and cropping the input images are employed to
increase the size of the training dataset and improve model
robustness [34].

Unsupervised learning approaches, such as Autoen-
coders [17] and Restricted Boltzmann Machines [35], can
also be used for pretraining the model parameters. Transfer
learning approaches can also be employed, where a pre-trained
network is fine-tuned on a new dataset with similar or related
features [36]. Finally, reinforcement learning can also be used
to train CNNs and DNNs, where the model learns to take
actions based on a reward signal, such as in game-playing
agents [37].

Training SNNs is challenging due to the non-
differentiability of the thresholding function of neurons.
Classical back-propagation methods cannot be directly
applied, but several approaches have been developed,
including supervised and unsupervised training. In supervised
training, the most common approach is to convert an ANN
into an SNN, where the ANN’s differentiable non-linear
function is trained using back-propagation, and the weights are
used directly in the SNN. Alternatively, a Back-Propagation
Through Time (BPTT) can be applied directly to the SNN,

where a surrogate gradient replaces the neuron’s thresholding
function with a differentiable function during the backward
pass. In contrast, inspired by biology, most unsupervised
approaches update weights locally based on the relative spike
timing between the inputs and the output without depending
on a global error signal propagating across the network,
resulting in a lighter memory footprint and computational
overhead, with Spike Timing Dependent Plasticity (STDP)
being the most common method [38].

III. DIGITAL ACCELERATORS

As seen before, the architecture of an ANN, and in the same
way of an SNN, is generally composed of many independent
neurons and, as such, is intrinsically strongly parallelizable.
This poorly fits the common CPU-based computing approach,
in which the parallelism is limited to a few tens of very
powerful cores. For this reason, one active research branch
in the field of ANN and SNN is directed towards accelerating
such algorithms, using computing platforms to execute them
more efficiently. The goal is to broaden their application
to many contexts, such as performance-constrained, power-
constrained, or real-time tasks.

(a) Classical Von Neuman computing ap-
proach

(b) Neural network’s computation
and memory co-location

When discussing acceleration in the digital domain, several
solutions have different degrees of optimization, efficiency,
and cost. One first approach, already mainstream for many
ANN models, is to exploit the computational parallelism
offered by general-purpose hardware accelerators like GPUs.
Regarding SNNs, several software frameworks natively sup-
port the deployment of the code on GPUs, for example, the
ones based on pyTorch, like snnTorch [39] and spikeTorch, or
CUDA accelerated C++ frameworks, like SLAYER [40] and
CARLsim 4 [41].

However, SNNs have many features unsuitable with a GPU
execution. For example, spikes can be represented in the digital
domain as single-bit events (high in the presence of a spike and



low otherwise). The numerical representation used in GPU,
based on words with 8, 16, 32, 64, or similar bit widths, is
inefficient. Moreover, the computation can be based on events:
a neuron can react only in the presence of an active input spike,
remaining in a quiescent state otherwise. Such an update policy
would allow exploiting the sparsity of spikes typical of SNNs,
with considerable savings in switching power, but again is not
supported by GPUs.

This incompatibility has pushed for developing specialized
hardware accelerators explicitly designed to support SNN
features. Interestingly SNNs are intrinsically more suitable for
developing these accelerators than other ANN models. The
main reason is again how SNN encodes the information, which
in the digital domain corresponds to single-bit signals. This
drastically reduces the interconnection and memory require-
ments.

(a) Multi-bit digital coding

(b) Spikes information encoding

When designing hardware accelerators, the roads that can be
followed are two: fixed hardware or reconfigurable hardware.
In the first case, the accelerator becomes an Application
Specific Integrated Circuit (ASIC), able to perform in a very
efficient way the specific tasks for which it has been designed,
but nothing more. On the other hand, specific hardware
platforms can be reconfigured multiple times, allowing for
flexible architectures. This is the case of Field Programmable
Gate Arrays (FPGA). The choice between the two depends
a lot on the kind of application and constraints. Generally,
designers try to fit as many functionalities as possible when
developing an ASIC since the hardware remains fixed.

