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Abstract

We aim to deepen the theoretical understanding of Graph Neural Networks (GNNs) on
large graphs, with a focus on their expressive power. Existing analyses relate this notion
to the graph isomorphism problem, which is mostly relevant for graphs of small sizes, or
studied graph classification or regression tasks, while prediction tasks on nodes are far more
relevant on large graphs. Recently, several works showed that, on very general random
graphs models, GNNs converge to certains functions as the number of nodes grows. In this
paper, we provide a more complete and intuitive description of the function space generated
by equivariant GNNs for node-tasks, through general notions of convergence that encompass
several previous examples. We emphasize the role of input node features, and study the
impact of node Positional Encodings (PEs), a recent line of work that has been shown to
yield state-of-the-art results in practice. Through the study of several examples of PEs on
large random graphs, we extend previously known universality results to significantly more
general models. Our theoretical results hint at some normalization tricks, which is shown
numerically to have a positive impact on GNN generalization on synthetic and real data.
Our proofs contain new concentration inequalities of independent interest.

1 Introduction

Machine learning on graphs with Graph Neural Networks (GNNs) [53, 5] is now a well-established
domain, with application fields ranging from combinatorial optimization [6] to recommender
systems [50, 11], physics [45, 1], chemistry [16], epidemiology [37], physical networks such
as power grids [41], and many more. Despite this, there is still much that is not properly
understood about GNNs, both empirically and theoretically, and their performances are not
always consistent [52, 22], compared to simple baselines in some cases. It is generally admitted
that a better theoretical understanding of GNNs, especially of their fundamental limitations, is
necessary to design better models in the future.

Theoretical studies of GNNs have largely focused on their expressive power, kickstarted
by a seminal study [54] that relates their ability to distinguish non-isomorphic graphs to the
historical Weisfeiler–Lehman (WL) test [51]. Following this, many works have defined improved
versions of GNNs to be “more powerful than WL” [34, 35, 26, 49, 38], often by augmenting GNNs
with various features, or by implementing “higher-order” versions of the basic message-passing
paradigm. Among the simplest and most effective idea to “augment” GNNs is the use of
Positional Encodings (PE) as input to the GNN, inspired by the vocabulary of Transformers [48].
The idea is to equip nodes with carefully crafted input features that would help break some of
the indeterminancy in the subsequent message-passing framework. In early works, unique and/or
random node identifiers have been used [32, 47], but they technically break the permutation-
invariance/equivariance – consistency with a reordering of the nodes in the graph – of the
GNN. Most PEs in the current literature are based on eigenvectors of the adjacency matrix or
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Laplacian of the graph [12, 13] (with recent variants to handle the sign/basis indeterminancy
[31]), random-walks [13], node metrics [56, 30], or subgraphs [4]. Some of these have been shown
to have an expressive power beyond WL [30, 4, 31].

In some contexts however, WL-based analyses have limitations: they pertain to tasks on
graphs (e.g. graph classification or regression) and have limited to no connections to tasks on
nodes or links; and they are mostly relevant for small-scale graphs, as medium or large graphs
are never isomorphic but exhibit different characteristics (e.g. community structures). At the
other end of the spectrum, the properties of GNNs on large graphs have been analysed in the
context of latent positions Random Graphs (RGs) [24, 25, 43, 44, 29, 2, 36], a family of models
slightly more general than graphons [33]. Such statistical models of large graphs are classically
used in graph theory [18, 9] to model various data such as epidemiological [27, 39], biological
[17], social [20], or protein-protein interaction [19] networks, and are still an active area of
research [9]. For GNNs, the use of such models has shed light on their stability to deformations
of the model [44, 29, 24], expressive power [25], generalisation [15, 36], or some phenomena
such as oversmoothing [23, 3]. One basic idea is that, as the number of nodes in a random
graph grows, GNNs converge to “continuous” equivalents [24, 8], whose properties are somewhat
easier to characterize than their discrete counterpart. As prediction tasks on nodes are far more
common and relevant on large graphs modelled by random graphs, this paper will focus on
permutation-equivariant GNNs, rather than permutation-invariant. In the limit, it has been
shown that their output converge to functions over some latent space to label the nodes, but
the descriptions of this space of functions and its properties are still very much incomplete. A
partial answer was given in [25], in which some universality properties are given for specific
models of GNNs, but for limited models of random graphs with no random edges, and specific
models of GNNs that no not include node features or PEs.

Contributions. In this paper, we significantly extend existing results by providing a complete
description of the function space generated by permutation-equivariant GNNs
(Theorem 1), in terms of simple stability rules, and show that it is equivalent to previous
implicit definitions that were based on convergence bounds. We outline the role of the input
node features, and particularly of Positional Encodings (PEs). We then study the several
representative examples of PEs on large random graphs. In particular, we analyze SignNet [31]
(eigenvector-based) PEs (Theorem 2), and distance-based PEs [30] (Theorem 3). We derive
simple normalization rules that are necessary for convergence, and show that they are relevant
even on real data. Finally, our proofs contain new universality results for square-integrable
functions and new concentration inequalities that are of independent interest. All technical
proofs, and the code to reproduce the figures, are available as supplementary material or in the
Appendix.

2 Background on Random Graphs and Graph Neural Net-
works

Let us start with generic notations and definitions. The norm ‖·‖ is the Euclidean norm for
vectors and the operator norm for matrices and compact operators between Hilbert spaces.
The latent space X is a compact metric set with a probability distribution P over it. Square-
integrable functions from X to Rq w.r.t. P are denoted by L2

q, and are equipped with the
Hilbertian norm ‖f‖2L2

def.
=
∫
X ‖f(x)‖2 dP (x). The (disjoint) union of multidimensional functions

L2
t

def.
=
⊔
q∈N∗ L

2
q is a metric space for a metric defined as ‖f − g‖L2 if f, g ∈ L2

q for some q,
and 1 otherwise. Continuous Lipschitz functions between metric spaces X → Y are denoted
by CLip(X ,Y). For X = {x1, . . . , xn} where xi ∈ X , we define the sampling of f : X → Rd as
ιXf = [f(xi)]

n
i=1 ∈ Rn×d. Given Z ∈ Rn×d, the Frobenius norm is ‖Z‖F and we define the

normalized Frobenius norm as ‖Z‖MSE = n−
1
2 ‖Z‖F. The notation comes from the fact that

‖ιX(f − f?)‖2MSE = n−1
∑
i ‖f(xi)− f?(xi)‖2 which is akin to an empirical Mean Square Error.
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Latent position Random Graphs. In this paper, we consider latent position random graphs
[20, 28, 33], a family of models that includes Stochastic Block Models (SBM), graphons, random
geometric graphs, and many other examples. They are the primary models used for the study of
GNNs in the literature [24, 25, 29, 43]. We generate a graph G = (X,A,Z), where X ∈ Rn×d
are unobserved latent variables, A ∈ {0, 1}n×n its symmetric adjacency matrix, and Z ∈ Rn×p
are (optional) observed node features. The latent variables and adjacency matrix are generated
as such:

∀i, xi
iid∼ P, ∀i < j, aij ∼ Bernoulli(αnw(xi, xj)) independently (1)

where w : X × X → [0, 1] is a continuous connectivity kernel and αn is the sparsity-level of
the graph, such that the expected degrees are in O

(
n2αn

)
. Non-dense graph can be obtain

with αn = o(1), here we will go down to the relatively sparse case αn & (log n)/n, a classical
choice in the literature [28, 24]. Note that the continuity hypothesis of the kernel w is not really
restrictive: neither X nor the support of the distribution P need be connected. For instance,
SBMs can be obtained by taking X to be a finite set. We do not specify a model for the node
features yet, see Sec. 4.

Graph shift matrix and operator. When the number of nodes grows on random graphs, it
is known that certain discrete operators associated to the graph converge to their continuous
version, as well as the GNNs that employ them [24, 8]. Here, some of our results will be valid
under quite generic assumptions. We consider a graph shift matrix [46] S = S(G) ∈ Rn×n,
which can be either directly the adjacency matrix of the graph or various notions of graph
Laplacians. We define an associated graph shift operator S : L2

t → L2
t such that the

restriction S|L2
q
is a compact linear operator of L2

q onto itself. Note that we reserve “matrix”
and “operator” respectively for the discrete and continuous versions. The results in Sec. 3 will
be valid under generic convergence assumptions from S to S, while the results of Sec. 4 will
focus on the following two representative examples.

Example 1 (Normalized adjacency matrix and kernel operator). Here S = Ã = (nαn)−1A
and Sf = Af =

∫
w(·, x)dP (x). This choice requires to know, or estimate, the sparsity level

αn. In this case, our results will hold whenever αn & (log n)/n with an arbitrary multiplicative
constant.

Example 2 (Normalized Laplacian matrix1 and operator). Here S = L = D
−1/2
A AD

−1/2
A

where DA = diag(A1n) is the degree matrix of G, and Sf = Lf =
∫ w(·,x)√

d(·)d(x)
dP (x) where

d(·) =
∫
w(·, x)dP (x) is the degree function. Whenever we opt for this choice, we assume that

dmin
def.
= infX d(x) > 0, and our results will hold whenever αn > C(log n)/n with a multiplicative

constant C that depends (in a non-trivial way) on w, see Thm. 9 in App. D.

To sometimes unify notations, when we adopt these examples, we define wS such that
wS(x, y) = w(x, y) in the adjacency case and wS(x, y) = w(x,y)√

d(x)d(y)
in the normalized Laplacian

case. Therefore for these two examples the continuous operator has a single expression Sf =∫
wS(·, x)dP (x).

Graph Neural Network. As mentioned in the introduction, we focus on equivariant GNNs
that can compute functions over nodes, as this makes the most sense on large graphs that RGs
seek to model. Recall that we observe a graph shift operator S and node features Z ∈ Rn×p,
and we return a vector per nodes Φ(S,Z) ∈ Rn×dL . We adopt a traditional message-passing
neural network (MPNN) that uses the graph shift matrix S: given input features Z(0) ∈ Rn×d0 ,

Z(`) = ρ
(
Z(`−1)θ

(`−1)
0 + SZ(`−1)θ

(`−1)
1 + 1n(b(`))>

)
∈ Rn×d` ,

Φθ(S,Z
(0)) = Z(L−1)θ(L−1) + 1n(b(L))> (2)

1Note that the normalized Laplacian is traditionally defined as Id− L, here it does not change our definition
of GNNs since they include residual connections
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where ρ is the ReLU function applied element-wise, and θ(`)i ∈ Rd`×d`+1 , b(`) ∈ Rd` are learnable
parameters gathered in θ ∈ Θ. We denote by Θ the set of all possible parameters. We note
that here we employ the ReLU function as a non-linearity, as some of our results will use its
specific properties. Multi-Layer Perceptrons (MLP, densely connected networks) using the ReLU
activation, and with potentially more than one hidden layer, will be denoted by fMLP

γ , where γ
gathers their parameters.

