
HAL Id: hal-04103774
https://hal.science/hal-04103774v1

Submitted on 23 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generator of Numerically-Tailored and
High-Throughput Accelerators for Batched GEMMs

Louis Ledoux, Marc Casas

To cite this version:
Louis Ledoux, Marc Casas. A Generator of Numerically-Tailored and High-Throughput Accelerators
for Batched GEMMs. 2022 IEEE 30th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), May 2022, New York City, United States. pp.1-10,
�10.1109/FCCM53951.2022.9786164�. �hal-04103774�

https://hal.science/hal-04103774v1
https://hal.archives-ouvertes.fr

A Generator of Numerically-Tailored and
High-Throughput Accelerators for Batched GEMMs

Louis Ledoux
Barcelona Supercomputing Center (BSC)

Universitat Politecnica de Catalunya (UPC)
Barcelona, Spain

louis.ledoux@bsc.es

Marc Casas
Barcelona Supercomputing Center (BSC)

Universitat Politecnica de Catalunya (UPC)
Barcelona, Spain
marc.casas@bsc.es

Abstract—We propose a hardware generator of GEMM accel-
erators. Our generator produces vendor-agnostic HDL describing
highly customizable systolic arrays guided by accuracy and
energy efficiency goals. The generated arrays have three main
novel aspects. First, the accelerators handle a large variety of
computer number formats using intermediate representations
based on our Sign Scale Significand (S3) format. Second,
the processing elements perform all intermediate dot-product
arithmetic operations required by the GEMM kernel without any
intermediate rounding, which makes it possible to deliver better
energy efficiency than state-of-the-art approaches while offering
more accuracy and reproducible results. Third, our accelerators
feature the Half-Speed Sink Down (HSSD) mechanism, which
maximizes the overlap of host-accelerator data transfers with
GEMM computations.

We evaluate our automatically generated designs in a cutting-
edge setup composed of a POWER9 host, CAPI (Coherent Ac-
celerator Processor Interface) link, and a Virtex Ultrascale Plus
FPGA. Arrays can operate at the speed of the link and saturate
it to reach a 13GB/s throughput. Our fine-grain customization
approach allows to cover a wide range of accuracy versus
efficiency scenarios and can reach 0.65GOps/s/W while producing
1024 accurate bits or 148.7GOps/s/W with 6 accurate bits. Our
configurations achieve up to 1613GOps/s system performance
and power efficiencies of up to 240GOps/s/W for the FPGA.
This automatic generator is the first being able to produce such
a variety of designs. We improve the single-precision energy
efficiency of state-of-the-art FPGA GEMM accelerators by 1.86×.

I. INTRODUCTION

A large variety of scientific computing workloads rely on
the GEneral Matrix-Matrix (GEMM) multiplication kernel.
The requirements of these workloads in terms of numerical
accuracy or performance are very heterogeneous. Indeed,
emerging workloads such as Deep Neural Networks are
naturally resilient to arithmetic tinkering [34], even though
they embed millions of parameters [57] [25]. Conversely,
ill-conditioned linear systems require much higher precision
arithmetic [6] [68] [16] [26] [42] [10] [28]. Despite this large
variety of accuracy requirements, commodity hardware just
supports integers or 32- and 64-bits IEEE-754 arithmetic [1],
which often results in a waste of computing resources.

To address these issues, computer number formats alter-
native to the IEEE-754 standard, like the 16-bit Brainfloat
(Bfloat16) [2] [35], the Tapered Floating-Point (TFP) [51]
or the Posit [24], are attracting the attention of computer

architects. There is a variety of previous works implementing
arithmetic-logic units (ALUs) [33] [4] [59] and bare arithmetic
data paths [8] [67] [60] for alternative formats, and comparing
their area requirements to IEEE-754 units. In addition, some
studies have analyzed the numerical stability of the Posit and
the Bfloat16 arithmetics with respect to IEEE-754 [12] [7].
Despite this extensive amount of work, there are no approaches
considering the area, performance, power, and accuracy trade-
offs of these alternative computer number formats in the
context of a real system implementing them. Also, there is no
unified proposal leveraging the large flexibility of alternative
number formats with respect to the bitwidth or the accumulator
size, which covers an ample scope in terms of performance,
accuracy, area, or power.

To handle these issues, this paper makes the following
contributions beyond the state-of-the-art:
• The automated generation of arithmetic datapaths composed
of Sign Scale Significand (S3), a hardware-friendly floating-
point format, in conjunction with extended or reduced internal
precision accumulators. We propose a systolic array generator
that exploits these automatically generated arithmetic datap-
aths to support a large variety of computer formats with cus-
tomizable accumulators while producing reproducible results.
• The elimination of intermediate rounding, which provides
large benefits in terms of energy efficiency, reproducibility,
and accuracy.
• The Half-Speed Sink Down (HSSD) mechanism, a stalling-
free output scheme that allows generated designs to maximize
the use of processing elements and bandwidth.
• It provides a large evaluation campaign of our generated
accelerators considering 64 different designs combining four
different bitwidths, three accumulator sizes, and four computer
number formats. We deploy the generated hardware on a high-
end FPGA (Virtex Ultrascale Plus) attached to a POWER9
system via IBM CAPI link. This campaign exhibits the wide
variety of scenarios covered by the generated designs. When
combining small bitwidths with exact accumulators, our de-
signs deliver 240GOps/s/W and display relative numerical
errors below 2−4. To the contrary, high-precision designs can
deliver 1024 bits of accuracy and 0.65GOps/s/W . Section V
shows that our 32-bit designs deliver 19.5GOps/s/W , which
outperforms the FPGA state-of-the-art.

978-1-6654-8332-2/22/$31.00 ©2022 IEEE

II. RELATED WORK

A. Matrix Multiplication Systolic Arrays

Early systolic arrays originated during the 1980s [39] and
were mostly used for convolutions [41], linear systems [38]
and matrix multiplications [55]. Because it is not trivial to map
a time-sequential algorithm into an ad-hoc space-time hard-
wired algorithm, previous works propose to formalize this pro-
cess [40] [5] [53]. Systolic arrays’ prominence and popularity
rekindle due to the massive demands of computations brought
by recent AI algorithms. In fact, commercialized ASICs for
systolic arrays comprise cloud- and edge-deployed tapeouts
with different array sizes. Notable examples are the Google’s
TPUs [22] for the cloud and Tesla FSD [43] for the edge.

Gemmini [20] is a systolic array generator targeting ASIC
with a RISC-V host for edge devices. Gemmini generator has
been utilized for the tapeouts of two System-On-Chips (SoC)
in TSMC 16nm and Intel22FFL process technologies. The
fact that this generator is written in Chisel, makes it data-type
generic at the cost of suboptimal datapaths.

B. Arithmetic-level Optimizations

The IEEE-754 [1] 1985 standard describes various floating-
point formats with different bitwidths: half-, single-, and
double- precision numbers, which occupy 16, 32, 64 bits
of storage, respectively. This small set of general-purpose
datatypes can not optimally handle the plethora of specific
numerical requirements proposed by modern workloads. This
is the reason why scientists propose emerging arithmetics,
ALUs, and even mathematical frameworks to describe real
numbers [45].

Bfloat16 [61] is 16-bit wide and built from an IEEE-754 32-
bit truncated from its LSBs and therefore shares identical dy-
namic range as its 32-bit counterpart. It is becoming a popular
format with software [62] and hardware (FPGA [9] [19] [54],
TPU [63], ARMv8 ISA [56]) support.

The Tapered Floating-Point (TFP) [51] format uses variable-
sized entries to represent the mantissa and scale instead of the
fixed-length entries of IEEE-754. We define TFPs〈ωS, ωF 〉 as
numbers represented in scientific notations with a scale on ωS
bits, a fraction on ωF bit, and a sign bit. We distinguish TFP
from the IEEE-754 floating-point by its absence of denormal
numbers.

The Posit number system [24] is a particular case of tapered
formats that improves entropy per bit by trading exponent for
mantissa storage bits via a Golomb-Rice [21] encoding. One
posit configuration is usually refered as “posit 〈N, es〉”, where
N is the bitwidth, and es the variable length exponent size.

III. SYSTOLIC ARRAY GENERATOR

Our hardware generator of GEMM accelerators relies on
systolic arrays. The GEMM accelerators can target any FPGA
or ASIC because we describe RTL logic neither corre-
lated with timings nor hardware target. In fact, we leverage
flopoco [13] [32] for the back-end translation, which internally
builds up timing graphs and inserts necessary and sufficient
clocked elements.

A. Architecture of generated Accelerators
We define the generator parameters in a similar way as

BLAS level-3 routines. Parameters n, m, and p correspond
to the dimensions of the matrices involved in the GEMM
operation, which we denote as A, B, and C.

n,m, p ∈ N+, α, β ∈ R : Cn,m ← αAn,pBp,m + βCn,m

Fig. 1 illustrates the overall architecture of a 3 · 3 array.
Input data and control come from the bus on the left. Our
architectures align data with clocked registers and translate
them using A2S3 units before data enter the actual array.
Section III-C describes in detail the A2S3 units. Once in the
array, every translated numerical value is expressed in the S3
hardware format, which is described in Section III-B2, and
travels through the corresponding Processing Elements (PEs).
Section III-C describes the PEs design. Start/End Of Block
(SOB and EOB) are 2 bits generated by the main memory/host
that control the array. SOB and EOB indicate when to flush
to zero accumulated values and when accumulated values are
valid to be carried out, respectively. This local and distributed
control of the array allows efficient scaling. The last step is to
round and normalize the output values via the normalization
modules L2A to the output format. Section III-C describes L2A
modules. Output and input formats can be different.

PE

PE

PE

PE

PE

PE

PE

PE

PE

A2S3

A2S3

A2S3

L2
A

L2
A

L2
A

co
lu

m
ns

 B
ro

w
s

A

SOB
EOB

co
lu

m
ns

 C

Legend:

HSSD data

input data (input format)

intermediate data (S3 format)

control

SAK
SA

A2S
3

A2S
3

A2S
3

output data (output format)

Fig. 1: Generated array with 3 · 3 Processing Elements.
To extract the in-place accumulated value from the output-

stationary arrays, several options are possible with their
respective trade-offs and requirements. Previous work [36]
exposes two of them: having global lines (buses) from PEs
to output buses to form semi-broadcast arrays; or reusing PEs
internal registers while stalling the incoming data. None of the
induced constraints are suitable for our needs since stalling
the incoming pipeline would seriously harm computation
and communication overlap and deliver poor performance.
Furthermore, given that we aim to produce generic-sized and
fast systolic arrays, we can not accept the unpredictable delays
caused by high fan-outs yield by global lines, and therefore,
we do not consider them.

To remedy this problem, our generator leverages a stalling-
free output scheme for the output matrix C that allows
extracting final and intermediate results through a propagating

TABLE I: Examples of common computer number formats
with their corresponding S3 translation.

Computer arithmetic Value S3 ωS bias S3 ωF S3 quintuple
IEEE-754 16 0 5 2ωS−1 − 1 = 15 10 〈0, x, xxxxx, 0, 0000000000〉
posit 〈8, 0〉 1 4 (N − 2) · 2es = 6 5 〈0, 0, 0110, 1, 00000〉
posit 〈16, 2〉 NaN 7 (N − 2) · 2es = 56 11 〈1, x, xxxxxxx, x, xxxxxxxxxxx〉

bfloat16 3.5 8 2ωS−1 − 1 = 127 7 〈0, 0, 10000000, 1, 1100000〉

chain called the Half-Speed Sink Down (HSSD). HSSD comes
with a resource cost of O(n ·m · ωLA) registered elements,
where ωLA is the bitwidth of the fixed-point accumulator.
Since our architecture is output-stationary, it does not need to
preload any input matrix. Therefore, combined with the HSSD
chain that allows the output matrix to exit simultaneously, PEs
are constantly computing and are fully used after the initial
traversal of the array. The HSSD chain allows all links between
PEs to be local, thus inducing no global routes except for the
clock and the reset, which totally matches FPGAs’ building
blocks. We describe our HSSD design in Section III-C2 at the
PE scale level to clearly show how output data is transferred
out of the systolic array. Our HSSD design makes it possible
for the systolic arrays to perpetually pump data from the input
borders while simultaneously feeding the output border where
the normalizing and rounding units reside, as we show in terms
of dotted lines in Fig. 1. Moreover, due to the non-stalling
pipeline introduced by HSSD, all transfers can be pipelined
and overlapped to hide the latency of the systolic array, which
directly translates into increased throughput. As a consequence
of the HSSD extraction capability, matrix blocks can be sent
as batches without interruptions to perform many independent
GEMM operations.

The generated designs fuse dot-product arithmetic opera-
tions so that no intermediate rounding occurs. The reason
to postpone the rounding step and shift it to the bottom of
the array is twofold: On the one hand, it allows removing
the expensive rounding logic from the n · m PEs since it is
just required by the m L2A modules (see Section III-C4). On
the other hand, deferred rounding retains the full accuracy
of accumulated values by avoiding cancellations when scales
are drastically different. Section III-C3 describes in detail this
deferred rounding mechanism.

B. Generator Configurability

The generator automatically produces GEMM accelerators
featuring a wide range of options in terms of accuracy, area,
performance, and energy consumption. These are the main
reconfiguration parameters:

1) Array Dimensions: The height (h) and the width (w) of
generated arrays define the number of PEs (numberPEs =
h · w). The more the h · w product increases, the more
operations per second (Ops/s) the array can deliver since every
PE performs a fused-dot-product at every clock edge.

2) Arithmetic: There are three aspects of our generator that
define the arithmetic of the accelerators:

Sign Scale Significant (S3) format: The S3 format is a
hardware-friendly floating-point format that maps well to
FPGA internal basic elements. S3 is composed of the following
fixed-size fields that code the fixed and variable size of input
numbers:

• Sign on 1 bit: active high when the number is negative.
• Scale on ωS bits: unsigned scale with a bias. The bias is
calculated differently depending on the arithmetic.
• Significand on 1 + ωF bits: an implicit bit prepended to
the unsigned significand of the number. The 0 value is coded
with implicit and significand set to zeros.
• NaN on 1 bit: Active high when the number is not a real
number or when a problem occurs, such as overflows.

The fields form the 〈NaN, sign, scale, implicit, fraction〉
quintuple whose elements are concatenated in one bus of size
ωS+ωF +3 bits. S3 can handle any computer number by just
adjusting the 〈NaN, sign, scale, implicit, fraction〉 values.
Table I provides examples illustrating how computer number
formats can be expressed in terms of the S3 encoding.

Accumulator size: PEs can be coupled with variable-size
accumulators, from exact to light configurations. The follow-
ing parameters, which are inspired by previous work [14],
define the accuracy and the size of the numerical fixed-point
accumulators that our designs contain:
• LSB: Is the weight of the Least Significant Bit of the
accumulator. Adding bits to the right of the accumulator
adds precision and controls the final accuracy. However, such
bits are expensive because they augment the size of internal
arithmetic modules (especially the barrel shifter, see Fig. 3).
• MSB: Is the expected weight of the summand. Similarly,
lowering MSB can save hardware resources by decreasing
the barrel shifter size.
• OV F : Is the number of carry bits (see Fig. 3 OVF)
prepended to the left as MSBs in order to prevent overflows
due to accumulation. The accumulator bitwidth is ωLA =
OV F +MSB − LSB + 1.

Normalizing units: Located at the bottom of the arrays, they
translate the internal accumulations expressed in fixed-point
format to the output computer number format. We propose
three approaches to generate the rounding units:
• Same: A standard approach is to perform rounding and
normalizing of the output values into the format they entered
the systolic array.
• Specific Arithmetic: By taking advantage of the hardware
reconfigurability, our generator can normalize the two’s com-
plement accumulations into a different arithmetic format than
the input one. This has many applications, such as promoting
to a bigger data type to avoid the final roundoff error, sending
to another hardware that supports a specific type only, or even
demoting to a lower data type to save bandwidth.
• Exact: This option does not perform the final normalization
step and, does not require the L2A modules. The accelerators
implementing this option send the final data as fixed-point.

C. Modules designs

This section describes the Systolic Array (SA) and Systolic
Array Kernel (SAK) components (see Fig. 1).

1) A2S3: Denormalizing units are called A2S3 and are the
modules responsible for the conversion from an incoming
arithmetic word to a S3 quintuple. They take an N -bit bus
and output a ωS + ωF + 3 bits bus. Any computer format

S3FDP

A,C,NaN

Y

X

FTZ

S3_B

S3_A

B

S3_B_Q

SOB+EOB

SOB

A
S3_A_Q

C_OUT

C2

C_OUT_Q

EOB

EOB

C1

EOB_Q

1
0

SOB+EOB_Q

ωLAICPT2+k

Fig. 2: Schematic view of a Processing Element (PE) with the
vertical carry chain (HSSD) highlighted in red-dashed lines

can be translated to S3 and work with the array as long as the
corresponding A2S3 unit exists.

2) Processing Element (PE): Our generator hardwired al-
gorithm consists in four operations that PEs execute: First,
register the incoming S3s values (S3_A and S3_B in Fig. 2)
arriving respectively from the left and the right, to present
them to their corresponding opposite border (right for S3_A_Q
and bottom for S3_B_Q). Second, register the control signals
and expose them to the opposite border (SOB and EOB from
top to bottom). This allows a distributed and local control of
the array and avoids global lines, which are often a problem.
Third, compute in augmented precision without rounding the
dot-product of incoming S3s values in an output-stationary
fashion. This is done by a dedicated module discussed in
Section III-C3. Fourth, extract via the HSSD mechanism the
output-stationary values of C vertically with two registers C1
and C2 and a multiplexer, as Fig. 2 shows.

3) S3 Fused Dot Product (S3FDP): S3FDP is the kernel of
our generator as it is the module that performs the fused-dot-
product between values encoded with the S3 format. Fig. 3
depicts the three main stages of the S3 fused-dot-product.
Firstly (Fig. 3 1©), the exact product is performed. Secondly
(Fig. 3 2©), the mantissa of the product is aligned with
regard to the accumulator weights depending on the scale
of the product. Finally (Fig. 3 3©), the fixed-point addition
is performed. The last operation requires peculiar timing-
analysis. In fact, as fixed-point accumulators require as many
bits as the dynamic range of the product contains binades, the
carry-rippling can quickly become the critical path. If such, our
generator automatically generates Carry-Save-Adders (CSAs)
with flopoco timing analysis to suggest the chunk-size.

4) Normalizing modules (L2A): Their role is to translate
the fixed-point values arriving from the HSSD chains to the

specified output format. As mentioned in Section III-B2, the
output format can vary and even be the fixed-point output
coming from the S3FDP itself. The logic to normalize and
round comprises the following main steps: First, to count
Leading Zero/One (sign) to compute the scale of the accu-
mulator. Second, to shift the accumulator by its scale to get
the significand and a pre-sticky bit. Third, to build exponent
fields based on the computed scale and the accumulator
sign. The second and third steps are merged thanks to the
LZOCStickyShifter operator from flopoco. And, fourth, to build
the final word taking into account possible exceptions and
applying a rounding scheme.

IV. DESIGN SPACE EXPLORATION

We carry out a design space exploration of the designs on
a Virtex Ultrascale Plus (VUP) speedgrade-2 FPGA without
loss of generality. Although the specific results of this design
exploration apply to the VUP FPGA, the whole methodology
can be applied to a generic FPGA. In fact, modern FPGAs
share common properties and the utilization ratio between
different building blocks is analogous.

A. Evaluated Designs

We consider four computer number formats: IEEE-754,
Bfloat16, TFP, Posit. All of them are described in Section II.
We consider four different bitwidths (8, 16, 32, and 64)
for the IEEE-754 and the TFP formats, that is, 4 different
variations for each format. For the case of Bfloat16 we
consider the 16-bit width, since it is the only one it ad-
mits by definition. For the case of Posit, we consider the
following 13 different formats: the posit 〈4, 0〉 4-bit design,
the posit 〈8, 0〉, posit 〈8, 1〉, posit 〈8, 2〉 8-bit designs; the

EOBSignySignxIy.FyScaleyScalexisNaNyisNaNx

unsigned
multiplier

unsigned
adder

ωS

11 1

1 1

1

10

sign
extension

RCA

SC

RCA

SC

RCA

SC

isNaNo AC EOBQ

CSA radix-2k

1

2

3

ωQ
1

k-1

FTZ

010101

ωF+1

Ix.Fx

2ωF+2
ωS+1

2ωF+2

shi val
gen

part select

ωShi

1

1

ba
rre

l s
hi

pad

LSBMSB

OVF

1

to
o_

bi
g

too_small

Fig. 3: Circuit design of a generic S3FDP

TABLE II: Area and power consumption of IEEE-754-α/β/γ S3FDPs and Xilinx FMA IP for VUP-2 FPGA @250MHz
Bitwidth 8-bit 16-bit 32-bit 64-bit
Config. α β γ FMA α β γ FMA α β γ FMA α β γ FMA

LUTs 85 109 166 233 134 187 200 425 345 1039 416 769 1806 11414 1668 1785
FFs 18 42 102 342 34 124 102 680 225 865 317 1278 1383 8996 1089 2884

DSPs 0 0 0 1 1 1 1 1 2 2 2 2 6 6 6 10
CARRY8s 2 6 13 17 4 16 13 22 12 73 19 37 38 272 34 70

Power(PE)(W) 0.003 0.004 0.006 0.016 0.008 0.018 0.014 0.032 0.019 0.058 0.023 0.066 0.085 0.460 0.081 0.191

posit 〈16, 0〉, posit 〈16, 1〉, and posit 〈16, 2〉 16-bit designs;
the posit 〈32, 0〉, posit 〈32, 1〉, and posit 〈32, 2〉 32-bit de-
signs; and the posit 〈64, 1〉, posit 〈64, 2〉, and posit 〈64, 3〉 64-
bit designs. Our evaluation includes a total of 22 computers
number formats.

Additionally, we propose three different accumulator con-
figurations. We define them in terms of the parameters we
describe in Section III-B2. We propose the following accumu-
lator designs:

AI(α): The α accumulator targets AI workloads. Since
previous work [58] shows that neural networks weights values
distribution are relatively narrow (e.g. within the [−15, 21]
interval for Resnet50 and transformer models) and resilient
to arithmetic tinkering [34], we set the msb parameter to be
5. We set the lsb parameter to build a small accumulator of
factor-2 linear size with regard to the arithmetic bitwidth. We
have the size ωLA = 2 · N , and msb = 5, ovf = 2, lsb =
2 ·N − 1−msb− ovf

EXACT(β): The β accumulator size is dictated by the size
of the S3 fields to ensure that any possible result of the exact
multiplication can be represented in the accumulator without
accuracy loss. The Kulisch [37] and Quire [46] accumulators
land in this category.

CONSTANT_100(γ): The γ accumulator configuration
correlates neither with the arithmetic internal fields
nor with any workload numerical specificity. The size
ωLA = 1+9(ovf)+40(msb)+50(−lsb) allows all arithmetic
to have the same internal accumulator, which enables compar-
isons to be made on other aspects besides the accumulator size.

We consider the three accumulators for each one of the 22
computer number formats we evaluate, except for the case of
posit 〈4, 0〉 where we just consider the β accumulator since
α and γ do not produce meaningful accuracy for this format.
We have thus a total of 64 different combinations.

Fig. 4: Resource utilization of routed S3FDPs at 250MHz for
VU3P-2 FPGA in logarithmic scale.

B. Hardware cost

1) Cost of S3FDP: We report in Fig. 4 how the resource
numbers grow vis-à-vis the arithmetic and the accumulator
configuration. These numbers are obtained after place and
route with “Explore” directives through the generation of
all design checkpoints. We can see how the bitwidth of
the computer number format largely impacts the resource
requirements of S3FDP units. Table II reports these numbers
for the IEEE-754 format and bitwidths 8, 16, 32, and 64. For
instance, the smallest IEEE-754 β does not use DSPs as all
arithmetic datapaths are emulated with LUTs. To the contrary,
the 53 bits multiplication and the 4228 bits addition of IEEE-
754 64β require 6 DSPS, 272 CARRY8s with more than 10k
LUTs. We also compare to α-, γ-S3FDPs and accumulators
built on conventional FMA blocks infered thanks to Xilinx IPs.
Our configurations always save resources against traditional
FMA hardware, and thus, save power consumption. The only
exception is the IEEE-754 64β which requires to maintain
more than 4000 binades in fixed-point format.

2) Cost of PE, SAK and SA: The costs of PE, SAK, and SA
arise from the cost of S3FDP components. The extra hardware
added to an S3FDP to form a PE does not depend on the
frequency and thus can be calculated without the use of tools.
This extra cost comes from the delaying of input coefficients
of A and B matrices (2 S3-sized registers), control delaying (2
Flip-Flops for SOB and EOB), and HSSD (accumulator-sized
mux 2:1 and two accumulator-sized registers). Similarly, with
the PE cost we can compute the cost of the SAK that contains
n∗m PEs as follows: costSAK(n,m, arith, ovf,msb, lsb) =
n ·m · costPE(arith, ovf,msb, lsb).

V. EVALUATION

A. Experimental Setup

All experiments run on an AC922 POWER9 system with
attached FPGAs as accelerators. The POWER9 system has 2
sockets (chips), each with 20 cores and 4 threads/core for a to-
tal of 160 threads running at 2.3GHz. The FPGA is a xcvu3p-

Fig. 5: Floorplaning of 32·31 and 64·63 arrays with additional
PCIe/CAPI/SNAP logic (blue).

Fig. 6: Measured and averaged vs theoretical Throughput
(GBytes/s) for different Payload Sizes (Bytes).

ffvc1517-2 [3] [66] which embeds 384k LUTs, 788k FFs, 2280
DSPs, 25.3Mb of BRAM, and 90Mb of UltraRAM (URAM).
The physical link between the host and the FPGA is PCIe
gen4-8lanes, whose 16GT/s provide up to 15.754 GB/s [65].
All communications are done on top of the IBM Coherent Ac-
celerator Processor Interface 2(CAPI2 [48] [47] [64]) protocol
with the IBM SNAP framework [29]. To avoid Clock Domain
Crossing (CDC), we generate all the arrays for an operating
frequency of 250MHz, which is the SNAP buses clock.

B. Performance, Energy Efficiency, Accuracy, and Throughput

We evaluate the throughput, performance, energy efficiency,
and accuracy of generated designs by considering the 64 con-
figurations we describe in Section IV-A running at 250MHz.
The number of PEs varies depending on the bitwidths: 64 · 63
for 4-bits, 32 · 31 for 8-bits, 16 · 15 for 16-bits, 8 · 7 for 32-
bits, and 4 · 3 for 64-bit widths. For instance, Fig. 5 shows
placed and routed arrays of 32·31 and 64·63 PEs with the
additional communication logic, which represents 30% of the
total floorplaning.

All metrics we consider depend on the matrix dimen-
sions (see Eq. III-A) and the number of matrix batches
(b). We propose a Payload Size metric, which combines
both matrix dimensions and the number of matrix batches.
This metric is defined in terms of Bytes as follows:
Payload size = N · n ·m · p · b · 2/8. The Payload Size is
equivalent to the DMA size. For throughput, performance,
and energy efficiency, the number of accumulations per batch
does not impact the results. However, accuracy is strongly
dependant on the number of numerical accumulations per
batch, as we discuss in Section V-B4. We display results
setting b = 1, except if we precise the contrary. All displayed
values result from an average of 10 runs. We generate the
coefficients of our matrices by using a uniformly distributed
random variable within the interval [−1, 1].

1) Physical Link Throughput: Fig. 6 shows the average
throughput achieved by the 64 arrays and the peak bandwidth
offered by the 8-lanes PCIe gen4 link. The x-axis shows the
payload size of the GEMM problem in terms of Bytes, and
the y-axis shows the measured throughput in GB/s. All the
measured throughput are averaged and plotted as one curve as
the standard deviation is never more than 5% of the expected
saturation throughput. The maximum measured throughput
reaches ∼ 83% of the peak link bandwidth, which corresponds
to payload sizes of 224Bytes or larger. As previous work

Fig. 7: Measured and averaged vs theoretical Performance
(GOps/s) for different array sizes and Payload Sizes (Bytes).
describes [44], the hardware PCIe protocol, which contains
several layers and encoding schemes, makes it impossible
to achieve the peak link bandwidth. In fact, our designs
saturate data link bandwidth at their disposal. Fig. 8 compares
throughputs at application level for different array sizes with
and without our HSSD extraction chain. The experiment uses
a constant payload size of 230 Bytes with a decreasing number
of batches b, and therefore, an increasing size of the common
dimension p (shown by x-axis of Fig. 8). Without HSSD, and
thus, without overlaping incoming and outgoing DMAs, an
array stalling of n clock edges happens every p clock edges
to be able to read out the data. This experiment exhibits that
stalling the pipeline for small matrices hinders performances
up to two order of magnitude.

2) Performance: Fig. 7 shows the performance achieved
by the 64 designs in terms of GOps/s. The x-axis shows data
payload in Bytes, and the y-axis displays performance in terms
of GOps/s. Our experiments clearly show how the designs
experiment 5 possible behaviors in terms of performance
depending on the bitwidth. The reason why bitwidths define
the performance behavior of the designs is the fact that the
number of PEs in the array is defined by the data format
bitwidth, as we explain in Section V-B. The designs achieve a
performance peak of 4.8, 22.5, 96.7, 399.7, and 1613 GOps/s
for 64-, 32-, 16-, 8- and 4-bit numerical formats, respectively.
We observe these peaks for payload sizes equal to or larger
than 224Bytes. They are very close the maximum theoretical
values, which are 6, 28, 120, 496, and 2016 Gops/s for 64-,
32-, 16-, 8-, and 4-bit numerical formats, respectively, which
correspond to arrays with 4 · 3, 8 · 7, 16 · 15, 32 · 31, and
64 · 63 PEs. The theoretical peaks are not achieved due to the
physical link bandwidth saturation that we observe for payload
sizes equal or larger than 224Bytes in Fig. 6.

3) Energy Efficiency: We report the rate of operations
delivered by the system per watt of power consumed in
Fig. 9. We also compare to energy efficiencies delivered
by equivalent arrays but with intermediate roundings, thus,
mimicking the behavior of traditional FMA hardware. The
Figure is split into five categories corresponding to the five
arithmetic bitwidths and array sizes that we evaluate. The most
efficient design is the 64 ·63 array of posit 〈4, 0〉β PEs, which
delivers 240GOps/s/W . The 4 most performant α-designs
are posit 〈8, 0〉α, IEEE-754 8α, TFP8α, and posit 〈8, 1〉α
that deliver energy efficiencies of 148.7, 146.6, 146.7, and
136.6 GOps/s/W, respectively, for payload sizes equal or larger

Fig. 8: Throughput comparison with and without HSSD for a workload of 230 Bytes for different common dimension sizes (p).

Fig. 9: Energy efficiency (top) against Accuracy (bottom) for different arithmetic bitwidths for different Payload Sizes (Bytes).

TABLE III: Comparison with previous related works. Box with“-” means that the information is not available.
work year device freq % util. HOST link best perf. energy eff. accurate bits # reproducibility generator vendor

(process node) (MHz) (GOps/s) (GOps/s/W) (significant) data types (of computations) agnostic
64/32 64/32

Guan [23] 2017 Stratix V(28nm) [11] 150 95 Xeon E5-2650v2 [31] PCI-e Gen2 x8 [65] -/~81 -/3.24 max. 23 2 no yes -
Moss [52] 2018 HARPv2(14/20nm) [17] 312.5 99 Xeon E5-26xxv2 [31] QPI [30] -/~99 -/~2.8 max. 23 8 no no no

de Fine Licht [15] 2020 VU9P(16nm) [66] [146-190] [69-90] - - 122/409 3.13/10.9 max. 52 6 no no no
this work 2021 VU3P(16nm) 250 [68-92] POWER9 [50] CAPI2 [49] 4.8/22.5 5.3/19.5 1024 64 yes yes yes

than 228Bytes. The corresponding β-designs, posit 〈8, 0〉β,
IEEE-754 8β, and TFP8β, deliver maximum energy efficien-
cies of 98.3, 84.9, 98.2 GOps/s/W, respectively. The difference
between the power efficiencies delivered by these two groups
arises from the size of the accumulator, which significantly
impacts the power cost of arithmetic operations. This trend
is confirmed for other arithmetic bitwidths. For instance,
all β accumulators of 32- and 64- bits arithmetics are less
efficient than α and γ accumulators due to the quadratic
scaling of internal operators with regard to the arithmetic
bitwidth. The most efficient 16-, 32-, and 64-bit designs
are TFP16α, TFP32α, and TFP64γ, which deliver maximum

efficiencies of 47.9, 19.5, and 5.3 GOps/s/W, respectively. In
terms of comparing the energy efficiency of the four formats
we consider, we can see how TFP and IEEE-754 formats
deliver very similar efficiency when using the same bitwidth,
while posit can be either better or worse than TFP and IEEE-
754 for the same bitwidth depending on the es parameter,
which is defined in Section II. The energy efficiency of
designs with PEs including rounding units is much worse than
the ones without intermediate rounding. For example, IEEE-
32β with rounding units reaches energy efficiencies up to
14.5GOps/s/W , while its non intermediate rounding counter-
part reaches 19.5GOps/s/W . In fact, considering all the de-

signs, we observe an average loss of 70% of energy efficiency
when the rounding unit is present in the accumulation step.

4) Accuracy: We report in Fig. 9 the final accuracy for
different payload sizes. Workloads are composed of a single
batch, so the number of numerical accumulations per PE is
the same as the payload size. We compute the log2 of the
relative error, which indicates the number of exact significant
bits with respect to a high-precision oracle obtained with the
mpfr library [18]. The oracle consists in the same computation
made in software with a fixed-point of 1024 significant bits as
fractional part, and 1000 bits to code the integer part.

We observe that the smallest accumulators (all α and
posit 〈4, 0〉β) fail to maintain their initial accuracies while the
number of accumulations increases. They are more statistically
sensitive to overflows with respect to their larger counterparts,
which can result in a NaN propagation (lines falling down
in Fig. 9). All γ accumulators yield 50 accurate bits as it is
equal to −lsb. These experiments show that the final rounding
significantly impacts the accuracy as the internal precision
can be lost to fit in a mantissa of general purpose size.
We also observe how large accumulators are able to achieve
good accuracy levels as accumulation counts increase. Some
interesting 8 bits combinations are TFP8β and IEEE-754 8β,
which sustain 10 and 15 bits of accuracy for all the considered
accumulation counts and, according to Fig. 9, they deliver 98.2
and 84.9 GOps/s/Watt, respectively. More drastic combinations
are posit 〈4, 0〉β and TFP 64β. The TFP 64β always main-
tains the correct 1024 bits after millions of accumulated values
while delivering 0.65GOps/s/W . Conversely, posit 〈4, 0〉β
delivers 240GOps/s/W but tends to overflow after 214 fused
accumulations, which makes it lose its initial 4 accurate bits.
The accurcy of designs with PEs including rounding units
is much worse than the ones without intermediate rounding
units. The most extreme cases are IEEE 64β, and any 64-bit-
γ, where versions with intermediate rounding lose 971 and 0
accurate bits, respectively, with respect to their counterparts
without intermediate rounding.

C. Comparison with the State-of-the-art

Table III displays the most relevant characteristics of
previous approaches implementing hardware accelerators
for GEMM. The numbers are extracted from the respective
manuscripts. Table columns show the year of publication,
FPGA device, frequency, FPGA resource utilization, host
system, physical link, performance/energy-efficiency they
achieve for 64- and 32-bits numerical formats, the maximum
number of accurate bits, the number of computer arithmetics
they can use, and other aspects like numerical reproducibility,
automatic generation, or vendor agnosticism. The column
“reproducibility” specifies whether accumulation order
hinders vector-dot-product results.

Moss et al. [52] exploit the flexibility offered by the HPC
hybrid Xeon/Arria 10 HARPv2 to offer a customizable Matrix
Multiplication framework that supports 8 distinct data types.
They leverage only data types that map directly into the DSPs
of the Arria 10 target, and therefore support single-precision

IEEE-754 and other fixed-point formats. The design is heavily
specialized for Deep Neural Networks (DNNs) and delivers
a performance of ~99GOps/s and 2.8GOps/s/W energy
efficiency for the IEEE-754 32-bit format.

Similarly, Guan et al. [23] specialize their matrix-
multiplication for DNNs by proposing FP-DNN. It is the first
work to ease the development of DNNs for FPGAs. Indeed,
it generates hybrid RTL-HLS and host source code from the
outputs of a trained Tensorflow [2] model. When using the
IEEE-754 32-bit format, this design delivers ~81GOps/s and
an energy efficiency of ~3.24GOps/s/W .

De Fine Licht et al. [15] propose a high level synthe-
sis (HLS) open-source approach for minimizing bandwidth
requirements by augmenting the operational intensity. They
report performances of 122GOps/s for the floating-point 64-
bit, 409GOps/s for the 32-bit version, with energy efficiencies
of 3.31GOps/s/W , 5.3GOps/s/W , respectively. The pro-
posed designs use DDR4 modules to offload the matrices with
DMAs between the HOST and the logic. This creates copies
of the data in both directions (user space, kernel space, FPGA
DDR4) and partially explains their lower energy efficiencies
compared to ours. The authors only leverage the arithmetic
data types proposed by Vivado HLS which comprise: FP64,
FP32, FP16, uint32, uint16 and uint8. Additionally, since the
authors use Vivado HLS, the floating-point types are not IEEE-
754 compliant as they do not handle the subnormnals [27].

The fourth row of Table III corresponds to the generated
designs running on the FPGA platform described in Sec-
tion V-A. Sections V-B2 and V-B3 describe the performance
and energy efficiency metrics present in this row. Our arrays
deliver 19.5GOps/s/W when operating with 32-bit floating-
point data types, which outperforms the single-precision en-
ergy efficiency of the best state-of-the-art FPGA-based GEMM
accelerators by 1.86×. Thus, our generator is more energy-
efficient than state-of-the-art approaches while offering more
arithmetic reconfigurability in terms of number of number
formats, data bitwidths, and accumulator configurations.

VI. CONCLUSIONS

Our array generator exploits hardware reconfigurability to
produce GEMM kernels tailored to and dictated by specific
numerical requirements. We conduct an extensive design space
exploration and a system-wise evaluation, which show that
our generator improves the state-of-the-art in terms of en-
ergy efficiency. The generated designs can retain accuracy
with large problem sizes (millions of accumulations). Rang-
ing from 240GOps/s/W with 4 accurate significant bits
to 0.65GOps/s/W with 1024 accurate bits, we adequately
generate drastically different configurations targeting many
application domains.

This paper illustrates how the increasing size of reconfig-
urable hardware, along with emerging communication links,
brings many opportunities beyond the IEEE-754 standard,
which may produce a paradigm shift in terms of computer
arithmetic and hardware heterogeneity.

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 955606
Marc Casas is supported by Grant RYC-2017-23269 funded by MCIN/AEI/ 10.13039/501100011033 and by “ESF Investing in your future”

REFERENCES

[1] “Ieee standard for binary floating-point arithmetic,” ANSI/IEEE Std 754-
1985, pp. 1–20, 1985.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems,”
arXiv:1603.04467 [cs], Mar. 2016, arXiv: 1603.04467. [Online].
Available: http://arxiv.org/abs/1603.04467

[3] AlphaData, “ADM-PCIE-9V3 Support & Development Kit Release:
1.1.0 V1.1,” p. 10, 2018.

[4] V. ArunkumarM, S. G. Bhairathi, and H. Hayatnagarkar, “PERC: Posit
Enhanced Rocket Chip,” 2020.

[5] H. Aso and Y. Inagaki, “Formal description of systolic
algorithms and an analysis of the information flow,” Systems
and Computers in Japan, vol. 19, no. 6, pp. 14–24, 1988,
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/scj.4690190602.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/scj.
4690190602

[6] G. Beliakov and Y. Matiyasevich, “A Parallel Algorithm for Calculation
of Large Determinants with High Accuracy for GPUs and MPI
clusters,” arXiv:1308.1536 [cs, math], Aug. 2013, arXiv: 1308.1536.
[Online]. Available: http://arxiv.org/abs/1308.1536

[7] N. Buoncristiani, S. Shah, D. Donofrio, and J. Shalf, “Evaluating the
Numerical Stability of Posit Arithmetic,” in 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), May 2020,
pp. 612–621, iSSN: 1530-2075.

[8] R. Chaurasiya, J. Gustafson, R. Shrestha, J. Neudorfer, S. Nambiar,
K. Niyogi, F. Merchant, and R. Leupers, “Parameterized Posit
Arithmetic Hardware Generator,” in 2018 IEEE 36th International
Conference on Computer Design (ICCD). Orlando, FL, USA: IEEE,
Oct. 2018, pp. 334–341. [Online]. Available: https://ieeexplore.ieee.org/
document/8615707/

[9] J. Chromczak, M. Wheeler, C. Chiasson, D. How, M. Langhammer,
T. Vanderhoek, G. Zgheib, and I. Ganusov, “Architectural Enhancements
in Intel Agilex FPGAs,” in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’20. New York, NY, USA: Association for Computing
Machinery, Feb. 2020, pp. 140–149. [Online]. Available: https:
//doi.org/10.1145/3373087.3375308

[10] S. Collange, D. Defour, S. Graillat, and R. Iakymchuk, “Full-Speed
Deterministic Bit-Accurate Parallel Floating-Point Summation on Multi-
and Many-Core Architectures,” Feb. 2014.

[11] A. Corporation, “Stratix V Device Overview,” p. 24, 2020.
[12] F. de Dinechin, L. Forget, J.-M. Muller, and Y. Uguen, “Posits:

the good, the bad and the ugly,” in CoNGA 2019 - Conference on
Next-Generation Arithmetic. Singapore, Singapore: ACM Press, Mar.
2019, pp. 1–10. [Online]. Available: https://hal.inria.fr/hal-01959581

[13] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” IEEE Design & Test of Computers, vol. 28, no. 4, pp.
18–27, Jul. 2011.

[14] F. de Dinechin, B. Pasca, O. Cret, and R. Tudoran, “An FPGA-specific
approach to floating-point accumulation and sum-of-products,” in
2008 International Conference on Field-Programmable Technology.
Taipei, Taiwan: IEEE, Dec. 2008, pp. 33–40. [Online]. Available:
http://ieeexplore.ieee.org/document/4762363/

[15] J. de Fine Licht, G. Kwasniewski, and T. Hoefler, “Flexible
Communication Avoiding Matrix Multiplication on FPGA with
High-Level Synthesis,” in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. Seaside
CA USA: ACM, Feb. 2020, pp. 244–254. [Online]. Available:
https://dl.acm.org/doi/10.1145/3373087.3375296

[16] R. K. Ellis, W. T. Giele, Z. Kunszt, K. Melnikov, and G. Zanderighi,
“One-loop amplitudes for W+3 jet production in hadron collisions,”
Journal of High Energy Physics, vol. 2009, no. 01, pp. 012–012, Jan.
2009, arXiv: 0810.2762. [Online]. Available: http://arxiv.org/abs/0810.
2762

[17] T. Faict, E. D’Hollander, and B. Goossens, “Mapping a Guided Im-
age Filter on the HARP Reconfigurable Architecture Using OpenCL,”
Algorithms, vol. 12, p. 149, Jul. 2019.

[18] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“MPFR: A multiple-precision binary floating-point library with
correct rounding,” ACM Transactions on Mathematical Software,
vol. 33, no. 2, pp. 13–es, Jun. 2007. [Online]. Available: https:
//doi.org/10.1145/1236463.1236468

[19] I. K. Ganusov, M. A. Iyer, N. Cheng, and A. Meisler, “Agilex™
Generation of Intel® FPGAs,” in 2020 IEEE Hot Chips 32 Symposium
(HCS). Palo Alto, CA, USA: IEEE, Aug. 2020, pp. 1–26. [Online].
Available: https://ieeexplore.ieee.org/document/9220557/

[20] H. Genc, A. Haj-Ali, V. Iyer, A. Amid, H. Mao, J. Wright, C. Schmidt,
J. Zhao, A. Ou, M. Banister, Y. S. Shao, B. Nikolic, I. Stoica,
and K. Asanovic, “Gemmini: An Agile Systolic Array Generator
Enabling Systematic Evaluations of Deep-Learning Architectures,”
arXiv:1911.09925 [cs], Dec. 2019, arXiv: 1911.09925. [Online].
Available: http://arxiv.org/abs/1911.09925

[21] S. Golomb, “Run-length encodings (Corresp.),” IEEE Transactions on
Information Theory, vol. 12, no. 3, pp. 399–401, Sep. 2006. [Online].
Available: https://doi.org/10.1109/TIT.1966.1053907

[22] Google, “System Architecture | Cloud TPU.” [Online]. Available:
https://cloud.google.com/tpu/docs/system-architecture

[23] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun,
W. Zhang, and J. Cong, “FP-DNN: An Automated Framework for
Mapping Deep Neural Networks onto FPGAs with RTL-HLS Hybrid
Templates,” in 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), Apr. 2017,
pp. 152–159.

[24] J. L. Gustafson and I. Yonemoto, “Beating Floating Point at its Own
Game: Posit Arithmetic,” p. 16.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015, arXiv:
1512.03385. [Online]. Available: http://arxiv.org/abs/1512.03385

[26] Y. He and C. DING, “Using Accurate Arithmetics to Improve Numer-
ical Reproducibility and Stability in Parallel Applications,” Journal of
Supercomputing, vol. 18, Sep. 2000.

[27] J. Hrica, “Floating-Point Design with Vivado HLS,” p. 13, 2012.
[28] R. Iakymchuk, D. Defour, S. Collange, and S. Graillat, “Reproducible

and Accurate Matrix Multiplication for GPU Accelerators,” Jan. 2015.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-01102877

[29] IBM, “CAPI SNAP Framework Hardware and Software. Contribute
to open-power/snap development by creating an account on GitHub,”
apr 2019, original-date: 2016-09-20T20:10:34Z. [Online]. Available:
https://github.com/open-power/snap

[30] Intel®, “An Introduction to the Intel® QuickPath Interconnect,”
2019. [Online]. Available: https://www.intel.com/content/www/us/en/io/
quickpath-technology/quick-path-interconnect-introduction-paper.html

[31] Intel®, “Intel® Xeon® Processor E5 Family Product Specifications,”
2021. [Online]. Available: https://ark.intel.com/content/www/us/en/ark/
products/series/59138/intel-xeon-processor-e5-family.html

[32] M. Istoan and F. de Dinechin, “Automating the pipeline of arithmetic
datapaths,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE 2017), Lausanne, Switzerland, Mar. 2017. [Online].
Available: https://hal.inria.fr/hal-01373937

[33] R. Jain, N. Sharma, F. Merchant, S. Patkar, and R. Leupers,
“CLARINET: A RISC-V Based Framework for Posit Arithmetic
Empiricism,” arXiv:2006.00364 [cs], Jun. 2020, arXiv: 2006.00364.
[Online]. Available: http://arxiv.org/abs/2006.00364

[34] J. Johnson, “Rethinking floating point for deep learning,”
arXiv:1811.01721 [cs], Nov. 2018, arXiv: 1811.01721. [Online].
Available: http://arxiv.org/abs/1811.01721

[35] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee,
S. Avancha, D. T. Vooturi, N. Jammalamadaka, J. Huang, H. Yuen,
J. Yang, J. Park, A. Heinecke, E. Georganas, S. Srinivasan, A. Kundu,
M. Smelyanskiy, B. Kaul, and P. Dubey, “A Study of BFLOAT16
for Deep Learning Training,” arXiv:1905.12322 [cs, stat], Jun. 2019,
arXiv: 1905.12322. [Online]. Available: http://arxiv.org/abs/1905.12322

[36] M. Khan, M.-C. Anisiu, L. Domoszali, A. Iványi, Z. Kasa, S. Pirzada,
L. Szécsi, F. Szidarovszky, L. Szirmay-Kalos, and B. Vizvári, Algorithms
of Informatics, Volume III, Sep. 2013.

[37] U. Kulisch and W. Miranker, “The arithmetic of the digital computer:
A new approach,” SIAM Review, vol. 28, no. 1, pp. 1–40, 1986.
[Online]. Available: https://doi.org/10.1137/1028001

[38] Kung, “Why systolic architectures?” Computer, vol. 15, no. 1, pp. 37–
46, Jan. 1982, conference Name: Computer.

[39] H. Kung, C. Leiserson, C.-M. U. P. P. D. o. C. SCIENCE, and C.-M. U.
C. S. Department, Systolic Arrays for (VLSI), ser. CMU-CS. Carnegie-
Mellon University, Department of Computer Science, 1978. [Online].
Available: https://books.google.fr/books?id=pAKfHAAACAAJ

[40] S.-Y. Kung, S.-C. Lo, and Lewis, “Optimal Systolic Design for the
Transitive Closure and the Shortest Path Problems,” IEEE Transactions
on Computers, vol. C-36, no. 5, pp. 603–614, May 1987, conference
Name: IEEE Transactions on Computers.

[41] H. T. Kung’and and W. Song, “A Systolic 2-1) Convolution Chip,” p. 15.
[42] G. Lake, T. Quinn, and D. Richardson, “From Sir Isaac to the Sloan

Survey Calculating the Structure and Chaos Owing to Gravity in the
Universe,” Nov. 1996.

[43] F. Lamert, “Accelerated Mathematical Engine Tesla.” [Online].
Available: https://www.scribd.com/document/398220774/Accelerated-
Mathematical-Engine-Tesla

[44] J. Lawley, “Understanding Performance of PCI Express Systems,” p. 16,
2014.

[45] P. Lindstrom, S. Lloyd, and J. Hittinger, “Universal coding of the reals:
Alternatives to ieee floating point,” in Proceedings of the Conference
for Next Generation Arithmetic, ser. CoNGA ’18. New York, NY,
USA: Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3190339.3190344

[46] K. Mercado, “mightymercado/PySigmoid,” jun 2020, original-
date: 2017-11-03T14:30:27Z. [Online]. Available: https://github.com/
mightymercado/PySigmoid

[47] T. P. Morgan, “Big Blue Aims For The Sky With Power9,” Aug.
2016. [Online]. Available: https://www.nextplatform.com/2016/08/24/
big-blue-aims-sky-power9/

[48] T. P. Morgan, “Opening Up The Server Bus For Coherent Acceleration,”
Oct. 2016. [Online]. Available: https://www.nextplatform.com/2016/10/
17/opening-server-bus-coherent-acceleration/

[49] T. P. Morgan, “Opening Up The Server Bus For Coherent Acceleration,”
Oct. 2016. [Online]. Available: https://www.nextplatform.com/2016/10/
17/opening-server-bus-coherent-acceleration/

[50] T. P. Morgan, “Power9 To The People,” dec 2017. [Online]. Available:
https://www.nextplatform.com/2017/12/05/power9-to-the-people/

[51] R. Morris, “Tapered floating point: A new floating-point representation,”
IEEE Transactions on Computers, vol. C-20, no. 12, pp. 1578–1579,
1971.

[52] D. J. Moss, S. Krishnan, E. Nurvitadhi, P. Ratuszniak, C. Johnson,
J. Sim, A. Mishra, D. Marr, S. Subhaschandra, and P. H. Leong,
“A Customizable Matrix Multiplication Framework for the Intel
HARPv2 Xeon+FPGA Platform: A Deep Learning Case Study,” in
Proceedings of the 2018 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’18. New York, NY,
USA: Association for Computing Machinery, Feb. 2018, pp. 107–116.
[Online]. Available: https://doi.org/10.1145/3174243.3174258

[53] J. J. Navarro, J. M. Llabería, and M. Valero, “Computing size-
independent matrix problems on systolic array processors,” in
Proceedings of the 13th Annual Symposium on Computer Architecture,
Tokyo, Japan, June 1986, H. Aiso, Ed. IEEE Computer Society,
1986, pp. 271–278. [Online]. Available: https://dl.acm.org/citation.cfm?
id=17388

[54] B. B. Petrov, “Using of Bfloat16 Format in Deep Learning Embedded
Accelerators based on FPGA with Limited Quantity of Dedicated
Multipliers,” in 2020 28th National Conference with International Par-
ticipation, oct 2020, pp. 82–85.

[55] P. Quinton, B. Joinnault, and P. Gachet, “A new matrix multiplication
systolic array,” p. 15, 1986.

[56] N. Stephens, “BFloat16 extensions for Armv8-A.” [Online]. Available:
https://community.arm.com/developer/ip-products/processors/b/ml-ip-
blog/posts/bfloat16-processing-for-neural-networks-on-armv8_2d00_a

[57] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going Deeper with
Convolutions,” arXiv:1409.4842 [cs], Sep. 2014, arXiv: 1409.4842.
[Online]. Available: http://arxiv.org/abs/1409.4842

[58] T. Tambe, E.-Y. Yang, Z. Wan, Y. Deng, V. J. Reddi, A. Rush,
D. Brooks, and G.-Y. Wei, “AdaptivFloat: A Floating-point based
Data Type for Resilient Deep Learning Inference,” arXiv:1909.13271
[cs, stat], Feb. 2020, arXiv: 1909.13271. [Online]. Available:
http://arxiv.org/abs/1909.13271

[59] S. Tiwari, N. Gala, C. Rebeiro, and V. Kamakoti, “PERI: A
Configurable Posit Enabled RISC-V Core,” ACM Transactions on
Architecture and Code Optimization, vol. 18, no. 3, pp. 25:1–25:26,
Apr. 2021. [Online]. Available: https://doi.org/10.1145/3446210

[60] Y. Uguen, L. Forget, and F. de Dinechin, “Evaluating the Hardware
Cost of the Posit Number System,” in 2019 29th International
Conference on Field Programmable Logic and Applications (FPL).
Barcelona, Spain: IEEE, Sep. 2019, pp. 106–113. [Online]. Available:
https://ieeexplore.ieee.org/document/8892116/

[61] S. Wang, “BFloat16: The secret to high performance on Cloud TPUs.”
[Online]. Available: https://cloud.google.com/blog/products/ai-machine-
learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus/

[62] W. Wang and N. Hasabnis, “Distributed MLPerf ResNet50 Training
on Intel Xeon Architectures with TensorFlow,” in The International
Conference on High Performance Computing in Asia-Pacific Region
Companion, ser. HPC Asia 2021. New York, NY, USA: Association
for Computing Machinery, Jan. 2021, pp. 29–35. [Online]. Available:
https://doi.org/10.1145/3440722.3440880

[63] Y. E. Wang, G.-Y. Wei, and D. Brooks, “Benchmarking TPU,
GPU, and CPU Platforms for Deep Learning,” arXiv:1907.10701
[cs, stat], Oct. 2019, arXiv: 1907.10701. [Online]. Available:
http://arxiv.org/abs/1907.10701

[64] Wikipedia, “Coherent Accelerator Processor Interface,” aug
2019, page Version ID: 912091796. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=Coherent_Accelerator\
_Processor_Interface\&oldid=912091796

[65] Wikipedia, “PCI Express,” Oct. 2020, page Version ID: 982964877.
[Online]. Available: https://en.wikipedia.org/w/index.php?title=PCI\
_Express\&oldid=982964877

[66] Xilinx, “Virtex UltraScale+,” 2016. [Online]. Available: https://www.
xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html

[67] H. Zhang and S.-B. Ko, “Design of Power Efficient Posit Multiplier,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67,
no. 5, pp. 861–865, May 2020, conference Name: IEEE Transactions
on Circuits and Systems II: Express Briefs.

[68] T. Zhang, Z.-C. Yan, and G. W. F. Drake, “Qed corrections of
o(mc2α7lnα) to the fine structure splittings of helium and he-like
ions,” Physical Review Letters, vol. 77, no. 9, pp. 1715–1718,
Aug. 1996, publisher: American Physical Society. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.77.1715

