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Error Correction for FrodoKEM Using the Gosset Lattice

We consider FrodoKEM, a lattice-based cryptosystem based on LWE, and propose a new error correction mechanism to improve its performance. Our encoder maps the secret key block-wise into the Gosset lattice E8. We propose three sets of parameters for our modified implementation. Thanks to the improved error correction, the first implementation allows to reduce the bandwidth by 7% by halving the modulus q; the second outperforms FrodoKEM in terms of plausible security by 10 to 13 bits by increasing the error variance; and the third one allows to increase the key size. In all cases, the decryption failure probability is improved compared to the original FrodoKEM. Unlike some previous works on error correction for lattice-based protocols, we provide a rigorous error probability bound by decomposing the error matrix into blocks with independent error coefficients.

I. INTRODUCTION

Quantum computers pose a threat since they are capable of breaking most of the cryptographic systems currently in use. Post-quantum cryptography refers to cryptographic algorithms believed to be secure against a cryptanalytic attack by a quantum computer. Lattice-based cryptographic constructions are particularly promising candidates for post-quantum cryptography because they offer strong theoretical security guarantees and can be implemented efficiently. Therefore, lattice-based cryptosystems are considered a safe avenue for replacing the currently used schemes based on RSA and the discrete logarithm. As of now, NIST is assessing and standardizing PQC algorithms. In the third round submissions, three of the four finalists in the public-key encryption and key-establishment algorithms are lattice-based schemes, along with the majority of the alternate candidates.

One of the most widely used cryptographic primitives based on lattices is the Learning With Errors problem (LWE), introduced by Regev [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF], who proved a worst-case to average-case reduction from the shortest independent vector problem (SIVP) to LWE. It can be used to build a variety of cryptographic algorithms and provides guarantees in terms of IND-CPA and IND-CCA security. Later works introduced structured variants of LWE such as Ring-LWE [START_REF] Lyubashevsky | On ideal lattices and learning with errors over rings[END_REF] and Module-LWE [START_REF] Langlois | Worst-case to average-case reductions for module lattices[END_REF] which involve ideal lattices and module lattices respectively. Their cryptographic applications are generally more efficient compared to LWE. However, in principle the additional algebraic structure might make these variants more vulnerable to attacks. Although currently there are no specific known attacks targeting Ring-LWE or Module-LWE, much progress has been made in recent works to exploit the structure of ideal lattices and module lattices to solve lattice problems [START_REF] Cramer | Recovering short generators of principal ideals in cyclotomic rings[END_REF]- [START_REF] Bernard | Twisted-PHS: Using the Product Formula to Solve Approx-SVP in Ideal Lattices[END_REF]. Thus, although the Module-LWE based scheme Kyber [START_REF] Avanzi | Crystals-Kyber algorithm specifications and supporting documentation[END_REF] was selected as a finalist for the NIST PQC standardization Round 3, the plain-LWE scheme FrodoKEM [START_REF] Naehrig | FrodoKEM. tech. rep[END_REF] was selected as an alternate candidate which may provide longer-term security guarantees since it is less susceptible to algebraic attacks. From the NIST's perspective, although FrodoKEM can be used in the event that new cryptanalytic results targeting structured lattices emerge, the first priority for standardization is a KEM that would have acceptable performance across widely used applications.

In this paper, we aim at improving the bandwidth efficiency and/or security of FrodoKEM, or at increasing the key size, through an enhanced error correction mechanism. We note that although the current security estimate for FrodoKEM against known attacks is greater than the brute-force security (except for Frodo-1344), the plausible security [8, Section 5.2], which takes into account possible improvements in sieving algorithms, is not. Improving the plausible security would give FrodoKEM better guarantees for long-term security.

A modification of FrodoKEM has been proposed in [START_REF] Lee | Modification of FrodoKEM using Gray and errorcorrecting codes[END_REF] using Gray labeling and error correcting codes in order to improve the performance. However, the decryption failure analysis in [START_REF] Lee | Modification of FrodoKEM using Gray and errorcorrecting codes[END_REF] assumes that the coefficients of the error are independent. Unfortunately this assumption does not hold for FrodoKEM, and as shown in [START_REF] D'anvers | The impact of error dependencies on Ring/Mod-LWE/LWR based schemes[END_REF], it can lead to underestimating the decryption failure by a large exponential factor.

In this work, we propose a different approach where enhanced error correction is obtained through lattice encoding and decoding rather than using error-correcting codes. More precisely, our encoder maps the secret key block-wise into the Gosset lattice E 8 . Lattice codes were used in previous works for Ring-LWE based cryptosystems, such as the reconciliation mechanism based on the D4 lattice for NewHope [START_REF] Alkim | Post-quantum key exchange-a new hope[END_REF]. Due to its optimal density and low-complexity quantization, the E 8 lattice was already used in KCL [START_REF] Zhao | A modular and systematic approach to key establishment and public-key encryption based on LWE and its variants[END_REF], a first round NIST candidate. In our previous work [START_REF] Saliba | A reconciliation approach to key generation based on Module-LWE[END_REF], the E 8 lattice was employed to improve the security of the Module-LWE based candidate KyberKEM.