Following recent literature [12, 13], we consider inputing Positional Encoding (PE) at each
node. Such PE are generally computed using only the graph structure and concatenated to
existing node features Z, here we simply introduce a generic notation:

Z(0) = PEγ(S,Z) ∈ Rn×d0 (3)

with some parameter γ ∈ Γ. In our notations, the PE module uses the node features Z, generally
by concatenating them to its output. For short, we may denote the whole architecture with PE
and GNN as Φθ,γ(S,Z)

def.
= Φθ(S,PEγ(S,Z)). It is not difficult to see that if the PE computation

is equivariant, then the whole GNN is equivariant: denoting by σ a permutation matrix of
{1, . . . , n},

∀σ, Φθ,γ(σSσ>, σZ) = σΦθ,γ(S,Z) ⇔ ∀σ, PEγ(σSσ>, σZ) = σPEγ(S,Z).

All the examples of PEs examined in Sec. 4 are equivariant.

3 Function spaces of Graph Neural Networks
In this section, we provide a complete and intuitive description of the function space approximated
by equivariant GNNs applied on RGs. All technical proofs are provided in App. A. It has been
shown [24, 25, 8, 29] that GNNs converge to functions over the latent space: when the node
features are a sampling of a certain function ιXf (0), then the output of the GNN is close to
being a sampling of another function ιXf (L). Assuming the node features or PEs approximate
some function set B ⊂ L2

t, we define the space of functions that a GNN can approximate as
follows.

Definition 1. Given a base set B ⊂ L2
t, the set of functions approximated by GNNs

FGNN(B) is formed by all the functions f ∈ L2
t such that: for all ε > 0, there are θ ∈ Θ, f (0) ∈ B

such that
P
(∥∥Φθ(S, ιXf

(0))− ιXf
∥∥

MSE > ε
)
−−−−→
n→∞

0. (4)

In other words, FGNN(B) are the functions whose sampling can be ε-approximated by the
output of a GNN, with probability going to 1 as n grows. Note that if the quantifiers of
θ, f (0) and ε were reversed, the MSE would converge to 0 in probability. Here this is not
the case: θ, f (0) may depend on ε, which is akin to an approximation level. Similar to the
permutation equivariance of GNNs, there is a notion of continuous equivariance for functions
well-approximated by GNNs [24, 25, 8], where the permutations are replaced by bijections over
the latent space X . We adopt the notations FGNN(B) = FGNN(B, w, P ). For all continuous
bijections φ over X , we define wφ(x, y) = w(φ(x), φ(y)), Pφ = φ−1]P where ] is the push-forward
operation, and Bφ = {f ◦ φ | f ∈ B}. Then, we have the following result.

Proposition 1. Let S = S(A) be a graph shift operator that only depends on the adjacency
matrix of the graph in a permutation-equivariant manner. Then, for all continuous bijections
φ : X → X ,

FGNN(Bφ, wφ, Pφ) = {f ◦ φ | f ∈ FGNN(B, w, P )} .

That is, if one “permutes” the kernel w, the distribution P and the base set B, then the
function space FGNN contains exactly the permuted version of the original space.
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The goal of this section is to provide a more intuitive description of the space FGNN, which
we will do under some basic convergence assumption from S to S. GNNs (2) basically include
two components: dense connections and MLPs that can approximate any continuous function
by the universality theorem [40], and applications of S. Hence, we define the following function
space.

Definition 2. We define FS(B) ⊂ L2
t the (minimal) S-extension of a base set B ⊂ L2

t by the
following rules:

(i) Base space: B ⊂ FS(B);

(ii) Stability by composition with continuous functions: for all f ∈ FS(B) with a
p-dimensional output and g ∈ CLip(Rp,Rq), it holds2 that g ◦ f ∈ FS(B);

(iii) Stability by graph operator: for all f ∈ FS(B), it holds that Sf ∈ FS(B);

(iv) Linear span: for all q, FS(B) ∩ L2
q is a vector space;

(v) Closure: FS(B) is closed in L2
t;

(vi) Minimality: for all G ⊂ L2
t satisfying all the properties above, FS ⊂ G.

In words, FS take a base set B, and extend it to be stable by composition with Lipschitz
functions, application of the graph operator, and linear combination (of its elements with the
same dimensionality). Our result will use the following assumption, which is naturally true for
our running examples.

Assumption 1. With probability going to 1, ‖S‖ is bounded. Moreover, for all f ∈ L2
t,

‖SιXf − ιXSf‖MSE
P−−−−→

n→∞
0

where P−→ indicates convergence in probability.

Proposition 2. Assumption 1 is true for the adjacency matrix (ex. 1) and normalized Laplacian
(ex. 2).

Under this assumption, the main result of this section states that the functions well-
approximated by GNNs are exactly the S-extension of the base input features B.

Theorem 1. Under Assumption 1, for all B ⊂ L2
t, we have:

FGNN(B) = FS(B)

Given the definition of GNNs (2) and construction of FS, Theorem 1 appears quite natural.
Its proof, provided in App. A.3, is however far from trivial. The inclusion FS(B) ⊂ FGNN(B) is
similar in spirit to previous convergence results [24], since one has to construct a GNN that
approximates a particular function. It involves however a new extended universality theorem for
MLPs for square-integrable functions (Lemma 3 in App. A.3), which uses the special properties
of ReLU. The reverse inclusion FGNN(B) ⊂ FS(B) is quite different from previous work on GNN
convergence: given f ∈ FGNN(B) whose only property is to be well-approximated by GNNs, one
must construct a sequence of functions in FS(B) that converge to f , and uses the closure of
FS(B). The need to work within square-integrable function is here obvious, as we only have
convergence of the MSE, an approximation of the L2-norm. For instance, this inclusion would
not be true in the space of continuous functions.

Using composition with continuous functions, if FS(B) contains a continuous bijection
φ : X → Im(φ), then FS(B) contains all continuous functions, and by density all square
integrable functions. That is, the equivariant GNNs are then universal over X : they can
generate any function to label the nodes. Another criterion using the Stone-Weierstrass theorem
(e.g. [21]), similar to the proofs in [25], is the following.

2Note that, since g is Lipschitz, when f ∈ L2
t we indeed have g ◦ f ∈ L2

t.
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Proposition 3. Assume that for all x 6= x′ in X , there is a continuous function f ∈ FS(B) ∩
CLip(X ,R) such that f(x) 6= f(x′). Then, FS(B) = L2

t.

In the rest of the paper, we study several examples of PEs and corresponding set B, that
will generalize the results of [25]. We expect many other interesting characteristics of FS to be
derived in the future.

4 Node features and Positional encodings
In the previous section, we have provided a complete description of the function space generated
by equivariant GNNs when fed samplings of functions as node features, and the set of B is thus
crucial for the properties of FS(B). For instance, in the absence of node features and PEs, it
is classical to input constant features to GNNs [25], such that the space of interest is FS(1).
However, similar to the failure of the WL test on regular graphs, if S1 ∝ 1 (e.g. constant degree
function), then FS(1) contains only constant functions! The role of PEs is often to mitigate
such situations.

Definition 3. The set of functions approximated by PEs FPE is formed by all the functions
f ∈ L2

t such that: for all ε > 0, there is γ ∈ Γ such that

P
(
‖PEγ(S,Z)− ιXf‖MSE > ε

)
−−−−→
n→∞

0 . (5)

Note that, as before, γ may depend on ε. When passing PEs as input to GNNs, FPE serves
as the base space B, and the space of interest to characterize the functions well approximated
by the whole architecture Φθ,γ is therefore FS(FPE). In fact, by simple Lipschitz property: for
any f ∈ FS(FPE) and ε > 0, there are θ ∈ Θ, γ ∈ Γ such that

P
(
‖Φθ,γ(S,Z)− ιXf‖MSE > ε

)
−−−−→
n→∞

0

In the rest of the section, we therefore aim to characterize FPE for several representative
examples. We first briefly comment on observed node features, then move on to PEs. Proofs
are in App. B.

4.1 Node features
A first, simple example, is when observed node features are actually a sampling of some function
Z = ιXf

(0). This is a convenient choice that is often adopted in the literature [24, 25, 23, 8, 29].
In this case, by adopting the identity PEγ(S,Z) = Z, it is immediate that FPE = {f (0)}. A
more realistic example is the presence of centered noise:

Z = ιXf
(0) + ν ∈ Rn×d0 (6)

where ν = [ν1, . . . , νn] and the νi are i.i.d. noise vectors with Eνi = 0 and Cov(νi) = Cν . This
time, FPE cannot contain directly f (0), as the Law of Large Numbers (LLN) gives∥∥Z − ιXf (0)∥∥2MSE = ‖ν‖2MSE

P−−−−→
n→∞

Tr(Cν) > 0

However, when applying the graph shift matrix at least once, one obtains convergent PEs.

Proposition 4. Consider the adjacency matrix (ex. 1) or normalized Laplacian (ex. 2). If
the node features are a noisy sampling (6) and the PE are defined PEγ(S,Z) = SZ, then,
FPE = {Sf (0)}.

Of course this may not be the only possibility for removing noise from node features, and
moreover it is not clear how realistic the node features model (6) actually is. The study of more
refined models linking graph structure and node features is a major path for future work.
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4.2 Positional Encodings
In this section, we consider classical PEs computed solely from the graph structure and show
how they articulate with our framework. We consider two examples that are the most-often used
in the literature: PEs as eigenvectors of the graph shift matrix [12, 13] (actually a recent variant
that account for sign indeterminancy [31]), and PE based on distance-encoding [30] (again a
variant that, as we will see, generalize other architectures [49]). For most of the results below,
we will focus on two representative cases of kernels, that include many practical examples:

Example a (Stochastic Block Models). In this case, the space of latent variables X = {1, . . . ,K}
is finite, each element correspond to a community label. The kernel w is represented by a matrix
C

def.
= [w(`, k)] ∈ RK×K+ that gives the probability of connection between communities ` and k,

and P ∈ RK+ is a probability vector of size K that sum to 1.

Example b (P.s.d. kernel). Here we assume that w is positive semi-definite (p.s.d.). This
includes for instance the Gaussian kernel.

For any symmetric matrix (resp. self-adjoint compact operator) M , we denote by λMi its
eigenvalues and uMi its eigenvectors (resp. eigenfunctions), with any arbitrary choice of sign or
basis here. Since in all our examples operators are either p.s.d. or finite-rank, the eigenvalues are
ordered as such: first the non-zero eigenvalues by decreasing order (from positive to negative),
then all zero eigenvalues.

4.2.1 Eigenvectors and SignNet

It has been proposed [12, 13] to feed the first q eigenvectors of the graph into the GNN, for a
fixed q. A potential problem with this approach is the sign ambiguity of the eigenvectors, or
even the basis ambiguity in case of eigenvalues with multiplicities. Here we consider only the
sign ambiguity for simplicity: we will assume that the first eigenvalue of S are distinct. The sign
ambiguity was alleviated in [31] by taking a sign-invariant function: considering an eigenvector
uSi of S,

(Qf)(uSi )
def.
= f(uSi ) + f(−uSi ) ∈ Rn×p (7)

where f : R → Rp is a function applied to each coordinate of uSi to preserve permutation-
equivariance. The resulting function is sign-invariant, and one can parameterized f . Given the
first q eigenvectors uSi and a collection of MLPs fMLP

γi : R→ Rpi for some output dimensions pi,
the PE considered in this subsection concatenates the outputs:

PEγ(S) = [(QfMLP
γi )(

√
nuSi )]qi=1 ∈ Rn×p (8)

where p =
∑q
i=1 pi and the MLP are applied element-wise. The parameter γ gathers the γi.

The equation (8) involves a renormalization of the eigenvectors uS by the square root of the
size of the graph

√
n: indeed, as uSi is normalized in Rn, this is necessary for consistency across

different graph sizes. See Sec. 4.2.3 for a discussion and some numerical illustrations.
As can be expected, the eigenvectors of S generally converge to the eigenfunctions of S, under

a spectral gap assumption. We provide the theorem below which handles all of our running
examples. We suppose that the relevant eigenvalues have single multiplicities, to only have sign
ambiguity.

Theorem 2. Consider either SBM (ex. a) or p.s.d. kernel (ex. b), and either adjacency matrix
(ex. 1) or normalized Laplacian (ex. 2). Fix q, assume the first q + 1 eigenvalues λS1 , . . . , λSq+1

of S are two-by-two distinct. We define

FEig
def.
=
{

[(Qfi) ◦ uSi ]qi=1 | fi ∈ CLip(R,Rpi), pi ∈ N∗
}

(9)

Then FPE = FEig.

Hence FPE contains the eigenfunctions of S, modified by the SignNet architecture to account
for the sign indeterminancy. We further discuss this space in Sec. 4.2.3. An illustration is
provided in Fig. 1.
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Figure 1: Illustration of the role of the SignNet architecture and of the renormalization by
√
n of

the eigenvectors on synthetic data, with a latent space X = [−1, 1] (x-axis), a Gaussian kernel w, and
uniform distribution P . Blue dots represent a graph from the training set, orange dot a test graph that
is twice bigger. From left to right: eigenvectors with renormalization (with a different sign for the
two graphs), eigenvectors without, PEs with, and PEs without, with the regression test errors of a GNN
trained using these PE with or without renormalization. We observe that SignNet indeed fixed the
sign ambiguity. The absence of renormalization yields unconsistent PEs across graphs of different sizes,
which results in a high test error on test graphs than training graphs.

4.2.2 Distance-encoding PEs

In [30], the authors propose to define PEs through the aggregation of a set of “distances” ξ(i, j)
from each node i to a set j ∈ VT of target nodes (typically, labelled nodes in semi-supervised
learning, or anchor nodes selected randomly [56]):

(PEγ)i,: = AGG({ξ(i, j) | j ∈ VT })

where AGG is an aggregation function that acts on (multi-)sets, and ξ(i, j) is selected in [30] as
random-walk based distances ξ(i, j) = [(AD−1A )ij , . . . , ((AD

−1
A )q)ij ] ∈ Rq. For simplicity, since

here we do not consider any particular set of target nodes, we just consider VT = V the set of all
nodes. Moreover, to use our convergence results, we replace the random walk matrix with our
graph shift matrix S. As aggregation, we opt for the deep-set architecture [58], which applies an
MLP on each ξ(i, j) then a sum. Deep sets can approximate any permutation-invariant function.
As we will see below, with the proper normalization to ensure convergence, we obtain:

PEγ = 1
n

∑
j f

MLP
γ (n · [Sej , . . . , Sqej ]) ∈ Rn×q

where fMLP
γ : Rq → Rp is applied row-wise and ej ∈ Rn are one-hot basis vectors. We note that

a similar architecture was proposed in a different line of work: it was called Structured Message
Passing by [49], or Structured GNN by [25]. In these works, the inspiration is to give nodes
unique identifiers, e.g., one-hot encodings ei. However, this process is not equivariant. To restore
equivariance, [49] propose a deep-set pooling in the “node-id” dimension PEγ(S) =

∑
j Φγ(S, ej),

where Φγ is itself a permutation-equivariant GNN, and the equivariance of PEγ is restored. By
choosing Φγ(S, ej) = n−1fMLP

γ (n · [Sej , . . . , Sqej ]) (which is a valid choice for a message-passing
GNN), we obtain exactly distance-encoding PEs above.

In [25], powerful universality results were shown for this choice of architecture in the case
of non-random edges aij = w(xi, xj) and q = 1. With our notations, they implicitely studied
PE functions of the following form:

∫
f(w(·, x))dP (x). This allows to modify the values of the

kernel before computing the degree function, and can therefore break potential indeterminancy
such as constant degrees. Unfortunately, their proof technique and the concentration inequalities
they use are not true anymore for Bernoulli random edges, which are far more realistic than
deterministic weighted edges. Here we show that for a large class of kernels, concentration can
be restored when we add an MLP filter on the eigenvalues of S with ReLU. Our definition of
distance-encoding PEs is therefore:

PEγ = 1
n

∑
j f

MLP
γ1

(
n · [Sγ2ej , . . . , Sqγ2ej ]

)
(10)

where Sγ2
def.
= hfMLP

γ2
(S) is a filter that applies an MLP fMLP

γ2 on the eigenvalues of S.
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Theorem 3. Consider either SBM (ex. a) or p.s.d. kernel (ex. b), and either adjacency matrix
(ex. 1) or normalized Laplacian (ex. 2). Consider the PE (10). We define

FDist
def.
=

{∫
f([Sδx(·), . . . ,Sqδx(·)])dP (x) | f ∈ CLip([0, 1]q,Rp), p ∈ N∗

}
(11)

where Sδx
def.
= {z 7→ wS(z, x)} by abuse of notation. Then FDist ⊂ FPE.

Note that here we only have an inclusion FDist ⊂ FPE instead of an equality as in Thm. 2:
indeed, we show that the PE (10) can approximate functions in FDist, but they may converge
to other functions. Nevertheless, as a consequence of our analysis, all the universality results
of [25, Sec. 5.3] are valid with the choice of PE (10), see Appendix C for a reminder using
our notations. This is a strict, and non-trivial improvement over [25], as their results were
only derived for non-random edges. For this, Theorem 3 relies mostly on a new concentration
inequality for Bernoulli matrices with ReLU filters in Frobenius norm, that we give below since
it is of independent interest.

Theorem 4. Consider either SBM (ex. a) or p.s.d. kernel (ex. b), and either adjacency matrix
(ex. 1) or normalized Laplacian (ex. 2). Define the Gram matrix W = [wS(xi, xj)/n]ij . For all
ε > 0, there is an MLP filter Sγ = hfMLP

γ
(S) such that

P(‖Sγ −W‖F > ε)→ 0.

0.05 0.00 0.05 0.10 0.15
0.05

0.00

0.05

0.10

0.15 No filter
Learned filter
Ideal filter

Figure 2: Illustration of The-
orem 4 on synthetic data
where W is known, with a
Gaussian kernel. Unfiltered
eigenvalues of S are repre-
sented by blue crosses, filtered
ones obtained by minimizing
minγ2 ‖Sγ2 −W‖F by orange
dots, and the ideal ReLU-filter
used in the proof of Thms. 3
and 4 is represented by a red
line.

The proof of this theorem, given in appendix B.3, is inspired
by the so-called USVT estimator [7]. One notes that the use of
an MLP graph filter is quite unconventional. A more classical
choice is polynomial filters: this avoids the diagonalization of
S by computing

∑
k akS

k, it is for instance the basis for the
ChebNet architecture [10]. For the purpose of Theorems 3 and
4, polynomial filters do not work, and ReLU is of crucial impor-
tance: indeed, we need the filter to zero-out O (n) eigenvalues
uniformly in some interval [−τ, τ ]. With polynomial, this could
be done by taking learned parameters that depend on n (to get
a finer approximation as n increases), but this is not allowed
in our framework, where we want to generalize on large graphs
n→∞. On the other hand, when choosing f as an MLP with
ReLU, due to the shape of this non-linearity, fMLP

γ2 can be uni-
formly 0 on a whole domain. Of course, polynomial filters offer
great computational advantages, and perform well in practice,
despite their flaw in our asymptotic analysis. Moreover, ReLU
is technically non-differentiable. Designing filters that offer both
computational advantages and exact approximation is still an
open question. In practice, we observe that the ReLU-filter does learn to approximate its
expected shape, when we minimize the reconstruction error ‖Sγ −W‖F on synthetic data where
W is known, see Fig. 2.

4.2.3 Discussion

Approximation power. As mentioned above, in the absence of node features, one may opt
for constant input, but this may lead to degenerate situations. PEs aim to counteract that, by
increasing GNNs’ approximation power. We quickly verify that this is indeed the case for our
two examples.

Proposition 5. There are cases where FS(1) ⊂ FS(FEig) or FS(1) ⊂ FS(FDist) with strict
inclusions.
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Dataset Eigenvectors Distance-encoding
w/ norm. w/o norm. w/ norm. w/o norm.

IMDB-BINARY [55] 67.80 66.10 71.10 63.95
COLLAB [55] 73.74 74.77 75.65 75.02

Table 1: Test accuracy for GNNs with different PEs, with or without renormalization by the graph size
n. Results for 5-fold cross-validation averaged over 3 experiments.

