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Abstract: Heat transport in rotating processes finds a wide range of application in which academic
issues in the fluid mechanics and heat transfer areas are here reported. This paper discusses suc-
cessive works from the seminal paper of Taylor (1923) to recent numerical results established from
a broad range of methods such as DNS, LES, RANS or LB methods. The flow regimes identifica-
tion is thus reported in Taylor–Couette geometry. The role of the axial flow rates in the apparition,
stabilization and destruction of the large-scale of the turbulent structures is depicted in the case of
Taylor–Couette–Poiseuille geometry. In a non-isothermal condition, a discussion is held on the vari-
ous exponent values found in the scaling relationships relying on the Nusselt number as a function
of the Rayleigh or Reynolds numbers according to the regimes of thermal convection.

Keywords: rotational energy process; vortex; instabilities; turbulence; thermal convection

1. Introduction

Heat transport throughout rotating annular geometries covers a large spectrum of
applications from natural to engineering domains. In the energy systems, it has shown great
potential for the rotating wall cooling systems of electrical engines [1], turbine generators [2],
rotary kilns [3], supercritical CO2 extraction [4], and nuclear fusion reactors [5], to cite a
few examples. The physical problems are shown in Figure 1 in the cylindrical coordinate
system (r, θ, z).

Figure 1. Position of the problem: two concentric cylindrical surfaces of inner and external radius, Ri

and Re, and of length, L, are inclined at an angle ϕ with the gravity. The rotation can be exerted from
the inner (drawn here) or from the external cylinder at an angular velocity, ω. The heat gradient,
∂T/∂r, can be imposed from any wall surface (the inner cylinder is chosen here), while the fluid
motion is flowing into the gap, e = Re− Ri.

The inclination of the system with the gravity is aimed to work under vertical, hor-
izontal or inclined orientations. The fluid motion is performed in the annular gap. The
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heat flux density can be exerted from the external or the inner surface in order to impose a
radial temperature difference. Under an isothermal condition, the influence of the curved
wall upon the Dean vortices apparition is a first class of instabilities known in annular
geometry. The rotational effect of the inner or external wall has resulted in a second class
of instabilities. Such flows type are known under the name of Rotor–Stator cavities [6],
Taylor–Couette [7] or Taylor–Couette–Poiseuille [8] if an axial flow rate is superimposed to
the rotation. They have the particularity of reaching a high level of complexity from the
point of view of the turbulence properties. Indeed, the turbulence is auto-sustained by the
rotation effect that differs from a traditional wall-bounded flow, for which it is necessary
to impose an external forcing to suppress the turbulence decay [9]. The centrifugal and
axial motions are driven from a set of dimensionless numbers; the axial Reynolds number,
Rea, Taylor, Ta, or rotational Reynolds numbers, Rew, themselves function of the torque
number and geometric parameters [10]. As the Taylor number is increased, organized
vortices appear and different flow regimes have been reported. The characterization of
these secondary flows from their apparition and destabilization until their destruction at
elevated Ta is still a topic of interest. The density-stratification induced by the momentum
transport in such geometry is of practical interest for sediment transport in the ocean [11].
Such applications have also been explored for yield-stress fluid, where the flow regimes
are different from the Newtonian case. The yield stress tends to stabilize the flow [12].
More recent work [13] supports such a conclusion, showing that two regions coexist, a
shear-banding zone (flowing zone) and a dead zone (static zone) at an elevated shear rate.

Under a non-isothermal working condition, the axial flow rate is aimed to release
the recovered heat waste, leading to various regimes of thermal convection [14]. The
addition of grooves to the inner or outer wall raises the heat transfer magnitude [15]. The
thermal stratification, in the sense of the mixed and natural convection, plays a major
role in the performance of the annular heat exchanger. According to the geometrical
characteristics of the annular passage [16] or the magnitude [17] and direction of the
temperature gradient [18], the buoyancy forces will affect the flow regimes identified in
the isothermal case. Numerous studies have also been conducted on nanofluids at low
volume fraction concentration, Φv [19]. The thermal instabilities have an impact on the
heat transfer for such Newtonian fluids [20]. For non-Newtonian fluid suspension, the
rheological behavior of yield-stress fluid is recognized to be sensitive to the heat flux only
at a weak imposed shear rate inferior to 0.02 s−1 [21], and that is why few experimental
works have been explored in non-isothermal conditions except in forced convection [22].
Therefore, most of the following works were performed in more simple geometry to
characterize convective heat transfer coefficients in circular ducts in a large range of axial
flow rates [23,24].

Table 1 recaps the range of values reported in various applications of the literature.

Table 1. Rotating annular flow: range of applicability and literature examples.

Control Parameters Lower Values Upper Values

e (m)
e = 0.01 e = ∞
Microelectronics cooling device [25] Space vehicle technology, ball bearing [26]

L(m)
L→ 0
Gas turbine discs cooling [27]

L > 0
Heat recovery of burners [28]

ω(rpm)
ω = 50–114 ω = 30, 000
Bioreactor for culture cells [29] CO2 turbine diffuser [4]

Angle ϕ(◦)
0 ≤ ϕ < 90
Double-pipe heat exchanger [19]

ϕ = 90
Vertical thermal energy storage tank [30]

∂T/∂r (◦C/m) −1 Geostrophic motion [31] +1 Most of the applications [14,15]

Φv , Φw(−) 0.01 < Φv < 0.1 0.006 < Φw < 0.2
Al2O3/water Nanofluids [19] Viscoplastic type fluid [32]
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While important reviews have been conducted on simple annular geometry without a
rotating effect for a double-pipe heat exchanger application [19,33], there are, according to
our knowledge, no reviews that focus on the heat transport in rotating annular ducts. The
benefits of this review are to reach triple objectives covering the theory development, the
applications and the modelling aspects.

2. Iso-Thermal Condition

In an isothermal case, the study of the vortex motion is a subject that has been widely
studied for the last century in the scientific community. The interest of vortex flows lies
in the possibility to significantly increase heat transfer while minimizing energy costs.
Depending on the geometry adopted, the vortices produced may or may not be maintained
throughout the flow. As an example, we briefly present the centrifugal instabilities that
occur when using concave and/or convex walls (Figure 2):

Figure 2. From bottom to top; Taylor vortices, Dean Vortices, and Görtler Vortices at a concave wall.

- The Taylor-Couette instability is a vortex confined between two coaxial cylinders with
the outer cylinder stationary and the inner cylinder rotating at a constant angular velocity.

- The Dean instability is a flow induced by the curvature of the streamlines of a fully
developed Newtonian flow. Above a critical value of the Dean number, a pair of
vortex cells appears within the flow near the outer wall of the pipe.

- The Görtler instability is a secondary flow appearing in the boundary layer of the flow
along a concave wall. This flow appears as longitudinal rolls, counter-rotating in pairs,
aligned in the direction of the mean flow. Its appearance is caused by a competition
between pressure and centrifugal forces.

2.1. Taylor-Couette Flow

Taylor–Couette flow occurs between two concentric cylinders of radius Ri for the inner
cylinder and Re for the outer cylinder in rotation (Figure 2). This flow has been extensively
studied in the literature since Taylor’s early work in 1923 [34], and remains a major topic of
study in the fluid mechanics area.

The Taylor–Couette flow has a succession of very rich bifurcations generating more
and more complex flows, finally leading to the turbulence. The different instabilities appear
in the flow with the increase of the rotation velocity of the cylinder. When the angular
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velocity of the cylinder exceeds a critical value ωc, a first instability appears, forming a
pair of counter-rotating toroidal vortices regularly spaced along the axis surrounding the
cylinder like a vortex ring. These vortices are often referred to in the literature as the “Taylor
roll” or “Taylor-Görtler instability” (Figure 3). This instability is generic, i.e., likely to occur
in any flow deflected by a wall creating a pressure gradient normal to the streamlines.

Then, when a small axial flow is added to the Taylor–Couette flow, advection of the
vortices occurs from the axial flow without being destroyed. Taylor (1923) [34] was the first
to observe the instability of a fluid confined between two coaxial cylinders with a rotating
inner cylinder. Subsequently, a series of theoretical, experimental and numerical works
followed the seminal work of Taylor (1923) [34], Coles (1965) [35]; Fenstemacher (1979) [36];
and Andereck et al. (1986) [37]. Since the work of Taylor (1923) [34], many studies have
been performed on the flow regimes identification in Taylor–Couette geometry. This is very
complex and depends on operational and geometric parameters.

The Couette flow is laminar and stationary. It is driven by the viscous forces acting on
the fluid and the annular streamlines centered on the rotation axis of the cylinder. Before
the first instability, for low rotational speeds, Couette flow is simply characterized by the
angular velocity Uθ(r). Solving the Navier–Stokes equations under suitable boundaries
conditions leads to the following analytical solution:

Uθ(r) = ω
1

R2
e − R2

i

[
R2

i R2
e

r
− rR2

i

]
(1)

Thus, in this study configuration, with only the inner cylinder in rotation, we sys-
tematically have the appearance of instabilities due to the increase of the rotation speed.
The first instability is characterized by the appearance of stationary cells of toroidal shape,
counter-rotating, associated in pairs and regularly ordered in the axial direction. Taylor
determined the critical value of the inner cylinder velocity ωc where the first instability
is observed for a critical shape factor η → 1 . This rotational velocity ωc leads to a critical
value of the Taylor number Tac = 1708. Since Taylor’s early work, several empirical or
analytical correlations have been presented to evaluate this threshold. The most widely
used correlation was defined by Esser and Grossmann (1996) [38]:

Reωc =
1
α2

(1 + η)2

2η
√
(1− η)(3 + η)

avec α = 0.1556 (2)

Figure 3. Taylor cells (Left-hand) and Wavy Taylor cell (Right-hand) [39].

In the case where the rotational speed increases and the Taylor number exceeds the
second threshold, Tac,2, the presence of a new instability was demonstrated by Coles
(1965) [35]. He observed the presence of ripples at the dividing lines of the Taylor cells.
The Taylor cells are no longer perpendicular to the axis of the cylinder, but rather show
a wavy behavior. The axisymmetric flow becomes unstable and unsteady and therefore
doubly periodic, characterized by an axial and azimuthal wavenumber. When the Taylor
number exceeds a third threshold, Tac,3, the flow becomes more complex. The amplitude
of the ripples varies periodically, and the flow has two temporal frequencies. With the
increase of the Taylor number, the flow behaves as wavy, and weakly turbulent before the
flow becomes fully turbulent, suppressing the azimuthal wave.
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The transitions observed in the flow do not only depend on the Taylor number, but
also on the previous history of the flow, implying a hysteresis phenomenon depending on
the way in which the rotational speed studied is reached. This dependence on the history
of the flow was observed by Cole (1965) [35] on experiments, which revealed 26 different
states for the same Taylor number.

The Taylor–Couette flow is a complex problem despite the fact that it has been the
subject of many studies and that many questions remain unanswered today. The structure
of the flow depends on several geometrical or operational parameters such as η, the shape
factor, Γ, the aspect ratio and the Taylor number, Ta, as well as the non-uniqueness of
the flow.

2.2. Taylor–Couette–Poiseuille Flow

Superimposing an axial flow on the Taylor–Couette flow increases the complexity of
the flow. The Taylor–Couette–Poiseuille flow has a new dynamic parameter added to the
inner cylinder rotation speedω: the mean axial fluid velocity Uz.

The flow structure results from the superposition of two mechanisms, the first related
to the effects of rotation and the second to the axial flow. From these mechanisms, two
main transitions can be distinguished: the transition from laminar to turbulent flow with
increasing axial velocity, and the transition from turbulent flow to the appearance of
vortex structures above the critical rotational speedω of the cylinder. The combination of
these combined phenomena was described by Kaye and Elgar (1958) [40] (Figure 4), who
decompose into four mains flow regimes:

• Laminar flow,
• Laminar flow with Taylor structures,
• Turbulent flow,
• Turbulent flow with Taylor structures.

Figure 4. Flow regimes as a function of axial Reynolds number and Taylor number [41].

Kaye and Eglar (1958) [40] cited by [41] showed with an experimental study and a hot
wire anemometer that axial flow has a stabilizing effect on Taylor structures. The onset of
the first instabilities occurs for larger cylinder rotation speeds ω (higher Taylor number)
than a simple Taylor–Couette flow. The importance of rotational velocity in flow transitions
is important and is the subject of many studies.

The flow characterization has been established by various works inventoried on the
subject [42–44] for 0 ≤ Rea ≤ 104 and 0 ≤ Ta ≤ 106. A study with larger axial and Taylor
Reynolds numbers was also performed [45] (2× 104 ≤ Rea ≤ 3× 104, 4× 107 ≤ Ta ≤
2× 109). The authors investigated the influence of physical phenomena such as the rotation
speed of the inner cylinder on the transfer phenomena as a function of the identified flow
regime. Experimental results [43] show that the transition between a turbulent flow and a
turbulent flow containing Taylor cells is punctuated by a transition zone and not distinctly
separated. Jakoby et al. (1999) [45] also confirmed the existence of a transition zone between
a flow with and without Taylor cells.
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A more detailed analysis of the transitions was performed experimentally [46] cited
by [41]. This experimental study was performed for low Taylor numbers (Ta < 3000) and
very low Reynolds numbers (Rea < 540) in the context of a weak annular gap η = 0.885
and Γ = 41. They observed a significant number of flow regimes ranging from laminar to
turbulent flow. The limited description at low Reynolds and Taylor numbers is presented
by a detailed flow mapping (Figure 5).

Figure 5. Different transitions of the Taylor–Couette–Poiseuille flow [41].

Finally, several authors have focused on the parameters influencing the transition
between flow with and without Taylor cells. The size of the annulus (Γ, η) appears to play
an important role in the flow transitions (Figure 6). Kaye and Eglar (1958) [40] cited by [41]
determined and compared the major flow transitions for two annular space thicknesses
η = 0.693 and 0.802. For very low axial flow or Reynolds number (Rea < 100), the size of
the annular space does not appear to influence the transitions. In contrast, for high axial
Reynolds number, increasing the annulus size seems to alter the flow transition. Taylor
cells appear for lower angular velocity of the inner cylinder. Similar results have also been
observed [45] on the transition between a flow with and without Taylor cells.

Figure 6. Taylor and axial Reynolds number flow transition: Influence of annulus thickness [41].

In contrast to the results of Kaye and Eglar (1958) [40], other work [47] showed that
widening the annulus stabilized the flow, with an appearance of Taylor cells for larger
Taylor numbers. This contradiction between the authors can be explained by the effect of L
and Γ on the development of the flow and specifically the axial velocity profile. Increasing
Rea has the effect of increasing the flow developing region, and thus delaying along the
z-axis the appearance of the first Taylor cells [48].

Fénot et al. (2011) [49] performed a literature review on heat transfer in Taylor–Couette,
and Taylor–Couette–Poiseuille flows. They concluded that:

“Despite the considerable amount of studies carried out on Taylor-Couette-Poiseuille
flow, the large number of influential factors leaves many questions regarding their impacts
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on flow dynamics and heat transfers”. Indeed, the results published in the literature
depend largely on the study configuration, and do not yet provide a sufficient basis for
large-scale extrapolation.

2.3. Numerical Simulation in Taylor–Couette–Poiseuille Flow

Numerical studies of Taylor–Couette–Poiseuille flow cover different configurations of
the flow and have already received much attention due to the three-dimensional boundary
layer of the flow. Some of the different numerical studies of the Taylor–Couette–Poiseuille
flow available in the literature are presented in Table 2. The experimental studies [50,51]
provide valuable experimental data on the influence of the rotating inner wall on the axial
flow in an annular space. These authors [50,51] extracted the various components of mean
velocity and turbulent stresses in an annular space possessing a large shape factor (η = 0.5)
and a large aspect ratio (Γ = 98–244; N → ∞ ). These experiments included the study of the
effect of the nature of the Newtonian and shear-thinning fluid on the flow. Finally, the large
aspect ratio, Γ, used by the authors during their experiments allows for the assumption of
fully developed flow in the axial direction. These experimental data [50,51] were used to
validate most of the numerical experiments in Taylor–Couette–Poiseuille flow recapped in
Table 2.

Authors [52,53] numerically investigated, from DNS [52] and LES [53], the effect of
the radius of curvature of two annular geometries (η = 0.1 et 0.5) upon the near wall
turbulent structures in a given axial flow (Rea = 4450). In this study, the outer and inner
cylinders are stationary. The authors showed a change in the characteristic of the turbulent
structures at the outer wall due to the change in the radius of curvature. Later, Jung and
Sung (2006) [54] extended the numerical study [52] with a rotating inner wall. The rotation
parameter N = Ret/Rea studied by the authors was 0.429. They were interested in the
study of coherent structures located in the inner wall and their changes compared to the
study of Chung et al. (2002) [52] due to the influence of centrifugal forces. The authors
found an increase in near-wall turbulence with an increase in the ejection of coherent
structures into the flow.

Chung and Sung (2005) [53] performed a numerical study by Large Eddy Simulation
(LES). The LES simulation was performed using the experimental setup from [50] (η = 0.5
and = 0.214, 0.429 and 0.858 for an axial Reynolds number Rea = 4450). They showed
the influence of the inner cylinder rotation velocity on the destabilization of the turbulent
structures in the near wall region.

Large-Eddy Simulation was also used [55] to characterize a Taylor–Couette–Poiseuille
flow with a shape factor η = 0.5. The study regards a rotating outer cylinder, which is rarer
in the literature. This study focuses on the effect of rotation for a wide range of studies of
the rotation parameter N, ranging from 0.5 to 4. The authors focused on studying the effect
of the outer cylinder velocity on the mean flow, turbulence statistics and vortex structures
(Q-Criterion). A significant change in the turbulent structures was observed for N = 2.8.
Indeed, the turbulence is thus reduced while helical vortex structures are perceptible in the
near outer wall. According to the authors [55], this change is attributed to the centrifugal
turbulence generated in the near wall dominating the inertial forces of the flow. For a
higher rotation rate (N = 4), the flow stabilizes and becomes laminar with the appearance
of Taylor–Couette vortex structures usually observed in a Taylor–Couette flow without
axial flow.
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Table 2. Numerical and experimental studies in TC and TCP flows identified in the literature.

Authors Method η Γ Flow Regime Rea Reω ,Ta N

Nourri and Whitelaw (1994) [50] LDA 0.5 98 Turbulent 8900 Reω = 3818 0.429

Escudier and Gouldson (1995) [51] LDA 0.506 244 Turbulent
2400;
5000;
15, 000

Reω = 1922 0.80; 0.38; 0.13

Chung et al. (2002) [52] DNS 0.1–0.5 - Turbulent 8900 Reω = 0 -

Chung and Sung (2005) [53] LES 0.5 - Turbulent 8900 Reω = 1909; 3818; 7636 0.214, 0.429; 0.858

Jung and Sung (2006) [54] DNS 0.5 - Turbulent 8900 Reω = 3818 0.429

Hadziabdic et al. (2013) [55] LES 0.5 - Turbulent 12,500 6250 ≤ Reω ≤ 50, 000 0.5 ≤ N ≤ 4

Poncet et al. (2014) [56] LES 0.889 10 Turbulent 7490 ≤ Rea ≤ 11, 234 16, 756 ≤ Reω ≤ 50, 266 1.49 ≤ N ≤ 6.71

Poncet et al. (2011) [57] RANS (RSM) 0.961 76.9 Laminar-Turbulent 0 ≤ Rea ≤ 41, 254 7488 ≤ Reω ≤ 74, 886 0.18 ≤ N ≤ +∞

Pawar and Thorat (2012) [58] RANS (RSM) 0.745 5.85–1 Turbulent 0 1 ≤ Ta ≤ 11, 684

Nasser et al. (1990) [59] RANS (k− ε) 0.5 244 Laminar-Turbulent 7400 Reω = 1904 0.13

Ohsawa et al. (2016) [60] LES 0.87 18 Turbulent 500 ≤ Rea ≤ 8000 Ta = 4000 1 ≤ N ≤ 16

Mehrez et al. (2019) [61] Lattice Boltzman 0.5–0.6–0.7 2–3.8–5–6–7–8–9–10 Laminar-Wavy 0 ≤ Rea ≤ 17 30 ≤ Ta ≤ 270

Piton et al. (2022) [62] LES & RANS (RSM) 0.809 10 Turbulent 1462 ≤ Rea ≤ 8776 Reω = 7488 1.71 ≤ N ≤ 5.12
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Poncet et al. (2014) [56] performed Large-Eddy Simulations of a Taylor–Couette–Poiseuille
flow with rotation of the inner cylinder in a narrow annular space, but for large values
of the rotational parameter N (1.49 ≤ N ≤ 6.71). Initially, the authors compared their
numerical results favorably on the experimental data [50], and on the data from Large
Eddy Simulations [53]. Next, the authors extended their work to real operating conditions
(η = 0.889, Γ = 10) to study the influence of the rotation parameter N on the mean flow
and on the turbulence statistics. The authors were also interested in the nature of the coher-
ent structures appearing in the boundary layer and their influences on the heat transfers.
The authors Poncet et al. (2014) [56] observed that the turbulence is mainly concentrated
in the boundary layer of the flow. A small dissymmetry is noticeable in the Reynolds
stress distribution at the rotating cylinder boundary layer, telling us that the inner cylinder
boundary layer is more chaotic than that observed on the outer cylinder. Rotation of the
inner cylinder appears to destabilize the flow and have an opposite effect compared to
the results obtained by Hadziabdic et al. (2013) [55] of stabilizing the flow with increasing
rotation of the outer cylinder.

In the literature, there are a few numerical simulations of Taylor–Couette–Poiseuille flow
using the Reynolds decomposition known as RANS (Reynolds Averaged Navier–Stokes).
The k − ε turbulence model is the most commonly used model in computational fluid
mechanics to simulate the mean flow under turbulent conditions. Nevertheless, the pre-
dictions from a k−ε turbulence model seem to deviate to the literature results in the case
of a Taylor–Couette–Poiseuille flow. Indeed, in a flow where turbulent transport and no
equilibrium effects are important, the assumption of turbulent viscosity used by the k− ε
model is no longer valid, and the results of the turbulent viscosity model may turn out to
be not accurate [57,58]. Some authors [59] have used a k− ε turbulence model, but it shows
large discrepancies compared to the experimental data of [51]. Compared to turbulent
viscosity models, Reynolds stress models (RSM) naturally include curvature effects, abrupt
changes in velocity stress, and secondary flows. The Reynolds stress model solves the trans-
port equations for each Reynolds stress u′ iu′ j and dissipation rate ε at each time step. The
authors of [57] performed steady state RANS simulations based on an innovative Reynolds
stress model sensitized to rotational effects. A study [57] has compared their results fa-
vorably on the experimental data of Escudier and Gouldson (1995) [51], and extended
their work on real operating conditions (η = 0.961, Γ = 77) including non-isothermal
flow in a wide range of Reynolds numbers (0 ≤ Rea ≤ 4870, 3744 ≤ Rew ≤ 37, 443).
Recent work addresses numerical simulations from various methods to understand the
role of the wall turbulence properties in the heat transfer results in non-isothermal con-
ditions. Ohasawa et al. (2016) [60] used LES simulation, showing a large contribution
of the turbulent transport term on the Nusselt number results. Mehrez et al. (2019) [61]
used the Lattice Boltzmann method to assess the importance given to the initial condi-
tions for Taylor–Couette–Poiseuille flow characterization. Piton et al. 2022 [62] used LES
method to characterize the turbulent kinetic energy transport in the near wall region for
heat recovery system application (Figure 7). Therefore, the importance to study the rota-
tional annular duct in a non-isothermal condition has a practical interest (see Table 1). The
next section is aimed to cover the main fundamental works that have included the heat
transfer phenomenon.
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Figure 7. Simulation LES in the near-wall region of a Taylor–Couette–Poseuille flow. Q-criterion
applied for angular assessment of the vortex [41].

3. Non-Isothermal Condition

We can report a large amount of convection studies that investigated annular ducts
for which constant temperature or constant heat fluxes is imposed at the inner or outer
boundaries. According to a careful sorting extracted from the literature, the present section
addresses a report of the main scaling laws of the heat transport in rotating annular ducts.

In natural and mixed regimes of convection, the buoyancy force driven by the differ-
ence of fluid density in the annulus cannot be neglected. The momentum and buoyancy
induced flows increase the complexity of the hydrodynamics behavior. It implies a large
variety of flow patterns, from spiral-type at low rotational speed to Taylor Vortex-type at
the dominant torque effect [63]. The Rayleigh number, Ra, is the dimensionless number
allowing us to express the importance of the buoyancy force driven by the difference of
temperature. It is defined according to the following relationship:

Ra =
gβ(TREF − TWall)(D)3

νκ
(3)

where Twall is the hot temperature source at the inner or outer wall, TREF can be varied
according to the author. Generally, it corresponds to the fluid temperature probed in the
vicinity of the inner or outer wall. g is the gravity, D the external cylinder diameter, β, ν
and κ are, respectively, the dilatation coefficient, the kinematic viscosity and the thermal
diffusivity of the fluid.

At a low Ra number below Rac = 400 Γ, the buoyancy-induced flow are weak [16],
a purely diffusive regime is considered. The Nusselt number, which characterizes heat
transfer, is solely dependent on the geometry of the annular cell [64] and defined by:

Nu =
qDh

(TREF − TWall)λ
=

2
(

Re−Ri
Ri

)
ln
[
1 +

(
Re−Ri

Ri

)] (4)
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With q the heat flux density, Dh = 2e is the hydraulic diameter and λ the thermal
conductivity.

From Ra > Rac and Ta < Tac the onset of convection in a closed-gap system is
governed by the buoyancy force revealing scaling law of type Nu~Raα~1/3 [16] in such
way that:

Nu = 0.22Ra0.29 (5)

The mechanism of transport would support the theory of Rayleigh–Bernard convection
where the two thermal boundaries (inner and outer cylinders) are the engine of the fluid
motion. In open-gap, the end-effects are not negligible, developing flow and additional
turbulent transfer of momentum energy. The momentum kinetic energy coupled to the
buoyancy forces from the thermal kinetic energy have shown that the scaling law is of
the type Nu~Ra0.38<α<0.5 [65,66]. The scaling exponent, α, is variable in the literature [66].
Recent works seem shown that it depends essentially on the origin of the turbulent trans-
port mechanisms, which are summarized by Swirling-type [14] and Rayleigh-type flow
behaviors [67]. Thus, in the more recent works, effective Reynolds numbers are preferred
to the Rayleigh number by adjusting the scaling exponent in such a way that Nu ∼ Reγ

e f f
with Reeff depending on Ra [68]. Recent results conclude to an exponent value close to
γ~0.6 in axial [68] or radial heat fluxes conditions [14] such as:

Nu = 0.3Reeff
0.6 (6)

DNS modelling and further experiments appear as a safe bet to overcome the physical
complexity linked to multiple turbulent flow states and the coupling phenomena of heat
and momentum transfer [63,68]. A set of correlations are depicted in Table 3.

Table 3. Scaling relationships obtained in rotating annular ducts in diffusive, natural and mixed
regimes of convection.

Geometry Authors Range of Applicability Nu-Correlation Remarks

Closed gap
Bjorklund and kays (1959) [64] Diffusive regime

(Ra < 400.Γ) Ta << Tac
Equation (4) Conduction

Vahl Davis G. and Thomas (1969) [16] Ra > Rac; Ta << Tac Equation (5) Natural convection

Open gap Huchet et al. (2017) [14]
2.5 × 107 > Ra > 2.5 × 108

0 < Rew < 6980
1000 < Rea < 15,000

Equation (6) Heated rotor–Mixed
Convection

In forced regime of convection at large Ta > Tac, two reviewing papers were recapped
most of the papers published before 2010. Howey et al. (2012) [69] were interested in
air gap convection in rotating electrical machines, giving some results based on popular
Nu-correlation showing that large gap ratios and higher rotational speed give better per-
formance than smaller rotating machines. Fenot et al. (2011) [49] made a recapitulation
of the main correlations for convective heat transfer in closed and open cylindrical gaps.
The conjugated inertial effects of the axial and rotational flows lead to a complex behavior
and scattered equation in terms of Nu = f(Rea,Rew). Numerical works performed in the last
decade have allowed understanding the role of the vortices transport (see Figure 7) on the
heat transfer mechanisms [56,62]. It has resulted in a new set of correlations in terms of
skin-friction factor and heat transfer in case of optimized geometries of TCP [70]. A set of
correlations are depicted in Table 4.
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Table 4. Scaling relationships obtained in rotating annular ducts in forced regime of convection.