The choice of an 8-dimensional lattice encoder is well-suited to the parameters of FrodoKEM. In fact, due to its particular structure, the error matrix can be decomposed into 8 blocks of 8 independent components, which makes a rigorous decryption error analysis possible. The encryption function used by the original FrodoKEM implicitly uses the cubic lattice Z 64 ∼ = Z 8 8 . Accordingly, switching from Z 8 to E 8 allows us to improve the security or bandwidth. We propose three sets of parameters for our modified implementation. Thanks to the improved error correction, the first implementation allows to reduce the bandwidth by 7% by halving the modulus q, the second improves the security level by 10-13 bits by increasing the error variance, and the third allows to generate 192 bits from Frodo-640 instead of 128 bits, as well as 256-bit key instead of 192 bits in Frodo-976, with comparable security and error probability.

Organization: This paper is organized as follows. In section II, we provide essential mathematical and cryptographic background for our work, then we develop the proposed modification for FrodoKEM in section III. Section IV gives an upper bound for the decryption error probability for our algorithm, while section V derives its security analysis. In the last section, we show the improvements made with regard to security, bandwidth and key size.

II. NOTATION AND PRELIMINARIES

a) Notation: Given a set A ⊆ R n , |A| stands for its cardinality. All vectors and matrices are denoted in bold. The function sign(•) outputs 1 for positive real input (including zero) and -1 for strictly negative one. For x ∈ R n we denote x to be the rounding function of each component of x, where ±1/2 is rounded to 0. We also denote x to be the same as x except that the worst component of x -that furthest from an integer -is rounded the wrong way. More formally, if i 0 = argmax

i |x i -x i |, then x i = x i + sign (x i ) • sign (|x i | -|x i | ) if i = i 0 and x i = x i if not. A constant vector (α, . . . , α) ∈ R n is denoted by α.
For a, b ∈ Z, the operation (a+b) mod 2 is simplified to a⊕b.

b) Lattice definitions and properties: An n-dimensional lattice Λ is a discrete subgroup of R n that can be defined as the set of integer linear combinations of n linearly independent vectors, called basis vectors. The closest lattice point to x ∈ R n is denoted by CVP Λ (x), and the Voronoi region V (Λ) is the set of all points x ∈ R n for which CVP Λ (x) = 0. The volume of a lattice, which is a lattice constant, is defined to be the volume of its Voronoi region. The Voronoi relevant vectors of Λ are the vectors λ ∈ Λ such that x, λ < x 2 for all x ∈ Λ \ {0, λ}. The minimal distance of the lattice is defined as

λ 1 (Λ) := min v ∈ Λ \ {0}
||v||.

c) The Gosset lattice: We introduce the 8-dimensional lattice E 8 [14, p.121] which will be used throughout this paper. This lattice has a unit volume, and is generated by the rows of the matrix

G E8 =         2 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 -1 1 0 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2        
The Voronoi relevant vectors of E 8 form two sets: VR 1 which contains the first type of the form (±1 2 , 0 6 ), and VR 2 which contains (±0.5 8 ) as the second type. Note that |VR 1 | = 112 and |VR 2 | = 128, so that the total number of Voronoi relevant vectors is 240.

d) Error distribution: The error distribution required for the LWE problem defined in the next section is ideally a Gaussian-like distribution. Let D σ (x) = 1 √ 2πσ exp -x 2 /2σ 2 denotes the probability density function of a zero-mean continuous Gaussian distribution with variance σ. A rounded Gaussian distribution Ψ σ is obtained by rounding a sample from D σ to the nearest integer.

As in the FrodoKEM specifications [START_REF] Naehrig | FrodoKEM. tech. rep[END_REF], we use a discrete and symmetric distribution χ on Z, centered at zero and with finite support {-s, . . . , s}, which approximates a rounded Gaussian distribution. In our case, χ is generated for different values of σ and the support {-s, . . . , s} depends on the chosen σ value. In a more detailed manner, given the target standard deviation σ, we first construct a function χ on {-s, . . . , s} ⊆ Z as follows:

∀i ∈ {-s, . . . , s}, χ(i) = 1 2 16 2 16 • [i-1 2 ,i+ 1 2 ] D σ (x)dx .
The distribution χ is obtained from χ by making small changes in the numerator values of χ(i) in order to obtain a probability distribution (the whole sum ends up to be 1) The sampling algorithm for such a distribution is given in [8, Algorithm 5], and it is resistant to cache and timing side-channels. The distance between Ψ σ and χ is measured according to the Rényi divergence, which indicates how far a discrete distribution P is from another distribution Q. More formally, for a given positive order α = 1, the Rényi divergence between P and Q is defined as