Companies and universities are investing in developing
programmable chips to enable fast simulation of large-scale
SNN. Among them, a first attempt is SpiNNaker [42]. The idea
behind SpiNNaker is to use classical CMOS architectures, par-
ticularly ARM968 RISC processors, to simulate the neurons’
dynamics and optimize the routing between them to fit a spike-
based communication perfectly. A specific communication

protocol, i.e., Address Event Representation (AER), is used to
do this. This protocol is designed explicitly for neuromorphic
circuits, in which a spike is represented through the ID of
the neuron that generated it and the corresponding generation
time stamp. The IBM TrueNorth [18] is a fully custom
ASIC realized in 28nm CMOS technology. Again the neurons
use standard CMOS digital gates, but the communication is
asynchronous. The Intel Loihi [43] has an approach that is a
hybrid between the previous two. It has 128 custom chips
implementing 1024 LIF primitives. The custom connection
mesh optimizes the typical sparse communication between
spiking neurons. Additionally, Loihi includes specific compo-
nents to perform learning directly on-chip. It provides a set of
configurable parameters to allow different local learning rules,
from a basic STDP to more complex alternatives. Finally,
Tianjic [44] is a hybrid ANN/SNN accelerator with a custom
interconnection between the various cores.

In the field of ASICs, it is worth citing ODIN [45], a
small network implemented in 28nm Fully-Depleted Silicon-
On-Insulator (FDSOI) CMOS technology and targeting low-
power applications. Neurons can be configured to implement
a LIF model or one of the 20 possible Izhikevich behaviors.
The routing of the spikes between neurons is again performed
through an AER protocol.

Table I compares the accelerators in terms of area and
energy efficiency, expressed in Giga-Synapse Operations
(GSOPS) per Watt. For a more detailed comparison, see [46].

TABLE I: ASIC comparison table [46]

Design [42] [18] [43] [44] [45]
# of neurons 18k 1M 128k 39k 256
# of synapses 18M 256M 128M 9.75M 64k
Area (mm2) 88.4 413 60 14.4 0.086
Process (nm) 130 28 14 28 65

Energy (GSOPS/W) 0.033 400 - 649 78.7

The last approach in designing the SNN accelerators is to
target a reconfigurable hardware platform, such as an FPGA.
The FPGA can host different accelerators. This is the reason
why many embedded platforms are starting to include them.
Second, online reconfigurability allows hardware modification
while the system is on. This can be used to add an accelerator
after the system has been deployed, remove it once it is no
longer required, and modify its functionality.

Taking SNN as an example, the architecture of the network
can be modified to target a different set of data if necessary.
Finally, partial reconfigurability can add and remove function-
alities to a specific accelerator. For example, online learning
can be activated and deactivated on request, enabling and
disabling the corresponding circuitry and physically adding
or removing the required piece of hardware, guaranteeing
the optimal architecture for the required application. This is
the idea behind [25], where the authors started to design a
tiny hardware accelerator to fit an FPGA together with other
components employing a LIF neuron model.

The idea is then to have a first degree of reconfigurability,
making the accelerator programmable in many aspects, such



TABLE II: FPGA comparison table [47]

Design [48] [49] [50] [47] [25]
Clock frequency(MHz) 75 120 25 100 100

Data format 16bit Fixed 8bit Fixed 32bit Fixed 16bit Floating 16bit Fixed
Computing scheme Event-Driven Clock-Driven Event-Driven Adaptive Clock/Event-Driven Clock-Driven

Neuron model LIF LIF LIF LIF LIF
FPGA platform Spartan 6 Virtex 6 Spartan 6 Virtex 7 Artix 7