Moreover, as mentioned in the previous section, existing universality results [25] can be
generalized in our case, see App. C. Another interesting question is somewhat the opposite:
given the already rich class of functions generated by PEs, are GNNs really more powerful?

Proposition 6. There are cases where FEig ⊂ FS(FEig) or FDist ⊂ FS(FDist), with strict
inclusions.

The proof, which is not so trivial, invokes functions with at least one round of message-passing
after the computation of PEs, so the additional approximation power does not come only from
MLPs. Intuitively, it seems natural that message-passing rounds are useful for other reasons,
e.g. noise reduction or smoothing [23]. We leave these complementary lines of investigation for
future work.

Renormalization. A striking point in our variants of PEs is the presence of various nor-
malization factors by the graph size n to ensure convergence: the equation (8) involves a
renormalization of the eigenvectors uS by the square root of the size of the graph

√
n, while (10)

involves a multiplicative factor n inside the MLP fMLP
γ1 (the 1/n outside of the sum is more

classical). Our analysis shows that these normalization factors are necessary for convergence
when n→∞, and more generally for consistency across different graph sizes.

In practice, this is generally not used. Indeed, if the training and testing graphs have roughly
the same “range” of sizes n ∈ [nmin, nmax], then a GNN model can learn the proper normalization
to perform, which is not the point of view of our analysis n→∞. While in-depth benchmarking
of PEs has been done in the literature [13] and is out-of-scope of this paper, we give a small
numerical illustration of the effect of normalization, for a synthetic dataset (Fig. 1) and two
real-world datasets that contain graphs of different sizes3 (Tab. 1). On a synthetic dataset that
is exactly formed of random graphs of vastly different sizes, the renormalization is of course
necessary to obtain good performance, as predicted by our theory: without it, the PEs do not
converge when n grows. On real data, we see that renormalization generally helps generalization,
and this is more true for IMDB-BINARY, which contains a larger range of graph sizes, and
distance-based PEs. Note that here we use relatively small GNNs that are not state-of-the-art,
as well as a different train/test split than most papers (K = 5 CV-folds instead of K = 10):
indeed, we do not want our models to learn the proper normalization on the limited range of
sizes n in the dataset, so we limit their number of parameters and use a smaller training set. We
do not expect our simple renormalization process to make a significant difference on large-scale
benchmarks with state-of-the-art models [13], but this is a pointer in an interesting direction
that will be explored in the future. In particular, this type of normalization may be useful in
real-world scenarii where the test graphs are far larger than the labelled training graphs.

5 Conclusion
On large random graphs, the manner in which GNNs label nodes can be modelled by functions.
The analysis of the resulting function spaces is still in its infancy, and of a very different nature

3Technically, these datasets are graph-tasks instead of node-tasks. Indeed, we needed graphs of different sizes
to test the renormalization, and there are few (if any) node-task datasets containing many graphs of different
sizes. We perform a final pooling on our equivariant GNNs to obtain permutation-invariant versions.
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to the studies of graph-tasks, both discrete [54] or in the limit [36]. In this paper, we clarified
significantly the nature of the space of functions well-approximated by GNNs on large-graphs,
showing that it can be defined by a few extension rules within the space of square-integrable
functions. We then showed the usefulness of Positional Encodings by analyzing two popular
examples, established new universality results, as well as some concentration inequalities of
independent interest. Our theory hinted at some process for consistency across graphs of different
sizes that can help generalization in practice. This paper, which in large part consisted in
properly defining the objects of interest, is without doubt only a first step in their analysis.
Future studies might look at specific settings and derive more useful properties of the space FS,
more powerful PEs, a better understanding of their limitations, or more realistic models for
node features.
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A Proofs of Sec. 3

A.1 Proof of Prop. 1
Denote G the distribution of (X,A) with (w,P ) and Gφ for (wφ, Pφ). Note that if X,A ∼ Gφ,
then φ(X), A ∼ G, and recall that S = S(A) only depends on A.

Consider f ∈ FGNN(B, w, P ), ε > 0, and θ, f (0) such that
PG
(∥∥Φθ(S, ιXf

(0))− ιXf
∥∥

MSE > ε
)
→ 0. Then, denoting by φ(X) = {φ(x1, . . . , φ(xn)},

PGφ
(∥∥∥Φθ(S, ιX(f (0) ◦ φ))− ιX(f ◦ φ)

∥∥∥
MSE

> ε
)

= PGφ
(∥∥∥Φθ(S, ιφ(X)f

(0))− ιφ(X)f
∥∥∥

MSE
> ε
)

= PG
(∥∥∥Φθ(S, ιXf

(0))− ιXf
∥∥∥

MSE
> ε
)
→ 0

which shows that f ◦φ ∈ FGNN(Bφ, wφ, Pφ) and one inclusion. The other inclusion is immediate
by doing the same reasoning for φ−1.

A.2 Proof of Prop. 2
Define W = [wS(xi, xj)/n] the Gram matrix. Using Theorem 9, for both our examples we have

‖S −W‖ P−−−−→
n→∞

0

Since ‖W‖ 6 supx,y |wS(x, y)| is bounded, it shows that ‖S‖ is bounded with probability going
to 1.

Let f ∈ L2
q and any ε > 0. Since continuous functions are dense in square-integrable functions

on compact spaces (see e.g. [14, Sec. 8.2]), let g ∈ CLip(X ,Rq) such that ‖f − g‖L2 6 ε. We
have

‖WιXg − ιXSg‖2MSE =
1

n

∑
i

∥∥∥∥∥∥ 1

n

∑
j

wS(xi, xj)g(xj)−
∫
wS(xi, x)g(x)dP (x)

∥∥∥∥∥∥
2

6

∥∥∥∥∥∥ 1

n

∑
j

wS(·, xj)f(xj)−
∫
wS(·, x)g(x)dP (x)

∥∥∥∥∥∥
2

∞

P−−−−→
n→∞

0

where we have used Lemma 8 and the fact that g is bounded.
Finally,

‖SιXf − ιXSf‖MSE 6 ‖SιXf −WιXf‖MSE + ‖WιXf −WιXg‖MSE

+ ‖WιXg − ιXSg‖MSE + ‖ιXSg − ιXSf‖MSE

Using ‖AB‖F 6 ‖A‖ ‖B‖F and the LLN, and the fact that ‖f‖L2 , ‖W‖, ‖S‖ are bounded, with
probability going to 1,

‖SιXf − ιXSf‖MSE 6 ‖S −W‖ ‖ιXf‖MSE + ‖W‖ ‖ιX(f − g)‖MSE

+ ‖WιXg − ιXSg‖MSE + ‖ιXS(g − f)‖MSE

. ‖S −W‖ ‖f‖L2 + ‖W‖ ‖f − g‖L2 + 0 + ‖S‖ ‖g − f‖L2 . ε

which, since ε was chosen arbitrarily, concludes the proof.

A.3 Proof of Theorem 1
The proof uses intermediate results. Recall the definition of GNNs: given input node features
Z(0) ∈ Rn×d0 ,

Z(`) = ρ
(
Z(`−1)θ

(`−1)
0 + SZ(`−1)θ

(`−1)
1 + 1n(b(`))>

)
∈ Rn×d` ,

Φθ(S,Z
(0)) = Z(L−1)θ(L−1) + 1n(b(L))>
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We can define a continuous equivalent of GNNs, called c-GNNs in the literature [24], using the
operator S. Given f (0) ∈ L2

d0
,

f (`) = ρ
(

(θ
(`−1)
0 )>f (`−1) + (θ

(`−1)
1 )>Sf (`−1) + b(`)

)
∈ L2

d`
,

Φθ(S, f
(0)) = (θ(L−1))>f (L−1) + b(L)

Then, under our assumption on the operators (S,S), discrete GNNs converge to continuous
GNNs.

Lemma 1. Suppose Assumption 1 holds. For all f ∈ L2
t and θ,

‖Φθ(S, ιXf)− ιXΦθ(S, f)‖MSE
P−−−−→

n→∞
0

Proof. Writing Z(0) = ιXf and f (0) = f , we show by recursion on the layers that∥∥Z(`) − ιXf (`)
∥∥

MSE
P−−−−→

n→∞
0.

For ` = 0, we have exactly
∥∥Z(0) − ιXf (0)

∥∥
MSE = 0. Assuming the convergence holds for

`− 1, we have,∥∥∥Z(`) − ιXf (`)
∥∥∥

MSE
=
∥∥∥ρ(Z(`−1)θ

(`−1)
0 + SZ(`−1)θ

(`−1)
1 + 1n(b(`))>

)
− ιXρ

(
(θ

(`−1)
0 )>f (`−1) + (θ

(`−1)
1 )>Sf (`−1) + b(`)

)∥∥∥
MSE

.
∥∥∥Z(`−1)θ

(`−1)
0 + SZ(`−1)θ

(`−1)
1

− (ιXf
(`−1))θ

(`−1)
0 + (ιXSf (`−1))θ

(`−1)
1

∥∥∥
MSE

6
(∥∥∥θ(`−1)0

∥∥∥+
∥∥∥θ(`−1)1

∥∥∥ ‖S‖)∥∥∥Z(`−1) − ιXf (`−1)
∥∥∥

MSE

+
∥∥∥(SιX − ιXS)f (`−1)

∥∥∥
MSE

using the Lipschitz property of ρ in the first line, and ‖AB‖F 6 ‖A‖ ‖B‖F after. The first term
converges to 0 by recursion hypothesis since ‖S‖ is bounded with probability going to 1, and
the second converges to 0 by Assumption 1. This concludes the proof.

Lemma 2. Given a base space B ⊂ L2
t, denote by Fc(B) ⊂ L2

t the following space of all
functions f of the form:

f (0) ∈ B

f (`+1) = g
(`)
1 ◦ f (`) + g

(`)
2 ◦ Sf (`) where g(`)1 , g

(`)
2 ∈ CLip(Rd` ,Rd`+1)

f = f (L) ∈ L2
dL (12)

for all k, L, di. Then Fc(B) is dense in FS(B).

Proof. By definition, Fc ⊂ FS since its contruction uses only rules that leave FS stable.
Conversely, Fc satisfies all the rules of stability of FS so by minimality FS ⊂ Fc.

Lemma 3 (Universality in L2). Let f ∈ L2
q and g ∈ CLip(Rq,Rp), for all ε > 0, there exists an

MLP fMLP
γ that uses ReLU, with two hidden layers, such that∥∥g ◦ f − fMLP

γ ◦ f
∥∥
L2 6 ε (13)

Proof. Denote by Lg the Lipschitz constant of g. Let Ck = [−k, k]q, and Xk = {x ∈ X | f(x) ∈
Ck}, and ξk =

∫
Xk ‖f(x)‖2 dP (x). We have ξk positive and increasing, and limk→∞ ξk = ‖f‖2L2

.

Define kε such that ξkε > ‖f‖
2
L2 − ε2

1+L2
g+‖g(0)‖2

, such that
∫
X ckε
‖f(x)‖2 dP (x) 6 ε2

1+L2
g+‖g(0)‖2

.
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Since Ckε is compact, by the universality theorem [21, 40], there is an MLP fMLP
γ′ such that

supy∈Ckε

∣∣g(y)− fMLP
γ′ (y)

∣∣ 6 ε. Moreover, using the property of ReLU, it is easy to see that
the following function can be implemented by an MLP:

fMLP
γ′′ (t) =


−kε for t 6 −kε
t for −kε 6 t 6 kε

kε for t > kε

Then, we define fMLP
γ = fMLP

γ′′ ◦ fMLP
γ′ , where fMLP

γ′′ is applied coordinate-wise. As a result, we
have fMLP

γ (y) = fMLP
γ′ (y) on Ckε , and

∥∥fMLP
γ (y)

∥∥
∞ 6 kε outside. Then, we have∥∥g ◦ f − fMLP

γ ◦ f
∥∥2
L2 =

∫ ∥∥g ◦ f(x)− fMLP
γ ◦ f(x)

∥∥2 dP (x)

6
∫
Xkε

∥∥g ◦ f(x)− fMLP
γ ◦ f(x)

∥∥2 dP (x)

+ 2
(∫
X ckε

‖g ◦ f‖2 dP (x) +

∫
X ckε

∥∥fMLP
γ ◦ f

∥∥2 dP (x)
)

For the first term, since on Xkε we have f(x) ∈ Ckε , we use the approximation property and we
have ∫

Xkε

∥∥g ◦ f(x)− fMLP
γ ◦ f(x)

∥∥2 dP (x) 6 ε2

For the second term, since ‖f(x)‖2 > dk2ε > 1 on X ckε , we have∫
X ckε

‖g ◦ f‖2 dP (x) 6 2

∫
X ckε

‖g ◦ f − g(0)‖2 dP (x) + ‖g(0)‖2
∫
X ckε

1dP (x)

6 2(L2
g + ‖g(0)‖2)

∫
X ckε

‖f‖2 dP (x) 6 2ε2

And for the third term, given the property of the built MLP,∫
X ckε

∥∥fMLP
γ ◦ f

∥∥2 dP (x) 6
∫
X ckε

dk2εdP (x)

6
∫
X ckε

‖f‖2 dP (x) 6 ε2

which concludes the proof.

Lemma 4. Let f ∈ Fc(B). For all ε > 0, there exists θ and f (0) ∈ B such that∥∥∥Φθ(S, f
(0))− f

∥∥∥ 6 ε (14)

Proof. Let f ∈ Fc(B) be constructed as (12). Denote by L
g
(`)
i

the Lipschitz constant of

g
(`)
i ∈ CLip(Rd` ,Rd`+1). Let ε > 0.

We build the following continuous GNN: f̄ (0) = f (0), and

f̄ (`+1) = fMLP
θ
(`)
1

◦ f̄ (`) + fMLP
θ
(`)
2

◦ Sf̄ (`)

Φθ(S, f̄
(0)) = f̄ (L)

for well-chosen MLPs. We design them by increasing layer indices: assuming the MLPs up to
layer `− 1 are choosen (i.e. f̄ (`) is chosen), we use Lemma 3 and choose θ(`)i (which depends on
θ(0), . . . , θ(`−1) then) such that∥∥∥(g(`)1 − fMLP

θ
(`)
1

)
◦ f̄ (`)

∥∥∥
L2

+
∥∥∥(g(`)2 − fMLP

θ
(`)
2

)
◦ Sf̄ (`)

∥∥∥
L2

6 ε(`)
def.
=

ε

L
∏L−1
q=`+1

(
L
g
(`)
1

+ L
g
(`)
2
‖S‖

)
17



Then we get∥∥∥f (`+1) − f̄ (`+1)
∥∥∥
L2

6
∥∥∥g(`)1 ◦ f (`) − fMLP

θ
(`)
1

◦ f̄ (`)
∥∥∥
L2

+
∥∥∥g(`)2 ◦ Sf (`) − fMLP

θ
(`)
2

◦ Sf̄ (`)
∥∥∥
L2

6
∥∥∥g(`)1 ◦ f (`) − g

(`)
1 ◦ f̄ (`)

∥∥∥
L2

+
∥∥∥g(`)2 ◦ Sf (`) − g

(`)
2 ◦ Sf̄ (`)

∥∥∥
L2

+ ε(`)

6
(
L
g
(`)
1

+ L
g
(`)
2
‖S‖

)∥∥∥f (`) − f̄ (`)∥∥∥
L2

+ ε(`)

Hence by a simple recursion and since f (0) = f̄ (0) we have∥∥∥f (L) − f̄ (L)∥∥∥
L2

6
L−1∑
`=0

 L−1∏
q=`+1

(
L
g
(`)
1

+ L
g
(`)
2
‖S‖

) ε(`) 6 ε

by our choice of ε(`), which concludes the proof.

Proof of Theorem 1. We start with the inclusion FS ⊆ FGNN. Let f ∈ FS(B) and ε > 0.
By Lemma 2, there is fc ∈ Fc(B) constructed as (12) such that ‖f − fc‖L2 6 ε/3, and we
use the weak law of large numbers to obtain that P(‖ιX(f − fc)‖MSE > ε/3) −−−−→

n→∞
0.. By

Lemma 4, there exists θ such that
∥∥Φθ(S, f

(0))− fc
∥∥
L2 6 ε/3. Again by the LLN, we have that

P(
∥∥ιX(Φθ(S, f

(0))− fc)
∥∥

MSE > ε/3)→ 0. Finally, by Lemma 1), we also have

P
(∥∥∥Φθ(S, ιXf

(0))− ιXΦθ(S, f
(0))
∥∥∥

MSE
> ε/3

)
−−−−→
n→∞

0.

Using a triangular inequality, we have∥∥∥Φθ(ιXf
(0))− ιXf

∥∥∥
MSE

6
∥∥∥Φθ(ιXf

(0))− ιXΦθ(f
(0))
∥∥∥

MSE
+
∥∥∥ιX(Φθ(f

(0))− fc)
∥∥∥

MSE

+ ‖ιX(fc − f)‖MSE .

We conclude by a union bound, and f ∈ FGNN(B).
For the reverse inclusion, let f ∈ FGNN(B). By hypothesis, for all m ∈ N, there are θ ∈ Θ,

f (0) ∈ B such that
P
(∥∥∥Φθ(S, ιXf

(0))− ιXf
∥∥∥

MSE
> 1/m

)
−−−−→
n→∞

0

By Lemma 1,
P
(∥∥∥Φθ(S, ιXf

(0))− ιXΦθ(S, f
(0))
∥∥∥

MSE
> 1/m

)
−−−−→
n→∞

0

By the LLN,

P
(∣∣∣∥∥∥ιX(f − Φθ(S, f

(0)))
∥∥∥

MSE
−
∥∥∥f − Φθ(S, f

(0))
∥∥∥
L2

∣∣∣ > 1/m
)
→ 0

Hence, b a union bound and triangular inequality, we obtain the deterministic bound∥∥f − Φθ(S, f
(0))
∥∥
L2 6 3/m. Since Φθ(S, f

(0)) ∈ FS(B) and FS(S) is closed, by taking m→∞
we have f ∈ FS(B).

A.4 Proof of Prop. 3
Remark that FS(B) ∩ CLip(X ,R) is in fact a subalgebra of CLip(X ,R). Indeed it is a vector
space, and moreover it is stable by multiplication: for f, g ∈ FS(B) ∩ CLip(X ,R), by stability of
FS(B) by composition with continuous functions we have that x 7→ [f(x), 0], x 7→ [0, g(x)] are
in FS(B), then (x 7→ [f(x), g(x)]) ∈ FS(B) by linearity (that is, FS is stable by concatenation),
and since (x, y) 7→ xy is continuous, (x 7→ f(x)g(x)) ∈ FS(B) ∩ CLip(X ,R).

Hence FS(B) ∩ CLip(X ,R) is a subalgebra of CLip(X ,R) and since it separates points by
hypothesis, by the Stone-Weierstrass theorem [21] it is dense in CLip(X ,R) for the uniform
norm, and a fortiori in tdCLip(X ,Rd) by concatenation. Since continuous functions are dense
in square-integrable functions [14, Sec. 8.2] and the L2 norm is dominated by the uniform norm,
it results that FS(B) is dense in L2

t, and even FS(B) = L2
t because it is closed.
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B Proof of Sec. 4
We introduce general notations that are valid all throughout this section of appendix. In this
appendix, we will only assume:

Assumption 2. We have the following.

1. a bounded kernel wS, and either wS is p.s.d. or X is finite;

2. the operator Sf =
∫
wS(·, x)dP (x);

3. the Gram matrix W = [wS(xi, xj)/n];

4. a graph matrix S such that
‖S −W‖ → 0 (15)

in probability.

These assumptions are verified for both adjacency and normalized Laplacian: in the first
case, we take wS = w, and ‖A/(αnn)−W‖ → 0 by Theorem 9, and in the second, we take
wS(x, y) = w(x,y)√

d(x)d(y)
, which is bounded by our assumptions on d, and p.s.d. when w is itself

p.s.d., and we have indeed ‖L−W‖ → 0 by Theorem 9. We will also use the following property.

Lemma 5. FPE is closed.

Proof. Let fm be a sequence in FPE that converges to a f ∈ L2
q for some q. Remark that

fm ∈ L2
q for all m big enough. Let ε > 0, and m be such that ‖fm − f‖L2 6 ε/2. By the law of

large numbers, for any fixed m, ‖ιX(fm − f)‖MSE converges to ‖fm − f‖L2 6 ε/2 almost surely
and a fortiori in probability, such that P(‖ιX(fm − f)‖MSE > ε/2) −−−−→

n→∞
0. By definition,

there is γ ∈ Γ such that P(‖PEγ(S,Z)− ιXfm‖MSE > ε/2)→ 0. Hence, by a union bound

P(‖PEγ(S,Z)− ιXf‖MSE > ε)

6 P(‖PEγ(S,Z)− ιXfm‖MSE > ε/2) + P(‖ιX(fm − f)‖MSE > ε/2) −−−−→
n→∞

0

and therefore f ∈ FPE.

B.1 Proof of Prop. 4
We have ∥∥∥Z − ιXSf (0)

∥∥∥
MSE

6
∥∥∥SιXf (0) − ιXSf (0)

∥∥∥
MSE

+ ‖Sν‖MSE

The first term goes to 0 by Prop. 2.
For the second term, using ‖AB‖F 6 ‖A‖ ‖B‖F, we have

‖Sν‖MSE 6 ‖S −W‖ ‖ν‖MSE + ‖Wν‖MSE

The first term goes to 0 in probability since ‖ε‖MSE is bounded with probability going to 1 and
‖S −W‖ → 0 for our examples of graph operators. For the second term, we have

‖Wν‖2MSE =

d0∑
`=1

1

n

∑
i

 1

n

∑
j

wS(xi, xj)νj`

2

6
∑
`

∥∥∥∥∥∥ 1

n

∑
j

wS(·, xj)νj`

∥∥∥∥∥∥
2

∞

Using Lemma 8 with the iid variable yj = (xj , νj`) and EwS(·, xj)νj` = 0 since ν and X are
independent, we obtain

∀`,

∥∥∥∥∥∥ 1

n

∑
j

wS(·, xj)νj`

∥∥∥∥∥∥
∞

P−−−−→
n→∞

0

which concludes the proof.
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B.2 Eigenvectors positional encodings: SignNet

In this whole section, the number of eigenvectors q is fixed, and we assume that λS1 , . . . , λSq+1

are pairwise distinct. We first start by generic results that allows to go from the graph matrix
S to the Gram matrix.

Lemma 6 (Intermediate result for SignNet). Suppose that Assumption 2 holds, that λS1 , . . . , λSq+1

are distinct, and that

max
i=1,...,q

min
s∈{1,−1}

∥∥s√nuWi − ιXuSi ∥∥MSE +
∣∣λWi − λSi ∣∣ P−−−−→

n→∞
0. (16)

Then the result of Theorem 2 holds.

Proof. Let f ∈ FEig, written as (9). By Assumption 2, ‖S −W‖ → 0. By Kato’s inequality, we
have that supi

∣∣λSi − λWi ∣∣ → 0, and by hypothesis, the eigenvalues of W converge to those of
S. Given the hypotheses on the eigenvalues of S, with probability going to 1 the q + 1 first
eigenvalues of S have single multiplicities. When it is the case, according to Davis-Kahan
theorem (Theorem 8), for all i = 1, . . . , q there is si ∈ {−1, 1} such that

max
i

∥∥siuSi − uWi ∥∥→ 0 (17)

which, combined with our hypotheses, yields

max
i=1,...,q

min
s∈{1,−1}

∥∥s√nuSi − ιXuSi ∥∥MSE
P−−−−→

n→∞
0. (18)

For i = 1, . . . , q, let fi : R→ Rpi be continuous functions and ε > 0. By Lemma 3, there is
fMLP
γi such that

∥∥(fMLP
γi − fi) ◦ uSi

∥∥
L2 6 ε/(2q). Then, call Li the (uniform) Lipschitz constant

of fMLP
γi on R. We have∥∥PEγ − ιX [(Qfi) ◦ uSi ]qi=1

∥∥
MSE =

∥∥[(QfMLP
γi )(

√
nuSi )]qi=1 − ιX [(Qfi) ◦ uSi ]qi=1

∥∥
MSE

6
∥∥[(QfMLP

γi )(
√
nuSi )]qi=1 − ιX [(QfMLP

γi ) ◦ uSi ]qi=1

∥∥
MSE

+
∥∥ιX [(QfMLP

γi ) ◦ uSi ]qi=1 − ιX [(Qfi) ◦ uSi ]qi=1

∥∥
MSE

6
∑
i

∥∥(QfMLP
γi )(

√
nuSi )− ιX(QfMLP

γi ) ◦ uSi
∥∥

MSE

+
∥∥ιX(QfMLP

γi ) ◦ uSi − ιX(Qfi) ◦ uSi
∥∥

MSE

6 2
∑
i

min
si∈{1,−1}

∥∥fMLP
γi (si

√
nuSi )− ιXfMLP

γi ◦ uSi
∥∥

MSE

+ 2
∥∥ιX(fMLP

γi − fi) ◦ uSi
∥∥

MSE

The first term goes to 0 in probability by what precedes, while for the second∑
i

∥∥ιX(fMLP
γi − fi) ◦ uSi

∥∥
MSE

P−−−−→
n→∞

∑
i

∥∥(fMLP
γi − fi) ◦ uSi

∥∥
L2 6 ε/2

which proves that FEig ⊂ FPE, and thus FEig ⊂ FPE since FPE is closed by Lemma 5.
For the reverse inclusion, let f ∈ FPE. By hypothesis, for all m ∈ N, there is γ ∈ Γ, such

that
P
(
‖PEγ − ιXf‖MSE > 1/m

)
−−−−→
n→∞

0

By what precedes, if we write PEγ = (QfMLP
γi )(

√
nuSi )]qi=1, we have∥∥PEγ − ιX [(QfMLP

γi ) ◦ uSi ]qi=1

∥∥
MSE

P−−−−→
n→∞

0
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By the LLN,

P
(∣∣∣∥∥ιX(f − [(QfMLP

γi ) ◦ uSi ]qi=1)
∥∥

MSE −
∥∥f − [(QfMLP

γi ) ◦ uSi ]qi=1

∥∥
L2

∣∣∣ > 1/m
)
→ 0

Hence, by a union bound and triangular inequality, we obtain the deterministic bound∥∥f − [(QfMLP
γi ) ◦ uSi ]qi=1

∥∥
L2 6 3/m. Since [(QfMLP

γi ) ◦ uSi ]qi=1 ∈ FEig, we have f ∈ FEig.

We must now prove the hypothesis of Lemma 6. This is done separately for p.s.d. kernel
and SBM.

B.2.1 Positive semidefinite kernels

In this subsection, we assume that wS is p.s.d. The following result is adapted from [42].

Theorem 5 (Adapted from [42]). Suppose that Assumption 2 holds, that λS1 , . . . , λSq+1 are
pairwise distinct, and that wS is p.s.d. (Ex. b). Then:

max
i=1,...,q

min
s∈{1,−1}

∥∥s√nuWi − ιXuSi ∥∥MSE +
∣∣λWi − λSi ∣∣→ 0 (19)

in probability.

Proof. Denote by H the RKHS associated with wS, and by TH : H → H the kernel integral
operator. Then, it is known [42] that the spectrum of S and TH are the same (up to 0’s), and
the eigenfunctions (normalized in H) vi of TH corresponding to positive eigenvalues satisfy:

vSi (x) =

{√
λSi u

S
i (x) for x ∈ supp(P )

1√
λS
i

∫
wS(x, y)uSi (y)dP (y) else (20)

Note that λS1 > . . . > λSq > λSq+1 > 0 by hypothesis. Following [42], we know that

sup
i

∣∣λWi − λSi ∣∣→ 0 (21)

in probability, and that in particular, with probability going to one λWi > 0 for all i = 1, . . . , q.
Assuming this is satisfied for all i, we denote by vWi = 1√

nλWi

∑
j wS(·, xj)uWi,j ∈ H. Then, using

the fact that the eigenvalues of S have single multiplicities, the proof of Theorem 12 in [42] tells
us that for all m = 1, . . . , q,

m∑
j=1

∑
i>m+1

〈
vSi , v

W
j

〉2
H +

∑
j>m+1

m∑
i=1

〈
vSi , v

W
j

〉2
H → 0 (22)

in probability. Since these are all nonnegative quantities, all partial sums go to 0. The first
part (the term for j = m) tells us that

∑
i>m+1

〈
vSi , v

W
m

〉2
H → 0, and the second part applied at

m− 1 (again the term with j = m) gives us
∑m−1
i=1

〈
vSi , v

W
m

〉2
H → 0. Hence for all m = 1, . . . , q,∑

i6=m

〈
vSi , v

W
m

〉2
H → 0 (23)

Since (vSi )i and (vWi )i are orthonormal basis of H, we have
∥∥vWm ∥∥2H = 1 =

∑
i

〈
vSi , v

W
m

〉2
H, and

thus
〈
vSm, v

W
m

〉2
H → 1. By the reproducing property

〈
vSm, v

W
m

〉
H =

1√
λWm

1√
n

∑
i

uWm,iv
S
m(xi) =

√
λSm
λWm

1√
n

∑
i

uWm,iu
S
m(xi)

21



By the convergence of λWm we obtain that
(

1√
n

〈
uWi , ιXu

S
i

〉)2
→ 1 in probability, and choosing

the sign of uWi such that
〈
uWi , ιXu

S
i

〉
> 0, we get 1√

n

〈
uWi , ιXu

S
i

〉
→ 1. Finally

∥∥√nuWi − ιXuSi ∥∥2MSE = 2

(
1− 1√

n

〈
uWi , ιXu

S
i

〉)
+
∥∥ιXuSi ∥∥2MSE − 1

by the LLN,
∥∥ιXuSi ∥∥2MSE →

∥∥uSi ∥∥2L2 = 1 in probability, which concludes the proof.

By combining Theorem 5 with Lemma 6, we conclude the proof in the p.s.d. case.

B.2.2 SBM

Variants of the following result appear under (sometimes significantly) different formulations in
the literature.

Theorem 6. Suppose that Assumption 2 holds, that λS1 , . . . , λSq+1 are pairwise distinct, and
that X is finite (Ex. a). Then:

max
i=1,...,q

min
s∈{1,−1}

∥∥s√nuWi − ιXuSi ∥∥MSE +
∣∣λWi − λSi ∣∣ P−−−−→

n→∞
0. (24)

Proof. In the SBM case, functions are represented by vectors of size K. The operator S

acts as: Sf = C diag(Pk)f , where C def.
= [wS(k, `)]k`. Therefore C diag(Pk)uSi = λSi u

S
i , for

i = 1, . . . ,K. Note that uSi is orthonormal in L2(P ), that is, (uSi )> diag(Pk)uSi = 1 and
(uSi )> diag(Pk)uSj = 0. In particular, (λSi ,diag(

√
Pk)uSi ) is an eigenvalue/eigenvector pair of the

symmetric matrix CP
def.
= diag(

√
Pk)C diag(

√
Pk). Denoting by uPi

def.
= diag(

√
Pk)uSi we have

CP =
∑K
i=1 λ

S
i u

P
i (uPi )>.

Since the space X is finite, each xi is equal to a community label 1 6 ki 6 K. Define
Θ ∈ {0, 1/

√
n}n×K the community matrix, as:{

Θi,ki = 1√
n

for all 1 6 i 6 n

Θi,j = 0 otherwise
(25)

Then the Gram matrix is
W = ΘCΘ> (26)

Also note that Θ>Θ = diag(P̂ ), where P̂k = 1
n

∑
i 1ki=k → Pk almost surely by the LLN. Note

that, when interpreting uSi as a function on X = {1, . . . ,K}, we have
√
nΘuSi = ιXu

S
i .

Defining ΘP = Θ diag(1/
√
Pk), we have

W = ΘPCPΘ>P =
∑
i

λSi (ΘPu
P
i )(ΘPu

P
i )> =

∑
i

λSi viv
>
i

where vi = ΘPu
P
i = ΘuSi satisfies

‖vi‖2 = (uSi )> diag(P̂k)uSi → 1, v>i vj = (uSi )> diag(P̂k)uSj → 0 (27)

in probability. Hence the vi are almost orthonormal but not exactly. Define their orthonormal-
ization:

ũ1 = v1, ∀i = 2, . . . ,K, ũi = vi −
i−1∑
j=1

(v>i uj)uj and ui =
ũi
‖ũi‖

(28)

such that u1, . . . , uK ∈ Rn are orthonormal and ui ∈ Span(v1, . . . , vi). We define G =∑K
i=1 λ

S
i uiu

>
i , whose eigenvalues are the λSi and eigenvectors ui. By the properties of vi

we have sup16i6n ‖vi − ui‖ → 0, so ‖W −G‖ → 0. Hence by Kato’s inequality we have
sup16i6n

∣∣λWi − λSi ∣∣→ 0, and since the λS1 , . . . , λSq+1 have unique multiplicity, again by Davis-
Kahan theorem for all i = 1, . . . , q we have mins∈{−1,1}

∥∥suWi − ui∥∥→ 0, and by consequence
mins∈{−1,1}

∥∥s√nuWi −√nvi∥∥MSE → 0. We conclude by recalling that
√
nvi =

√
nΘuSi = ιXu

S
i .
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As before, we conclude by combining Theorem 6 with Lemma 6.

B.3 Distance-based encodings

Again, we start with an intermediate result, assuming some convergence in Frobenius norm that
we will then show for our cases of interest.

Lemma 7 (Intermediate result for Distance-based encodings). Suppose that Assumption 2
holds, and that:

∀ε > 0,∃γ2,P(‖Sγ2 −W‖F > ε)→ 0 (29)

Then the result of Theorem 3 holds.

Proof. Let f ∈ CLip([0, 1]q,Rd) and ε > 0. By the universality theorem [40], let fMLP
γ1 such that∥∥fMLP

γ1 − f
∥∥
∞ 6 ε on [0, 1]q. Since it is an MLP, fMLP

γ1 is uniformly Lipschitz on Rq, call L its
Lipschitz constant. Then, let fMLP

γ2 such that

P(‖Sλ2
−W‖F > ε/L)→ 0 (30)

For convenience, define MSγ2
j = [Sγ2ej , . . . , (Sγ2)qej ] ∈ Rn×q, MW

j = [Wej , . . . ,W
qej ],

J(x, y) = [Sδy(x), . . . ,Sqδy(x)] ∈ [0, 1]q.
We write ∥∥∥∥PE− ιX

∫
f(J(·, x)dP (x)

∥∥∥∥
MSE

6

∥∥∥∥∥∥ 1

n

∑
j

fMLP
γ1

(
n ·MSγ2

j

)
− fMLP

γ1

(
n ·MW

j

)∥∥∥∥∥∥
MSE

+

∥∥∥∥∥∥ 1

n

∑
j

fMLP
γ1

(
n ·MW

j

)
− ιX

∫
fMLP
γ1 (J(·, x))dP (x)

∥∥∥∥∥∥
MSE

+

∥∥∥∥ιX ∫ fMLP
γ1 (J(·, x))dP (x)− ιX

∫
f(J(·, x))dP (x)

∥∥∥∥
MSE

(31)

The third term in (31) is bounded by
∥∥fMLP
γ1 − f

∥∥
∞ 6 ε.

The second term in (31) is∥∥∥∥∥∥ 1

n

∑
j

fMLP
γ1

(
n ·MW

j

)
− ιX

∫
fMLP
γ1 (J(·, y))dP (x)

∥∥∥∥∥∥
MSE

6

∥∥∥∥∥∥ 1

n

∑
j

fMLP
γ1

(
n ·MW

j

)
− ιXfMLP

γ1 (J(·, xj))

∥∥∥∥∥∥
MSE

+

∥∥∥∥∥∥ιX
 1

n

∑
j

fMLP
γ1 (J(·, xj))−

∫
fMLP
γ1 (J(·, x))dP (x)

∥∥∥∥∥∥
MSE

6 L

q∑
`=1

sup
x,x′

∣∣∣∣∣∣ 1

n`−1

∑
i1,...,i`−1

wS(x, xi1)wS(xi1 , xi2) . . . wS(xi`−1
, x′)− S`δx′(x)

∣∣∣∣∣∣
+

∥∥∥∥∥∥ 1

n

∑
j

fMLP
γ1 (J(·, xj))−

∫
fMLP
γ1 (J(·, x))dP (x)

∥∥∥∥∥∥
∞
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where we have used the Lipschitz property of fMLP
γ1 and a supremum over xi, xj for the first

term. The first term converges to 0 in probability by Lemma 9, while the second goes to 0,
using the boundedness of fMLP

γ1 on [0, 1]q, by Lemma 8.
Finally, using Schwartz inequality, the first term in (31) is bounded by∥∥∥∥∥∥n−1

∑
j

fMLP
γ1 (nM

Sγ2
j )− fMLP

γ1 (nMW
j )

∥∥∥∥∥∥
MSE

6
1√
n

√∑
j

∥∥∥fMLP
γ1 (nM

Sγ2
j )− fMLP

γ1 (nMW
j )
∥∥∥2

MSE

=
1

n

√∑
ij

∥∥∥fMLP
γ1 (n(M

Sγ2
j )i,:)− fMLP

γ1 (n(MW
j )i,:)

∥∥∥2
6 L

√∑
ij

∥∥∥(M
Sγ2
j )i,: − (MW

j )i,:

∥∥∥2
6 L

∑
`

∥∥S`γ2 −W `
∥∥

F 6 L
∑
`

(
`−1∑
p=1

‖Sγ2‖
p
F ‖W‖

`−1−p
F

)
‖Sγ2 −W‖F . q2ε

with probability going to 1, using (30) and the fact that ‖W‖F is bounded, and thus ‖Sγ2‖F as
well with probability going to 1. Gathering everything, f ∈ FPE, which concludes the proof.

We then prove this property for both p.s.d. kernel and SBM. The following Theorem is
similar to Theorem 4, but under Assumption 2, which is true for ex. 1 and 2.

Theorem 7 (Theorem 4 reformulated). Suppose that Assumption 2 holds. For both p.s.d.
kernel (Ex. b) or finite X (Ex. a), for all ε > 0, there is an MLP filter Sγ = hfMLP

γ
(S) such that

∀ε > 0, ∃γ, P(‖Sγ −W‖F > ε)→ 0 (32)

Proof. Note that S is trace-class (both if w is p.s.d. or in the SBM case), such that
∑
i

∣∣λSi ∣∣ <∞.
In particular,

∣∣λSi ∣∣ = o(1/
√
i). In the p.s.d. case, all λSi are nonnegative. We define λε > 0 and

the support T = {i |
∣∣λSi ∣∣ > λε}

i)
∑
i∈T c(λ

S
i )2 6 ε/2, which can be satisfied since S is trace class and therefore Hilbert-

Schmidt

ii)
√

2|T | supi∈T c
∣∣λSi ∣∣ 6 ε/4, which can be satisfied since

∣∣λSi ∣∣ = o(1/
√
i)

iii) infi∈T,j∈T c
∣∣λSi − λSj ∣∣ > 0, which can be satisfied by choosing λε in a gap in the spectrum

of S, since all eigenvalues but 0 have finite multiplicities.

We will first start by approximating W with an ideal filtered matrix Ŝ =
∑
i∈T λ

S
i u

S
i (uSi )>.

We define G =
∑
i∈T λ

W
i u

W
i (uWi )>. We decompose∥∥∥Ŝ −W∥∥∥

F
6
∥∥∥Ŝ −G∥∥∥

F
+ ‖G−W‖F

For the first term, since this matrix is of rank at most 2 |T |, we have∥∥∥Ŝ −G∥∥∥
F
6
√

2 |T |
∥∥∥Ŝ −G∥∥∥

We further decompose ∥∥∥Ŝ −G∥∥∥ 6
∥∥∥Ŝ − S∥∥∥+ ‖S −W‖+ ‖W −G‖
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The second term is bounded by Theorem 9, we have ‖S −W‖ → 0 in probability.
The third term is bounded by Kato inequality

sup
i∈T c

λWi 6 sup
i∈T c

λSi + sup
i

∣∣λWi − λSi ∣∣
the last term goes to 0 in probability.

The first term is bounded by supi∈T c λ
S
i , and by Kato’s inequality

sup
i∈T c

λSi 6 sup
i∈T c

λWi + ‖S −W‖

which is a combination of both previous cases.
At the end of the day, with probability going to 1,∥∥∥Ŝ −G∥∥∥ 6

√
2 |T |2 sup

i∈T c
λSi + o(1) 6 ε/2 + o(1)

Finally, we have

‖G−W‖2F =
∑
i∈T c

(λWi )2 6 2

(∑
i∈T c

(λSi )2 +
∑
i

(λWi − λSi )2

)

The first term is bounded by ε/2, the second goes to 0 in probability: in the p.s.d. case, this is a
result of [42], by an application of Hoeffding’s inequality in the Hilbert space of Hilbert-Schmidt
operators in an RKHS; in the SBM case, there is a finite number of non-zero eigenvalues for
both W and S that converge to each other and the result follows.

Now we need to bound
∥∥∥Sγ − Ŝ∥∥∥

F
for a well chosen MLP. Define (iT , jT ) =

arg mini∈T,j∈T c
∣∣λSi − λSj ∣∣, τ =

|λS
iT
−λS

jT
|

4 > 0 and λ̄ =
|λS
iT

+λS
jT
|

2 . Note that we have
T = {i |

∣∣λSi ∣∣ > λ̄+ 2τ} and T c = {i |
∣∣λSi ∣∣ 6 λ̄− 2τ} Define the following fMLP : R→ R:

fMLP(λ) =
λ̄+ τ

2τ

(
ρ
(
λ− λ̄+ τ

)
− ρ

(
λ− λ̄− τ

))
+ ρ

(
λ− λ̄− τ

)
(33)

+
−λ̄− τ

2τ

(
ρ
(
−λ− λ̄+ τ

)
− ρ

(
−λ− λ̄− τ

))
− ρ

(
−λ− λ̄− τ

)
(34)

where ρ is ReLU. This is a continuous piecewise linear function that is equal to λ on (−∞,−λ̄−τ ],
0 on [−λ̄+ τ, λ̄− τ ], and λ on [λ̄+ τ,+∞).

Recall that with probability going to 1, we have supi
∣∣λSi − λSi ∣∣ 6 τ , so in particular, for all

i ∈ T we have
∣∣λSi ∣∣ > λ̄ + τ and for all i ∈ T c we have

∣∣λSi ∣∣ 6 λ̄ − τ . In that case, the MLP
filtering is exactly the ideal filtering and h(S) = Ŝ, which concludes the proof.

B.4 Proof of Prop. 5

The case of FDist was proven in [25, Theorem 4]. For FEig, we consider the SBM (ex. a) with
adjacency matrix (ex. 1) and

C =

(
1/2 1/4
1/4 3/8

)
, P = (1/3, 2/3)

We have S1 = (1/3, 1/3), therefore FS(1) contains only constant functions. Moreover, uSi =
(1, 1)/

√
2. From the orthogonality equation (uS2 )> diag(P )uS1 = 0 we get (uS2 )1 = 2(uS2 )2. Hence

it is possible to choose f such that f((uS2 )1) + f(−(uS2 )1) 6= f((uS2 )2) + f(−(uS2 )2), thus FEig
contains a non-constant function, which concludes the proof.
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B.5 Proof of Prop. 6
Consider the SBM case X = {1, . . . ,K} with K even and P = 1K/K. Adopting the no-
tations of the section above, we have Sf = C diag(Pk)f , CP = diag(

√
Pk)C diag(

√
Pk) =∑K

i=1 λ
S
i u

P
i (uPi )> with uPi = diag(

√
Pk)uSi orthonormal (in Euclidean RK).

For FEig, we consider the case where

λS1 > λS2 > 0, λi = 0 for i > 3

(uP1 )i =

{√
2/K if i is even

0 otherwise,
(uP2 )i =

{
0 if i is even
C · i otherwise,

where C is a constant such that
∥∥uP2 ∥∥ = 1. Consider eigenvectors PEs with q = 1. The space

FEig contains all the function g of the form

gi = f((uS1 )i) + f(−(uS1 )i)

for any f . By construction of uP1 , these functions have the property of being 2-periodic: for all
i, gi = gi+2. Now, FS(FEig) contains e.g. the following function

S1 = KCP 1 = λS1 (1>uP1 )uP1 + λS2 (1>uP2 )uP2

This function is not 2-periodic: on i odd, we have (uP2 )i 6= (uP2 )i+2 and therefore gi 6= gi+2,
which concludes the proof.

For FDist, taking again q = 1, we consider K = 4 and C01 = C10 = 1, and Ck` = 0 otherwise.
The space FDist contains all the function g of the form

g =
1

K
f(C)1

where f is applied element-wise on C. With this choice, for any f we have g3 = g4 = f(0).
However, the space FS(FDist) contains the function

h =
1

K2
Cf(C)1

Here we have h3 = f(0)f(1)
8 + 7f(0)2

8 and h4 = f(0)2, which can be made unequal. Hence
h /∈ FDist, which concludes the proof.

C Universality
Here we recall the universality results of [25], that were derived for an architecture called
Structured GNN, in the case of non-random edges. In this paper, these results are valid for the
distance-encoded PEs (10), through Theorem 3, our definition of FDist (11). The results in [25]
basically proves that FS(FDist) satisfies the hypotheses of Prop. 3. We recall them here without
proof. The following results are valid for adjacency matrix (ex. 1), distance-encoding PE (10),
and SBM (ex. a) or p.s.d. kernel (ex. b), with other additional hypotheses in each cases.

• SBM: if X is finite, C = [w(k, `)] is invertible, and P is such that for all s ∈ {−1, 0, 1}K ,
s>P = 0 implies s = 0, then FS(FPE) = L2

t.

• Additive kernel: if w(x, y) = v(u(x) + u(y)) with u, v that are continuous and injective,
then FS(FPE) = L2

t.

• Unidimensional radial kernel: if X = [−1, 1], w(x, y) = v(|x − y|) with continuous
injective v, and P is symmetric (that is, P ([a, b]) = P ([−b,−a]) for all intervals), then
FS(FPE) = L2

t ∩ S(X ) where S are symmetric functions. If P is not symmetric, then
FS(FPE) = L2

t.
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• Spherical kernels: If X = Sd−1 is the d-dimensional sphere, w(x, y) = v(x>y) with
continuous injective v, and P has a density p w.r.t. the uniform distribution on the
sphere such that: the unique decomposition p(x) =

∑
k>0

∑N(d,k)
j=1 ak,jYk,j(x) where Yk,j

are spherical harmonics is such that x 7→ [
∑N(d,k)
j=1 ak,jYk,j(x)]k is injective (see [25] and

references therein), then FS(FPE) = L2
t.

D Technical or third-party results

The following Lemma can be proved in a number of ways.

Lemma 8 (Lemma 4 in [24]). Let X be a compact metric space, and Y a measurable space.
Consider a bivariate measurable function U : X × Y → R that is uniformly bounded, and
continuous in the first variable. Let y1, . . . , yn be drawn i.i.d from a distribution P on Y. Then∥∥∥∥∥ 1

n

∑
i

η(·, yi)−
∫
η(·, y)dP (y)

∥∥∥∥∥
∞

P−−−−→
n→∞

0

We extend the previous results to polynomials of the kernel.

Lemma 9. For any bounded, continuous kernel wS, we have for all k > 1:

sup
x,x′∈X

∣∣∣∣∣∣ 1

nk

∑
i1,...,ik

wS(x, xi1)wS(xi1 , xi2) . . . wS(xik , x
′)− (Sk+1δx′)(x)

∣∣∣∣∣∣ P−−−−→
n→∞

0 (35)

Proof. We prove it by induction. For k = 1, we have

sup
x,x′∈X

∣∣∣∣∣ 1n∑
i

wS(x, xi)wS(xi, x
′)−

∫
wS(x, y)wS(y, x′)dP (y)

∣∣∣∣∣ P−−−−→
n→∞

0 (36)

by applying Lemma 8 on X ×X , and since wS is continuous on a compact domain and therefore
bounded and Lipschitz.

Then, assuming the property for k − 1, we write

sup
x,x′∈X

∣∣∣∣∣∣ 1

nk

∑
i1,...,ik

wS(x, xi1)wS(xi1 , xi2) . . . wS(xik , x
′)− (Sk+1δx′)(x)

∣∣∣∣∣∣
6 sup
x,x′∈X

∣∣∣∣∣∣ 1n
∑
i1

wS(x, xi1)

 1

nk−1

∑
i2,...,ik

wS(xi1 , xi2) . . . wS(xik , x
′)− (Skδx′)(xi1)

∣∣∣∣∣∣
+ sup
x,x′∈X

∣∣∣∣∣ 1n∑
i1

wS(x, xi1)(Skδx′)(xi1)−
∫
wS(x, y)(Skδx′)(y)dP (y)

∣∣∣∣∣
The first part converge to 0 using the boundedness of wS and the recursive hypothesis, while
the second converges to 0 using again Lemma 8.

Theorem 8 (Simplified Davis-Kahan, see [57]). Let A, Â ∈ Rd×d be symmetric with eigenvalues
λi and λ̂i ordered by decreasing order and eigenvector ui, ûi. Take p and assume that δ =
min(λp−1 − λp, λp − λp+1) > 0. Then there exists s ∈ {−1, 1} such that

‖sup − ûp‖ 6

∥∥∥A− Â∥∥∥
δ

(37)
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Theorem 9. Denote W = [w(xi, xj)/n]ij, W̄ =

[
w(xi,xj)

n
√
d(xi)d(xj)

]
ij

and L(M) = D
− 1

2

M MD
− 1

2

M

with DM = diag(M1)
If αn & (log n)/n, then ∥∥∥∥ A

αnn
−W

∥∥∥∥ P−−−−→
n→∞

0. (38)

Moreover, if d(x) > dmin > 0 and αn > C(log n)/n where C is a constant that depends on
w, then ∥∥L(A)− W̄

∥∥ P−−−−→
n→∞

0. (39)

Proof. The first result is due to Lei and Rinaldo [28].
For the second result, we have from [24, Theorem 6] that

‖L(A)− L(W )‖ → 0 (40)

Then, according to Lemma 8 we have that∥∥∥∥∥d− 1

n

∑
i

w(·, xi)

∥∥∥∥∥
∞

P−−−−→
n→∞

0 (41)

and in particular with probability going to one dWi
def.
= (DW )i > dmin/2 > 0 for all i.

Denoting by D̄ = diag(d(xi)), and noticing that W = D̄−
1
2WD̄−

1
2 and ‖W‖ 6 1, we have∥∥W̄ − L(W )

∥∥ =
∥∥∥D̄− 1

2WD̄−
1
2 −D−

1
2

W WD
− 1

2

W

∥∥∥
.

1√
dmin

∥∥∥D̄− 1
2 −D−

1
2

W

∥∥∥ =
1√
dmin

max
i

∣∣∣∣∣ 1√
d(xi)

− 1√
dWi

∣∣∣∣∣
=

1√
dmin

max
i

∣∣∣∣∣ d(xi)− dWi√
d(xi)dWi (

√
d(xi) +

√
dWi )

∣∣∣∣∣
.

1

d2min

∥∥∥∥∥d− 1

n

∑
i

w(·, xi)

∥∥∥∥∥
∞

P−−−−→
n→∞

0

which concludes the proof.
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