D α (P ||Q) = 1 α -1 ln   x∈suppP P (x) P (x) Q(x) α-1   .
The Rényi divergence can be used to relate the probabilities of an event according to P or Q [8, Lemma 5.5]. This justifies why replacing the rounded Gaussian with a distribution which is close in Rényi divergence will preserve the security reductions [START_REF] Naehrig | FrodoKEM. tech. rep[END_REF]Corollary 5.6]. We use the script scripts/Renyi.py in [START_REF] Alkim | Post-quantum key exchange-a new hope[END_REF] to compute the Rényi divergence between our chosen distribution χ and the rounded Gaussian.

e) LWE problem: The security of FrodoKEM and our modified version is based on the hardness of the LWE problem [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF]. Let n and q be positive integers, and χ an error distribution over Z. Take s to be a uniform vector in Z n q . The problem consists in distinguishing uniform samples (a, b) ← Z n q × Z q from (a, a, s + e), where a $ ← -Z n q is uniform and e χ ← -Z q . We use a variant of the original LWE problem, for which the secret s is sampled from χ rather than U. A polynomial reduction to the original decision LWE is given in [START_REF] Applebaum | Fast cryptographic primitives and circular-secure encryption based on hard learning problems[END_REF]. f) FrodoPKE: This section presents the basic algorithm of FrodoPKE [START_REF] Naehrig | FrodoKEM. tech. rep[END_REF], which can be transformed into an IND-CCA secure KEM called FrodoKEM [START_REF] Naehrig | FrodoKEM. tech. rep[END_REF] using the Fujisaki-Okamoto (FO) transform [START_REF] Hofheinz | A modular analysis of the Fujisaki-Okamoto transformation[END_REF], keeping the error probability unchanged. FrodoPKE is designed to guarantee IND-CPA security at three levels: Frodo-640, Frodo-976 and Frodo-1344. The security of these levels matches the brute-force security of AES-128, AES-192 and AES-256 respectively. Each level is parameterized by an integer dimension n such that n ≡ 0 mod 8, a variance σ and a discrete error distribution χ Frodo which is close to the rounded Gaussian Ψ σ in Rényi divergence. The LWE modulus q in FrodoPKE is either 2 14 or 2 15 depending on what level is adopted. A sketch of the algorithm is given in Table I 

A $ ← -Z n×n q S, E ← -χ n×n Frodo S , E ← -χ n×n Frodo , B := AS + E ∈ Z n×n q (A,B) ----→ E ← -χ n×n Frodo U := S A + E ∈ Z n×n q V := S B + E ∈ Z n×n q m $ ← -{0, 1} V := C -US ∈ Z n×n q (U,C) ← ----C = V+FRODO.ENCODE(m) m = FRODO.DECODE(V )

TABLE I SIMPLIFIED DESCRIPTION OF THE ORIGINAL FRODOPKE

III. PROPOSED MODIFICATION OF FRODOPKE

With the choice of parameter n = 8 in FrodoKEM [START_REF] Naehrig | FrodoKEM. tech. rep[END_REF], the message m ∈ {0, 1} is encoded into a point of Z 64 q . In this section, we propose a modified version of FrodoPKE where the encoder maps the key into a suitably scaled version of the 64-dimensional lattice E 8 8 , i.e. the product of 8 copies of the Gosset lattice. Since E 8 is the densest 8-dimensional packing, this results in a more efficient encoding. Since all integer operations in FrodoPKE are performed modulo q, we identify the lattice points that are equivalent modulo qZ 64 .

Referring to Table I, the main adjustments are made for the encryption and decryption algorithms FRODO.ENCODE(•) and FRODO.DECODE(•) respectively. Following the approach in [START_REF] Van Poppelen | Cryptographic decoding of the Leech lattice[END_REF], we search for a suitable scaling parameter β such that qZ 64 ⊆ (βE 8 )

8 ⊆ Z 64 , knowing that 2Z , is greater than or equal to 2 . This condition is verified by setting β = q/2 /64 ∈ {q/4, q/8, q/16} for ∈ {128, 192, 256}.