Neurons 1794 1591 1794 1094 1384
Synapses 647000 638208 647000 177800 313600

Task MNIST MNIST MNIST MNIST MNIST
Computation time 0.53s/image 8.40s/image 0.16s/image 3.15ms/image 215µs/image

Computation time @100MHz 0.40s/image 10.08s/image 40.00ms/image 3.15ms/image 215µs/image
Energy 0.80J /image 1.12J /image Not reported 5.04mJ /image 13mJ /image

Energy/Synapse 1.2µJ /synapse 1.76µJ /synapse Not reported 0.028µJ /synapse 0.041µJ /synapse

as weights and thresholds. Then, to add a layer of flexibility by
allowing easy modification of the hardwired network hyper-
parameters, such as the membrane time constant, the network
architecture, the internal bit-widths, etc. Several other works
are targeting a more standard but still configurable imple-
mentation, such as [48], [49], [50], [47]. Table II compares
different accelerators. For more details, see [47].

In general, digital accelerators can help a lot in increas-
ing the execution efficiency of SNNs. CMOS technology is
decades old and nowadays widespread, low-cost, and highly
optimized. However, the intrinsic behavior of digital devices
is very far from that observed in biological components, and
the response time and power consumption are still a burden.
Augmented silicon photonics platforms can cover most design
aspects with more efficient solutions.

IV. AUGMENTED SILICON PHOTONICS PLATFORMS

Integrated photonics is one of the key technologies that
has been investigated to build neuromorphic hardware [51]–
[54]. In particular, Photonic Neural Networks (PNNs) based
on silicon photonics have been extensively investigated for
developing lightweight, low-latency, high-speed computing
hardware with ultra-low power consumption [54]–[57].

Such properties arise from the intrinsic nature of light
manipulation and propagation and the capabilities currently
integrated photonics platforms can offer. For example, dif-
ferent frequencies of light can be used to encode different
data streams separately onto each frequency and then be
processed in parallel, thus increasing computing density [53].
Such wavelength multiplexing approaches are beneficial for
increasing the parallelization degree of architectures. This
key feature is used in broadcast and weight protocol where
each frequency channel has a specific weight assigned (for
each layer) before being summed up together, e.g., by a
photodetector [58]. In this approach, ring resonators are key
devices enabling the multiplexing (filtering) and weighting of
the signals at different frequencies [54].

Indeed, photonic approaches allow light manipulation (e.g.,
weights application) while preserving signals propagation at
the speed of light throughout the photonic network, thus
resulting in ultra-low latencies, limited only by the physical
size of the network leading to orders of magnitude lower
values compared to electronics implementations [55].

Another essential feature of photonic neuromorphic systems
is the possibility of operating with analog complex-valued
signals, which is beneficial to leverage non-linearities in
neuromorphic hardware such as the electro-optic conversion
between complex-valued optical fields into intensities (i.e.,
photocurrents at the photodetection), but also thanks to con-
nection matrices presenting a more considerable richness in
degrees of freedom [52], [55], [59].

Furthermore, PNNs can operate at much higher speeds than
digital accelerators, with their main limitation coming from
electro-optic conversion stages, e.g., at the read-out of a PNN
where photodetectors allow to operate at speeds of hundreds
of GHz depending on the technology and responsivity re-
quired [55].

Among the various integrated photonic platforms that have
been considered, Silicon-on-Insulator (SOI) platforms are
those that have attracted the most vital interest thanks to the
availability of both active and passive components and their
reduced footprint compared to platforms with lower refractive
indices contrasts, such as Silicon Nitride-on-Insulator (SiNOI).

Table III shows a comparison under different metrics for
digital accelerators, flash technology, and three different types
of PNNs based on hybrid lasers, co-integrated silicon pho-
tonics, and sub-λ nanophotonics. For the latter, the device
footprint shrinks by at least an order of magnitude due to the
robust localization of the optical fields, e.g., in photonic crystal
cavities. It is worth noting that such constrained photonic ap-
proaches can expect a significant gain in energy consumption
and latency. More information on the specific implementations
can be found here [56].

In particular, SOI platforms can provide high-speed modu-
lators, e.g., in MZI or Ring Resonator (RR) configurations, as
well as high-speed broadband photodetectors (> 50 GHz) and
low propagation losses (< 3 dB/cm) [65]. More specifically,
MZI devices allow to modulate light and change its amplitude
(and phase), therefore providing a practical way to implement
ANN weights [55]. They can be arranged in meshes in precise
ways, e.g., matrix multiplications as shown in Fig. 3(a) [60].
The traditionally used physical mechanisms for modulation are
either (i) thermo-optic, (ii) electro-optic, (iii) carrier plasma
effect [66] as schematically shown in Fig. 3(b). For the thermo-
optic approach, one of the interferometer arms is heated up by



TABLE III: Photonic versus electronic approaches comparison table. Latency is the time for a single matrix multiplication
operation to compute at the given vector size. Speed is the time between subsequent matrix multiplies [56].

Technology Google TPU Flash Hybrid laser NN Co-Integrated Si NN Sub-λ nanophotonics
[61] (Analog) [62] [63] [64] [56]

Energy/MAC [fJ] 430 7 220 2.7 0.03
Comp. density [TMACs/s/mm2] 0.58 18 4.5 50 5000

Vector size 256 100 56 148 300
Precision [bits] 8 5 5.1+ 5.1+ 5.1+

Latency/speed [ns] 2000/1.42 15 < 0.1 < 0.1 < 0.05

Fig. 3: (a) Photonic implementation of a network for 9x9
matrix multiplication based on Mach-Zenhder Interferometers
(MZIs) [60]. Inset describes what each crossing consists of,
i.e., a phase shifter (ϕ), then a 50/50 splitter, another phase
shifter (2θ), and then a 50/50 combiner. (b) Top-view of phase
shifter implementations in waveguides based on (i) thermo-
optic effect, (ii) electro-optic effect, (iii) carrier plasma effect,
and (iv) Phase Change Material (PCM)-induced shift. Blue
lines where no crossing is present are optical waveguides.

a micro-heater, resulting in a change in the refractive index
of the arm. In the second case, electrodes can establish an
electric field (for electro-optic materials - not present in native
Si platforms) that modifies the refractive index. In the third
case, a p-n/p-i-n junction is used where carriers concentration
in the depletion region is modified by an applied voltage, thus
changing the refractive index by the plasma carrier effect [66].
All these approaches are of interest (depending on the platform
available) and have enabled vector-matrix multiplication and
PNNs for classification tasks [55].

However, in silicon platforms, one of the main limitations
during the inference process is the need to dissipate energy
to keep the values of the weights. This energy can account
for up to 10 mW with a total π phase shift per MZI. Such a
shift allows routing full signals from one output to the other of
an MZI with two output ports (see inset of Fig. 3)(a) starting
from a signal only coming from the former port.

In [55], the authors used a specific arrangement of mesh de-
vices to perform matrix multiplication through singular value
decomposition. This mapping is precisely defined between
the elements of the matrix and the phase shifters MZIs in
the mesh. Unlike conventional electronics like CPUs and
GPUs, the energy consumed per calculation (Floating Point

Operations per Second (FLOP)) reduces to zero as the size
of the mesh grows larger (assuming non-volatile weights). In
contrast, conventional electronics require a fixed amount of
energy per FLOP, and the overall energy consumption scales
quadratically with the size of the problem, i.e., N2 instead
of just N for PNNs with N representing the mesh size. The
authors in [55] also used this MZIs as weights to build a Feed-
Forward Neural Network (FFNN) that could analyze vowels,
achieving a simulated correctness of 90%, comparable to that
of a digital computer which would reach 91.7%.

One solution to avoid constant power dissipation is setting
the weights using waveguides integrating non-volatile mate-
rials such as PCMs, e.g., above the waveguide as in (iv)
approach in Fig. 3)(b). Their response (change in the degree
of crystalline to amorphous ratio) can be set using electrical
or optical pulses [67]. Such materials are exciting also to
implement STDP thanks to their very rapid response time
(sub-ns) to stimuli, thus allowing to build of optical plastic
synapses and spiking architectures based on ring resonators
[54].

The recently started Horizon Europe NEUROPULS project
investigates a series of approaches that leverage silicon pho-
tonics platforms with the addition of PCMs and III-V materials
for building more efficient neuromorphic hardware.

An approach to improving CNN performance is to use an
accelerator designed for matrix-vector products, such as a
mesh of modulators programmed to perform a specific matrix
multiplication. Singular value decomposition can factor the
matrix, resulting in more efficient computation on the accel-
erator. This approach can also handle other matrix operations,
including convolutions, and optimize hardware architecture for
specific tasks, leading to significant training and inference
times speed-ups [55].

Although optical components can benefit matrix operations,
their size can limit the size of matrices that can be imple-
mented. To overcome this limitation, alternative approaches
can be explored. One possible solution is to employ pruning
techniques that remove unnecessary connections and weights
from the network, thereby reducing the overall size of the
matrix. This makes it possible to implement larger systems
using the available optical components.

Another option is to use block matrix decompositions,
which involve dividing the matrix into smaller blocks that
can be processed separately. This approach can enable the
implementation of larger matrices using a smaller number
of optical components. The smaller blocks can be computed



independently and combined for the final result. This technique
can also be combined with other optimization strategies, such
as quantization and compression, further to reduce the size
and complexity of the system.

The tensor-train approach proposed in [68] will be explored.
This approach represents the matrix as a product of low-rank
tensors, which can be processed more efficiently using optical
components. The goal is to develop a scalable optical archi-
tecture capable of handling larger matrices and more complex
neural networks using the abovementioned approaches. This
will facilitate faster and more efficient training of neural
networks using photonics.

The research will also explore RNN applications, including
fully trainable RNNs as well as RCs. We will investigate
the potential applications of RC in photonics for various
applications, including nonlinear dispersion compensation of
telecom signals, as demonstrated in [69]. The research aims to
develop new techniques and approaches for utilizing photonics
in Machine Learning (ML) and other fields, which could lead
to significant advancements in the performance and efficiency
of these systems.

To implement non-volatile optical weights, the proposed
architecture will incorporate PCMs. Previous studies, such as
[54] and [70], have explored these materials and shown a
strong potential for neuromorphic systems. Incorporating non-
volatile weights can significantly reduce power consumption
compared to volatile weights, which require continuous driv-
ing or periodic refreshing. Including these materials in the
proposed architecture will be crucial in developing low-power
and high-performance systems for machine learning and other
applications.

However, in addition to their non-volatility, PCMs have an-
other advantage: their nonlinear dynamics. E.g., by exciting the
material with pulses rather than continuous-wave excitation,
the nonlinear behavior of the material enables other computing
paradigms, such as SNNs. In such networks, the neurons com-
municate using brief pulses or spikes rather than continuously
varying signals. This opens up the implementation of energy-
efficient and highly parallel neural networks. To generate the
spikes injected into the system, Advanced high-extinction ratio
(ER > 8 dB) Q-switched spiking lasers can be used, which will
be monolithically integrated into III-V materials on the same
platform [71]. These hybrid III-V-on-Si spiking lasers are a
scalable and cost-effective alternative to previous Q-switched
lasers made purely from III-V materials.

III-V-on-Si spiking lasers will generate highly precise and
controlled optical spikes, essential for many photonics and ML
applications. These lasers offer several advantages, including
high extinction ratios, low power consumption, and compati-
bility with standard silicon processing techniques.

V. RELIABILITY STUDIES AND CONCERNS

ANNs have an intrinsic error tolerance from an algorithmic
point of view thanks to their redundant nature. However,
hardware designs to deploy such algorithms must be analyzed

to assess the impact of hardware restrictions or faulty mani-
festation on the network functional’s behavior.

Due to manufacturing issues, hardware faults can occur
randomly, provoked by neuron and synapse defects and im-
precisions. Still, they can also be malicious, introduced by
different kinds of attacks (i.e., laser beams fault injection
or row hammer attack) [72], [73]. The authors of [73] have
analyzed the misclassification rate of MLP based deep neural
networks face to models derived from physical phenomena.
Faulty-neuron behaviors have been injected randomly or de-
terministically, with injection scenarios considering single and
multiple faulty neurons per layer. This is usually done during
the function activation timeframe, which can be hundreds to
thousands of cycles. Results indicate that in some cases, even a
relatively small number of faulty neurons (≈ 10%) can lead to
a high risk of misclassification (≈ 62%). As seen in section II,
different activation functions have been studied for DNNs.
They show that for a higher miss-classification rate (>50%),
at least half of the neurons in a given hidden layer should
be faulty, which is the case for sigmoid and tanh activation
functions. In the case of ReLU, at least 3/4 of the neurons
should be faulty to achieve the same miss-classification rate.

Extensive work has been dedicated in the last years to
studying and evaluating AI hardware accelerators’ errors and
fault tolerance. An overview of fault tolerance techniques for
feedforward neural networks is presented in [74]. In this paper,
the authors review fault types, models, and measures used to
evaluate performance and provide a taxonomy of the main
techniques to enhance the intrinsic properties of some neural
models based on the principles and mechanisms they exploit
to achieve fault tolerance passively.

In [75], the authors present a study of the fault characteri-
zation and mitigation of Register-Transfer Level (RTL) model
of NN accelerators by characterizing the vulnerability of NNs
to application-level specifications, network topology, and ac-
tivation functions, as well as architectural level specifications.
In [76], authors present an experimental evaluation of the
resilience of DNN systems (i.e., DNN software running on
specialized accelerators) under Soft errors caused by high-
energy particles.

An empirical study of DNNs resilience can be found in [77],
where a fault injection framework named Ares, which can deal
with fully connected and CNN-based DNN accelerators, is
presented. It uses hardware fault models related to technology
and environment variability, single event faults transients in
memory elements, and algorithmic level faults models such
as faults occurring in weights, activation, and hidden states.
Fault injection is performed static, offline, before the inference
process, and dynamically during inference execution.

The analysis of SNNs fault tolerance and reliability is a
relatively newer field of research since their hardware im-
plementations are much more recent than classical DNNs.
Consensus has yet to be reached on the main applications
of these networks. Moreover, the variety of signal-to-spike
coding and training algorithms brings a specific heterogeneity
in their characteristic which should be accounted for when



their fault tolerance and reliability is discussed. One of the first
works in this field, [78], estimates the accuracy of a FC SNN,
capable of STDP learning designed with spintronic devices
under the effect of process variability. Both the neuron and
synapse behavior are strongly affected by process variability,
and the accuracy drops by approximately 10% when assuming
moderate variability compared to the ideal case.

Another interesting study is presented in [79], where a tax-
onomy of faults was defined for spiking neural networks. The
accuracy of a hardware-implemented spiking neural network
designed to perform STDP online training was analyzed under
the assumption that (i) both learning and inference were per-
formed on faulty hardware, (ii) only inference was performed
on faulty hardware. This paper shows that performing learning
directly on faulty hardware reduces the impact of faults on the
network accuracy by an average of 15% and, in extreme cases,
can reach up to 30%. Moreover, in [80], faults affecting the
signal-to-spike conversion layer have the strongest impact on
the network accuracy, with the synaptic stuck-at faults coming
to a very close second. These faults strongly affect the learning
process, which only exacerbates during inference.