Geometry Authors Range of Applicability Nu-Correlation Remarks

Closed-gap Beker and Kays (1962) [71] 1994 < Ta < 104

104 < Ta < 3.3105
Nuw = 0.128(Ta)0.367

Nuw = 0.409(Ta)0.241 Radial heat flux

Open gap
Gazley (1958) [72] Rea < 12,000

Rew < 110,000 Nu = 0.03Reeff
0.8 Calculation made from

Trot-Tst

Bouafia (1998) [1] 11,000 < Rea < 31,000
500 < Rew < 31,000 Nuw = 0.021Reeff

0.8 Heated rotor

4. Conclusions

To conclude, the objective of this review was to establish an overview of the theory
development, the applications and the modelling aspects of the heat transport into rotating
annular ducts.

The governing parameters of control were found to be widespread according to energy
systems. Gap thickness, length of cylinders and rotational velocity can vary in an extreme
way if gases, liquid or even non-Newtonian fluid are considered. From such a variety of
configurations, it has resulted in numerous works in the literature to cover the entire flow
regimes in Taylor–Couette (TC) geometry. The prediction of the instabilities according to the
magnitude of the rotational velocity, shape factor and gap thickness remains a technological
and scientific issue. The Taylor–Couette–Poiseuille (TCP) configuration has opened the way
to expand laminar and turbulent flow regimes in order to better control the flow instabilities
apparition with an imposed axial flow rate. Nevertheless, such a configuration reaches
no less than 12 flow regimes according to the imposed rotational velocity and axial flow
rates. Thus, many numerical results of the literature have been presented using various
methods for turbulence characterization in TCP flow. It has been shown that LES seems a
good candidate to model the flow dynamics in such geometries. LES is well adapted to
characterize the near-wall region, where the transport of the turbulent kinetic energy is
responsible for the heat transfer optimization, or defect, according to the importance of the
axial flow rates.

In non-isothermal conditions, several works have been established for which the
present review proposes to distinguish:

- The open- and closed-gap;
- The radial and axial heat flux densities.

Depending on the configuration, many correlations of the Nu number could be listed.
In the natural regime of convection, the dependence in Ra0.3 seems to be valid. In the mixed
and forced regime of convection, respectively, it seems that the dependence in Reγ∼0.6

e f f and

Reγ∼0.8
e f f finds consensus.

The future research direction will aim at an explanation of these exponents’ values for
heat transport scaling relationships. Only a conjugated effort of experience and modelling
will be able to determine the origin of the turbulent flow mechanisms (i.e., buoyancy and/or
inertia) responsible for the heat transport in the near wall region.
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Nomenclature

Symbols
D m External diameter of the cylinder
Dh m Hydraulic diameter
e m Thickness of the annular space (=Re- Ri)
g m.s−2 Gravity
k m2.s−2 Turbulent kinetic energy
L m Length of the cylinders
N - Rotational parameters (=Ret/Rea)
Nu - Nusselt number
q W/m2 Wall heat density
Ri m Internal raduis
Re m External raduis
Ra - Rayleigh Number
Rea - Axial Reynolds number
Reeff - Effective Reynolds number
Rew - Rotational Reynolds number
T ◦K Temperature
TWall

◦K Wall temperature
Ta - Taylor number
Tac - Critical Taylor number
Uθ m.s−1 Tangential or spanwise velocity component
Uz m.s−1 Axial or streamswise velocity component
u′ iu′ j m2.s−2 Reynolds stress tensor
r, θ, z (m, rad, m) Cylindrical coordinate
r∗ - Dimensionless radial coordinate (= r− Ri)/(Re − Ri)
z∗ - Dimensionless axial coordinate (=z/L)
Greek symbols
β ◦K−1 Thermal dilatation coefficient
ε m3.s−2 Turbulent kinetic energy dissipation rate
η - Shape factor ( = Ri/Re)
κ m.s−2 Thermal diffusivity
λ W.m−1.K−1 Themal conductivity
Γ - Aspect ratio ( = L/e)
ν m.s−2 Kinematic viscosity
ϕ rad
Φv - Volume fraction
Φw - Mass fraction
ω rad.s−1 Angular velocity of the cylinder
ωc rad.s−1 Crictical angular velocity
Abbreviations
DNS Direct Numerical Simulation
LB Lattice Boltzman method
LDA Laser Doppler Anemometry
LES Large Eddy Simulation
RANS Reynolds Averaged Navier Stokes
TC Taylor-Couette
TCP Taylor-Couette-Poiseuille
k− ε Turbulent closure model
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