The construction of the encoder is as follows. First, m ∈ {0, 1} is partitioned into 8 substrings m i ∈ {0, 1} /8 , i = 0, .., 7. Each substring is mapped into βE 8 /qZ 8 ⊆ Z 8 . For simplification, each element in βE 8 /qZ 8 is identified with the corresponding coset leader in E 8 /2 /64 Z 8 . As an example, for = 128, the value of β is q/4. Hence mapping 8 bits of information into E 8 /2Z 8 allows to map 16 bits into

E 8 /4Z 8 . Let f : {0, 1} 8 -→ E 8 /2Z 8 that maps b = [b 1 , b 2 , . . . , b 8 ] ∈ {0, 1} 8 as follows:          f (b) = [b 1 , . . . , b 7 , -1] • G E8 mod 2 if b 1 = 0 && b 8 = 0 f (b) = [b 1 , . . . , b 7 , 0] • G E8 mod 2 if b 1 = 0 && b 8 = 1 f (b) = [b 1 , . . . , b 7 , 1] • G E8 mod 2 if b 1 = 1 && b 8 = 0 f (b) = [b 1 , . . . , b 7 , 2] • G E8 mod 2 if b 1 = 1 && b 8 = 1
One can verify that f is a bijective function. We can map 16 bits into the quotient E 8 /4Z m i : i=0,...,7 = (m i( /8) , . . . , m i( /8)+ /8-1 ) ∈ {0, 1} 8 3:

X i : i=0,...,7 = f (m i,0 , . . . , m i,7 ) ∈ E 8 /2Z 8 4:
X i : i=0,...,7 = g(m i,8 , . . . , m i, /8-1 ) ∈ 2Z 8 /2 /64 Z 8 5:

R i : i=0,...,7 = X i + X i ∈ E 8 /2 /64 Z 8 ∼ = βE 8 /qZ 8 6: return O i,j = R (8-i+j) mod 8,j 0≤i≤7 0≤j≤7 Note that each substring m i is mapped into a vector in Z 8 , which is encoded in a block BLOCK i (O) = (O i mod 8,0 , . . . , O i+7 mod 8,7 ) (1) 
of 8 components of the output matrix O. Finally, E8.ENCODE is a bijection from {0, 1} to (βE 8 ) 8 /qZ 64 .

The decoding algorithm E8.DECODE uses the CVP E8 algorithm [START_REF] Conway | Fast quantizing and decoding algorithms for lattice quantizers[END_REF] presented in Algorithm 2 below.

Algorithm 2 Closest Vector Point in E 8 1: function CVP E8 (x ∈ R 8 ) 2: f = x ; g = x 3: y = (1 ⊕ f i ) f + (1 ⊕ g i ) g 4: f = x -1 2 ; g = x -1 2 5: y = (1 ⊕ f i ) f + (1 ⊕ g i ) g + 1 2 6:
return argmin y ∈{y,y }

xy

We describe the decoding protocol in Algorithm 3. It concatenates the outputs of CVP E8 to form an element of (βE 8 )

8 /qZ 64 . Since our lattice E 8 is scaled by β, we use the

fact that CVP βE8 (x) = β • CVP E8 1 β x . Algorithm 3 Gosset Lattice Decoding 1: function E8.DECODE(N ∈ R 8×8 q ) 2: Y i : 1≤i≤8 = β • CVP E8 1 β BLOCK i (N) mod q 3: Y = [Y 1 , . . . , Y 8 ] ∈ (βE 8 ) 8 /qZ 64 4: return m = E8.ENCODE -1 (Y) ∈ {0, 1}
IV. RELIABILITY

In this section we aim to provide an upper bound for the decryption error probability for our algorithm. Clearly, an error occurs whenever the received message m differs from the original one m, i.e., P e = P {m = m }. Following Table I, the expression of V can be simplified as follows:

V = C -US = V + E8.ENCODE(m) -(S A + E ) S = S (AS + E) + E + E8.ENCODE(m) -S AS -E S = E8.ENCODE(m) + S E + E -E S E .
From this we can express the decoded message m as

m = E8.DECODE(V ) = E8.DECODE (E8.ENCODE(m) + E ) = m + E8.DECODE (E ) .
Each entry E i,j in the matrix E is the sum of 2n products of two independent samples from χ, adding to it another independent sample also from χ:

∀ 0 ≤ i, j ≤ 7, E i,j = n-1 k=0 S i,k E k,j -E i,k S k,j + E i,j (2) 
The distribution of E i,j , denoted by χ , can be efficiently computed using the product of probability generating functions. Due to equation [START_REF] Lyubashevsky | On ideal lattices and learning with errors over rings[END_REF], two entries of the matrix E which are not on the same row or column are independent, and hence we can extract 8 identically distributed blocks of 8 independent coordinates from this error matrix, just as indicated in equation [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF]. Decoding is correct whenever E8.DECODE (E ) = 0. For this it is sufficient to have BLOCK k (E ) ∈ V (βE 8 ) for all k = 0, .., 7, i.e.,

BLOCK k (E ) , v < v 2 2 2 , ∀v ∈ β (VR 1 ∪ VR 2 ) .
The error probability can thus be bounded by

Pe ≤ 7 i=0 P ