
HAL Id: hal-04103871
https://hal.science/hal-04103871

Submitted on 23 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A process for defining a unique correspondence model to
relate heterogeneous models

Mahmoud El Hamlaoui, Sophie Ebersold, Bernard Coulette, Adil Anwar,
Mahmoud Nassar

To cite this version:
Mahmoud El Hamlaoui, Sophie Ebersold, Bernard Coulette, Adil Anwar, Mahmoud Nassar. A pro-
cess for defining a unique correspondence model to relate heterogeneous models. 8th International
Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2013), Jul 2013,
Angers, France. pp.181-188. �hal-04103871�

https://hal.science/hal-04103871
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12427

The contribution was presented at ENASE 2013 :

http://www.enase.org/?y=2013

To cite this version : El Hamlaoui, Mahmoud and Ebersold, Sophie and
Coulette, Bernard and Anwar, Adil and Nassar, Mahmoud A process for
defining a unique correspondence model to relate heterogeneous models.
(2013) In: 8th International Conference on Evaluation of Novel Approaches
to Software Engineering (ENASE 2013), 4 July 2013 - 6 July 2013 (Angers,
France).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Heterogeneous models matching for consistency management

Mahmoud EL HAMLAOUI
1,2

, Sophie EBERSOLD
1
 Bernard COULETTE

1
, Adil ANWAR

3
 and

Mahmoud NASSAR
2

1University Toulouse 2-Le Mirail, IRIT Laboratory, MACAO Team, Toulouse , France
2University of Med V Souissi ENSIAS, SIME Laboratory, IMS Team, Rabat, Morocco

3University of Med V Agdal, EMI, Siweb Laboratory, Rabat, Morocco

{mahmoud.el- hamlaoui, sophie.ebersold, bernard.coulette}@irit.fr, anwar@emi.ac.ma, nassar@ensias.ma

Keywords: DSL, matching, consistency, heterogeneity, correspondence

Abstract: The overall goal of our approach is to relate models of a given domain. Those models are manipulated by

different actors, and are thus generally heterogeneous, that is, described with different DSLs (Domain Spe-

cific Languages). Instead of building a single global model, we propose to organize the different source

models as a network of models, which provides a global view of the system through a virtual global model.

The matching of these models is done in a unique correspondence model composed of relationships that are

instantiated from a correspondence meta-model. This meta-model is composed of a generic part – common

to all the domains – and of a specific part which depends on the specific domain modelled. In this paper, we

focus on the elaboration of the correspondence model based on a correspondence meta-model, through a

vertical relationship named “refine”. The approach is illustrated on a representative use case (a Bug Track-

ing System).

1. INTRODUCTION

Today, the development of complex systems is

based on a varied set of languages, tools and envi-

ronments that are generally used separately by mod-

elling experts working on different dimensions of a

project. In addition, developers are often located in

distant geographical areas, as is the case in distribut-

ed collaborative development, which complicates

their cooperation.
Among problems that typically arise in this type of
situation, we can mention the fact that different
terminologies and terms can be used to represent the
same concept or that the same term can be used to
express different concepts. More generally, design-
ers of complex systems are facing hard problems
due to heterogeneity and distribution.
This issue has been initially tackled in various do-
mains, namely: databases (Castano et al., 2001),
semantic web (Fenza et al., 2008), embedded sys-
tems (Eker et al., 2003)… In the avionics domain for
example, it is common to develop various models
corresponding to different points of view on a given
system: mechanical, thermal, electrical, computing,
etc. Thus, the whole system is represented as a set of
separate, heterogeneous models (i.e. derived from

different meta-models, expressed in different DSL
(Domain Specific Language)) which focus on spe-
cific parts of the system.

MDE (Model Driven Engineering) provides

some means of addressing this problematic by con-

sidering models as first class items. This allows

reasoning about those systems and applying auto-

matic transformations to them.

The first solution that comes to mind is to compose

those different source models into a global one, in

order to have one single representation, which is

easier to maintain. Our research team has been

working for years on this composition issue as de-

scribed in (Anwar et al., 2010) (Ober et al., 2008)

but so far, we have restricted our work to UML

source models. Globally, composition approaches

proposed in the literature rely on the elaboration of

one global model and have two major drawbacks

related to source models heterogeneity. The first

disadvantage concerns the structure of the meta-

model associated to the composed model; indeed,

there is no consensus on whether it should be con-

structed from the union of all elements coming from

the source models or from their intersection. The

second disadvantage concerns the semantics used to

represent a model element of a composed model

given that the source models may use different se-

mantics.

Instead of building a single global model, we pro-

pose a new approach consisting in organizing the

different source models as a network of models that

provides a global view of the system. This network

is composed of models connected via relationships

called “correspondences”. Producing such a set of

interrelated models allows then to perform MDE

operations on these models (such as composition,

weaving, changes tracking, maintenance, etc.).

The overall goal of our approach is to link heter-

ogeneous models – of a given domain – that are built

by different actors. Matching of these models is

done through the elaboration of a correspondence

model which contains relationships that are instanti-

ated from a correspondence meta-model. This meta-

model is composed of a generic part – common to

all the domains – and of a specific part which de-

pends on the given application.

In this paper, the focus is on the elaboration of

the correspondence model. The remainder of this

paper is structured as follows. Section 2 introduces

the running example that has been chosen to illus-

trate our approach. Section 3 presents our corre-

spondence meta-model and the matching process.

Section 4 discusses in details how correspondences

at the model level can be established through re-

finement of correspondences at the meta-model

level. Section 5 investigates the related works and,

finally, the paper is concluded in Section 6.

2. RUNNING EXAMPLE

To illustrate our approach, we have chosen an

example − based on a real project − that performs

bug tracking: BTS (Bug Tracking System). This

system aims to offer to different actors, based on

their different status (Team leader, developers, test-

ers,…), the ability to report dysfunctions, comment

them, track the status of an anomaly, notify collabo-

rators of problems encountered, suggest solutions or

possibilities of circumvention. The choice of this

example seems relevant because it involves different

actors, working with different points of view, from

the analysis of users’ requirements to the implemen-

tation of the proposed solution.

We consider that in the domain of bug management,

there are three business domains covering various

aspects: user requirements management, anomalies

management and business process modelling. Each

business domain is described in a dedicated lan-

guage and manipulated by actors with specific roles:

§ The analyst: Responsible for modelling cus-

tomer needs as requirements (business do-

main: user requirements management). The

produced model is expressed in SysML;

§ The software architect: Responsible for mod-

elling anomalies (business domain: software

development). He creates his model in Man-

tis;

§ Process Engineer: Responsible for bugs track-

ing process modelling (business domain: pro-

cess modelling). He creates his model in

BPMN.

2.1 Requirements model

To assess the quality and validity of any project,

you must ensure that it meets the user’s require-

ments that are described in a textual document. We

assume that these requirements are then represented

by a requirement model (Figure 2) conform to the

SysML meta-model (Figure 1). The system to build

must be able to satisfy the requirements described in

this model. For simplicity’s sake, we limit the de-

scription of the BTS to a few requirements. For

instance, the requirement “Declaration of an anoma-

ly” includes a sub-requirement “Summary of an

anomaly”, itself refined by additional constraints to

be respected by the “Reporter” during the declara-

tion of the anomaly.

Figure 1 : Extract of the SysML meta-model

Figure 2: Snapshot of the BTS requirement model

2.2 Software development model

The software development model chosen in our

case is based on the Mantis meta-model (mantisbt,

2010). Mantis is an open source solution in the bug

management field. Figure 4 illustrates an example of

the mantis model that conforms to the Mantis meta-

model (Figure 3). The term “Issue” is used to define

an anomaly (bug). An anomaly is characterized by a

unique identifier (“060687” in the example), infor-

mation about the anomaly, namely, a category, a

summary, a description, a status, steps which led to

the anomaly (“stepsToReproduce”) and the two

types of involved people with the “reporter” and

”assignedTo” roles. The first role indicates the per-

son that reports the anomaly, whereas the second

one indicates the person to whom the anomaly is

assigned.

Figure 3 : Extract of the Mantis meta-model

Figure 4: Snapshot of the BTS Mantis model

2.3 Business process model

The treatment of an anomaly can be seen as a

business process that various collaborators must

follow in order to solve the anomaly. We suppose

that the process engineer used BPMN (BPMN,

2011) for modelling the business process. A snap-

shot of the process expressed in conformity with

BPMN meta-model (Figure 5) is presented in Figure

6. Required roles in this process model are “manag-

er”, “reporter” and “developer”. Just after having

reported a bug, the “reporter” must set the status of

the anomaly to “new”. An email is automatically

sent to the project manager (PM) who has the

“viewer” role as he is not directly involved in the

correction of the anomaly. Once the PM has validat-

ed the issue, he must assign it to a “developer” and

change the status to “open”. Otherwise, if the anom-

aly is not validated by the PM, he must reassign it to

the “reporter” to request additional description. Once

the “developer” has corrected the anomaly, he must

inform the PM and change the status to “Fixed”. The

PM, notified by the change, rechecks the proposed

solution and modifies the anomaly status to

“closed”, if it has been corrected.

Figure 5: Extract of the BPMN meta-model

Figure 6: Snapshot of the BTS BPMN model

3. ESTABLISHING HETERO-

GENOUS MODEL

CORRESPONDENCES

In this section we present our approach for estab-

lishing correspondences between heterogeneous

models. It consists in analysing input models in

order to identify relationships that exist among them

and to store them into a model of correspondences.

We discuss below the elaboration of the correspond-

ence model as well as the proposed matching pro-

cess.

3.1 Correspondence Meta-model

To implement our approach we have defined a

meta-model for correspondences called “MMC”

(Figure 7). It was designed to meet two main quality

criteria: genericity and extensibility. MMC provides

a “generic” part – common to all domains - that

defines a syntactic description of most common

types of correspondences. MMC can be extended

depending on the specificities of the domain under

consideration, in order to support the concepts relat-

ing to specific business areas. It is done through

specializations of the “DomainSpecificCorrespond-

ence” meta-class.

Figure 7: Overview of the MMC correspondence meta-

model (generic part)

MMC includes the following concepts:

§ LinkModel: Abstract meta-class that repre-

sents all the links established between at least

two models;

§ CorrespondenceLink: Abstract meta-class that

defines correspondence relationships between

elements belonging to different models. Con-

nected to a meta-class Element by one 1...* re-

lationship, this meta-class allows, conceptu-

ally, defining n-ary relations connecting more

than two items at once. Defining a correspon-

dence link is done through specialization of

”CorrespondenceLink”, by introducing two

abstracts meta-classes: “DomainIndpendent-

Correspondence” and “DomainSpecific-

Correspondence”;

§ DomainIndependentCorrespondence: Abstract

meta-class that represents the generic links

that may exist in different domains;

§ DomainSpecificCorrespondence: Abstract me-

ta-class representing links between models of

the same domain. New types of corre-

spondences are specified by specialization of

this concept according to the studied area;

§ Similarity: Concrete sub-class of “Domain-

IndependentCorrespondence” that defines a

correspondence relating model elements rep-

resenting the same concept without being

completely identical. Such similarity may be

syntactic or semantic. In the first case we

speak of polysemy while we use the term of

synonymy in the second case. The latter will

not be addressed in this paper;

§ Equality: Concrete indirect sub-class of “Do-

mainIndependentCorrespondence” that repre-

sents a link relating identical model elements,

i.e. having the same structural and semantic

descriptions. For example, for a model ele-

ment duplicated in several models there will

be an equality among these copies;

§ Dependency: Concrete sub-class of “Domain-

IndependentCorrespondence” that represents a

relationship between model elements through

a function. For instance: Arithmetic operation

on model elements of type Real: (Total_TTC

=Total_HT*(1+TVA)); Concatenation of

model elements of type String (Full_Name =

First_Name + Last_Name);

§ Co-Dependency: Concrete indirect sub-class

of “DomainIndependentCorrespondence” that

defines a mutual dependency between model

elements, where any change concerning one

may affect the others;

§ Generalization: UML concept in which one

element of a model B is based on another

model element of a model A, allowing the ex-

tension of A by reusing its elements in B.

§ Association: UML concept through which two

particular associations are defined namely

composition and aggregation.

3.2 Matching process

The proposed matching process aims at describ-

ing the steps required to perform the matching be-

tween heterogeneous source models, in order to

obtain a correspondence model. The produced model

is called M1C (model of correspondence at M1

level) and contains the correspondences between

elements of models representing the system to de-

velop.

Figure 8 : The whole matching process

Figure 9: Extract of the specific part of the MMC meta-

model for BTS domain

Firstly, the process introduces the various mod-

els, their respective meta-models and the meta-

model of correspondences (MMC) in its initial state.

Subsequently, a verification step of the expressive-

ness of the MMC is triggered in order to inspect and

ensure that the MMC contains enough types of cor-

respondences (links) to set up among models, for a

given application domain. If the domain expert (ac-

tor whose responsibility covers the entire application

domain), considers that the proposed links are not

sufficient to express other relationships that might

exist between (meta-)model elements, the “Domain-

SpecificCorrespondence” meta-class of MMC is

extended. The extension enables the domain expert

to add missing links, so as to enrich the MMC with

concepts specific to a given business domain. Figure

9 shows examples of such concepts that are needed

particularly in the context of BTS. For the “verify”

link for example, as we use a requirement model in

our domain, we must ensure that a given (meta-)

model element verifies the requirement(s) to which

it is linked. Once the MMC contains the necessary

concepts, the matching operation can be launched. It

begins by identifying relations between meta-

elements so as to produce the correspondence model

called M2C. Relationships stored in M2C are thus

refined, through a process that is described further,

to obtain the final model M1C which comprises the

relationships between model elements.

4. SETTING UP

CORRESPONDENCE LINKS

In this paper, we assume that correspondence re-

lationships are set manually by the domain expert.

He is supposed to know the types of links that may

exist between the meta-elements, and their meaning.

Nevertheless, an assistance tool may be used. Indeed

it is possible to infer some relationships on the basis

of OCL constraints as well as knowledge bases (on-

tologies) that can be used as input of the matching

process.

Thereby, as explained in the matching process pre-

sented in section 3.2, we propose to specify relation-

ships at the abstract level (M2) in order to minimize

the modelling effort, and thus to reuse them through

refinement relationships at the concrete level (M1).

4.1 Reusing high level links through

a refinement relationship

Refinement is a classical way to reuse. It can be

seen as a crossing from different levels of abstrac-

tions with the purpose of adding details when pass-

ing from a higher level to a more concrete one.
In the context of MDA, that notion may be repre-
sented as a transformation of a PIM (Platform Inde-
pendent Model) that represents a high level of ab-
straction to a PSM (Platform Specific Model) that
represents a lower one. According to (Agner et al.,),
even though refinement is a key concept in MDA, it
is loosely defined, and open to misinterpretation. In
a model refinement operation, most elements from
the abstract model (PIM) are copied into the re-
fined model (PSM), while other elements must
be changed in order to ensure specific properties.
The “refine” notion has also been defined in UML
(UML, 2007) as a stereotype for “Abstraction”.
Abstraction is a directed relation from a dependent
element to an independent one stating that the de-
pendent element (concrete) depends on the other one
(abstract).

In our approach we distinguish two types of re-

lationships:

§ Relationships between meta-model elements:

“High Level Relationships” that are called

HLR,

§ Relationships between model elements: LLR

(for “Low Level Relationships”).

A transition from HLR to LLR is similar to a

transformation of a PIM into a PSM in the context of

the MDA. This is done by projecting abstract rela-

tionships on the concrete level.
Starting by identifying, relationships (called meta-
relationships) between meta-elements at the meta-
model level (M2C) allow establishing, in a second
step relationships between elements at the model
level (M1C). The principle consists in defining a
relationship once at the meta-model level and then
reuse it each time needed at the model level. In other
words, relationships among meta-model elements
induce relationships between model elements.

4.2 From HLR to LLR relationships

To illustrate the use of the “refine” relation, we

consider Figure 10, whose objective is twofold: it

describes both HLRs among meta-elements at the

abstract level, and also how elements at concrete

level are related through LLR via refinements of

HLRs.

Figure 10: Examples of HLR & LLR relationships from

BTS modelling

The upper side of the figure shows a graphical view

of an extract of M2C. This model is organized as a

set of different kinds of HLR relationships estab-

lished in the context of the BTS domain. For exam-

ple, the figure illustrates a “verifyAll” link that re-

lates the meta-element “requirement” on one side to

the meta-element “MantisRoot” on the other side.

Another example is “similarity” link that defines a

ternary relation between the following meta-

elements: “additionalInfo”, “Task” and “Require-

ment”.

HLR relationships are manually created. The

definition of these meta-relationships is done only

once during the modelling cycle but they are ex-

ploited for each relationship among model elements

instantiated from the meta-relationships. In other

words, the M2C model is used as input to establish

relationships at the model level. A meta-relationship

cannot give a full concretization at the model level.

It is necessary, depending on needs, to enrich the

relationships to adapt them at the model level.

The bottom part of Figure 10, shows LLR rela-

tionships belonging to the M1C model, obtained

through HLR refinements.

Figure 11: Process of model matching

We present above a process (Figure 11) that

shows how such LLRs are built. First, one must

identify elements to relate (a mechanism to notify

the need to create the missing elements should be

provided). After that, creation of relationships is

performed via three steps (Automatic creation of

relationships, Potential adaptation and Verification):

§ Automatic creation of relationships: It is a

fully automated operation that duplicates all

the relationships and their properties defined

at the meta-level and adapt them at the model

level. In other words, there are as many LLRs

for a given HLR than n-tuples of concerned

instances. Let us consider two model elements

m1 and m2 such as m1ϵ Mod1 and m2 ϵ

Mod2; a correspondence connects m1 and m2

if there exists a correspondence at the meta

level between mm1 and mm2 where mm1ϵ

MM1, mm2 ϵ MM2, m1 is an instance of

mm1, m2 is an instance of mm2, and Mod1

conforms to MM1 and Mod2 conforms to

MM2. Technically, LLRs can be created

through a Higher Order Transformation

(HOT) (Tisi et al., 2010) that is generated au-

tomatically. This HOT transforms M2C that

contains HLRs, into an ATL model. This latter

contains rules that can be executed in order to

produce the M1C model.

§ Potential adaptation: LLRs created during the

first step, may not be totally suitable for the

expert designer. He may have to make choices

about certain actions to be performed (Barbier,

2009); (e.g. to preserve the desirable proper-

ties or to add details or information on links,

so as to precise the semantics). Technically, a

second HOT is created to generate an ATL

model that contains rules for refining LLRs

depending on the domain expert’s needs. To

do this, we exploit the refine mode of ATL

language (Agner et al.,). It consists in trans-

forming a model itself (M2M transformation)

by modifying a small part of ATL rules with-

out rewriting the whole ones;

§ Verification: This last step consists in ensur-

ing that refinements have been done correctly.

It means that one must verify that each LLR is

in the context of one HLR. For example, one

cannot have a “semantic” link type of a HLR

which is refined, by the expert, with the

“composition” link type, instead of “equality”

link.

To sum up, LLRs are created implicitly from in-

stances of related meta-elements but they may also

be explicitly refined by the domain expert depending

on the context.

5. RELATED WORKS

Several research works are related to models
matching.

In AMW (Del Fabro et al., 2005), authors de-
scribe a language that allows using M2M transfor-
mations for model comparison. But according to
(Kolovos, 2009), the meta-model of AMW turns to
be unusable to identify correspondences. Developers
must add extensions to the meta-model, so as to
permit the definition of links, even for the obvious
ones (like similarity). To optimize the representa-
tion of a composed model, authors of the same team
propose a model virtualization technique (Clasen
et al., 2011). Such a technique may be useful for im-
plementing our approach, especially models tracing

and impacts calculation in case of source models
evolution.

ECL (Kolovos et al., 2006) is a matching lan-
guage which is difficult to use because it requires
specialized skills and great efforts, since relation-
ships are manually identified and created textually.
Moreover, the result of the matching operation is a
trace of correspondence, which contains the needed
relations after performing a set of rules. To exploit
the precedent trace and so to be able to reuse the
result for MDE purposes (e.g. composition), the
developer must do a serialization step to transform
the traces into a model of correspondences.

The Kompose approach (Drey et al., 2009) ad-
dresses the composition of homogeneous source
models. The process of matching must be parameter-
ized by defining signatures at the meta-model level
in order to define specific matching operators. In this
approach, the heterogeneity of models is not taken
into account yet, and tools are still at a prototype
stage.

In general, studied matching approaches have

shortcomings at two moments of the matching pro-

cess: before and after the creation of the correspond-

ence model. Regarding the first moment, we can

notice the lack of balance between the ability to

express correspondences and their reusability (ex-

isting approaches are based mainly on only one of

both criteria). In addition, these approaches only

operate binary links and therefore cannot establish

complex n-ary links relating a model element to any

set of elements belonging to other models. Con-

cerning the second moment, we can note that studied

approaches produce a correspondence model be-

tween each pair of input models; so for n input mod-

els, [n * (n-1)]/2 correspondence models must be

created, which leads to a large number of separate

models without any connection between them and

which makes their management very difficult and

almost impossible to automate.

6. CONCLUSIONS AND

PERSPECTIVES

Our general research work addresses the mainte-

nance of interrelated heterogeneous models in the

context of complex systems development. Thereby,

we are interested in establishing relations between

heterogeneous models described through different

DSLs corresponding to different business areas of an

application domain. In this paper, we have first pro-

posed a process to establish links between such

heterogeneous source models via a semi-automatic

matching operation based on a correspondence me-

ta-model (MMC) that may be adapted according to

specific business areas. The generic part of MMC

captures relations based on basic semantic links.

MMC can be thus extended through specialization of

the “DomainSpecificCorrespondence” meta-class

according to specific domains. Relationships among

source models are identified first at the meta-model

level and then refined at the model level. The pro-

posed approach has a wider operating range − thanks

to this high-level definition − than transformation

rules which restrict themselves to describing how an

element is obtained by transformation from another

one.

There are several perspectives to our current

work. Firstly, after an abstract syntax describing

different types of relationships among model ele-

ments is defined, we will create a concrete special-

ized notation for these relationships and formalize

their semantics. Secondly, we intend to validate our

approach by developing a matching tool called HMT

(Heterogeneous Matching Tool) whose architecture

is already defined. Thirdly, we will exploit the cor-

respondence model to address some maintenance

issue in the case where source models evolve. Our

goal is to provide a semi-automatic collaborative

process allowing to (i) update the M1C model, (ii)

calculate impacts of a change in a given source

model, (iii) propose modifications to maintain the

consistency of the system.

ACKNOWLEDGEMENTS

We thank the PHC Volubilis committee for funding

this project (MA/11/254), and our colleague K.A.

Kedji for his valuable remarks.

REFERENCES

Agner, L., Soares, I., Stadzisz, P., and Simao, J. Model

refinement in the model driven architecture context.

Journal of Computer Science, 8.

Anwar, A., Ebersold, S., Coulette, B., Nassar, M., and

Kriouile, A. (2010). A rule-driven approach for com-

posing viewpoint-oriented models. Journal of Object

Technology, 9(2):89–114.

Barbier, E. (2009). Contrats de transformation pour la

validation de raffinement de modèles. IDM 2009 Actes

des 5emes journées sur l’Ingénierie Dirigée par les

Modèles, page 1.

BPMN, O. (2011). Omg bpmn-v2.0.

http://www.omg.org/spec/BPMN/2.0/PDF.

Castano, S., De Antonellis, V., and De Capitani di Vimer-

cati, S. (2001). Global viewing of heterogeneous data

sources. IEEE Trans. on Knowl. and Data Eng.,

13(2):277–297.

Clasen, C., Jouault, F., and Cabot, J. (2011). Virtualemf: a

model virtualization tool. In Advances in Conceptual

Modeling. Recent Developments and New Directions,

pages 332–335. Springer.

Del Fabro, M., Bezivin, J., Jouault, F., Breton, E., and

Gueltas, G. (2005). AMW: a generic model weaver.

Proceedings of the 1ère Journée sur l’Ingénierie Diri-

gée par les Modèles (IDM05), 3(4.7):7–11.

Drey, Z., Faucher, C., Fleurey, F., Mahé, V., and Vojtisek,

D. (2009). Kermeta language. Reference Manual.

Eker, J., Janneck, J. W., Lee, E. A., Liu, J., Liu, X.,

Ludvig, J., Neuendorffer, S., Sachs, S., and Xiong, Y.

(2003). Taming heterogeneity-the ptolemy approach.

Proceedings of the IEEE, 91(1):127–144.

Fenza, G., Loia, V., and Senatore, S. (2008). A hybrid

approach to semantic web services matchmaking. In-

ternational Journal of Approximate Reasoning,

48(3):808–828.

Kolovos, D., Paige, R., and Polack, F. (2006). Model

comparison: a foundation for model composition and

model transformation testing. In Proceedings of the

2006 international workshop on Global integrated

model management, pages 13–20. ACM.

Kolovos, D. S. (2009). Establishing correspondences

between models with the epsilon comparison lan-

guage. In Proceedings of the 5th European Confer-

ence on Model Driven Architecture - Foundations and

Applications, ECMDA-FA ’09, pages 146–157, Ber-

lin, Heidelberg. Springer-Verlag.

mantisbt (2010). Mantis bug tracker.

http://www.mantisbt.org/index.php.

Ober, I., Coulette, B., and Lakhrissi, Y. (2008). Behavioral

Modelling and Composition of Object Slices Using

Event Observation. In Bruel, J.-M., Czarnecki, K., and

Ober, I., editors, ACM/IEEE International Conference

on Model Driven Engineering Languages and Systems

(MODELS), Toulouse, 28/09/2008-03/10/2008, num-

ber 5301 in LNCS, pages 219–233,

http://www.springerlink.com. Springer.

Tisi, M., Cabot, J., and Jouault, F. (2010). Improving

higher-order transformations support in atl. Theory

and Practice of Model Transformations, pages 215–

229.

UML, O. (2007). Uml 2.0: Superstructure specification.

http://www.omg.org/spec/UML/2.1.2/Superstructure/P

DF/.