On the other hand, faults, like delayed synapse activation
or stuck lateral inhibition, have a marginal effect. The study
presented in [81] takes a different approach. The fault toler-
ance study is performed on an SNN inference accelerator, a
multi-layer SNN with supervised off-line learning, designed
in VHDL and implemented on an FPGA. The fault injection
experiments identify the parts of the design that need to be
protected against faults and the inherently fault-tolerant parts.
They have shown that the behavior under faults of the chosen
type of SNN is similar to the behavior under faults of an
ANN in that faults injected in the most significant bits of
the synaptic values affect have a more substantial effect on
network accuracy that when the faults are injected in the less
critical bits, and also faults affecting the last layer (where
the classification is performed) are more relevant than faults
affecting the first layer (where there is higher computing
redundancy). In addition, the authors have shown that their
proposed SNN implementation is much more sensitive to faults
injected in the routing of signals than in the synaptic weight
or neuron computation.

Several studies have compared SNNs and their ANNs
counterparts, mainly focusing on performance or power con-
sumption rather than their relative fault tolerance. Therefore,
a study was conducted to assess the fault resilience of both
network types, assuming different quantizations of weights
and neural computation and various training scenarios for the
SNN. The study compared the fault tolerance of an MLP
and an SNN with the same topology and bit precision. A
784 X 100 X 10 network was implemented to solve the
MNIST classification problem [6]. The MLP uses a sigmoid
activation function for all layers and has a base accuracy of
98% after 20 training epochs. The SNN used rate coding for
signal-to-spike conversion and several training algorithms: (i)
Shadow Training (ST) (with a base accuracy of 96%), (ii)
BPTT (with a base accuracy of 97%), (iii) STDP (with a

base accuracy of 87%). The precision of synaptic weights
was 16, 8, and 4 bits. Figure 4 illustrates selected results of
the analysis, showing that the SNNs are more fault-tolerant
than the MLP, and the SNN trained using BPTT is the most
resilient of the three. This study also demonstrates how the
SNN is trained in its fault resilience, with online training
being more resilient than offline training. The last two columns
in Figure 5 correspond to the SNN being trained by STDP,
and the network accuracy degradation is computed when the
presence of faults is assumed only at inference (AT) or during
both training and inference (BT). These results show that the
fault tolerance of the SNN depends on the training mechanism
and that an SNN trained online is more resilient to faults than
an SNN trained offline. The results suggest that SNNs have the
potential to be more resilient to faults than ANNs, and further
comparison between the two is necessary to consolidate these
findings.

Fig. 4: Network accuracy under synaptic fault injection: a
comparison between MLP and SNN. The synaptic weight
precision is 8 bits, and 10−4 of the synaptic bits are considered
faulty.

Fig. 5: Maximum network accuracy degradation for different
training scenarios under synaptic fault injection: a comparison
between MLP and SNN. The synaptic weight precision is 8
bits, and 10−4 of the synaptic bits are considered faulty. AT
= after training, BT = before training

VI. CONCLUSION

In this paper, the fundamentals of Convolutional Neural
Network, Deep Neural Network, and Spiking Neural Network
were introduced, and their digital counterparts were described
using standard CMOS technologies. The discussion then fo-
cused on augmented silicon photonics improvements and the
reliability aspects of Artificial Neural Network. The benefits



and drawbacks of each technology were thoroughly analyzed,
including its reliability. Our analysis suggests that the choice
of technology for Artificial Neural Network design should
depend on the specific application requirements and design
constraints. While CMOS technology offers established fabri-
cation processes and high reliability, it may have limitations in
power consumption and scalability. Silicon photonics, on the
other hand, provides high power efficiency and scalability, but
their reliability is still under ongoing research. We hope this
paper will serve as a valuable reference for researchers and
practitioners in the field of Artificial Neural Network design
as they explore the potential of these emerging technologies.
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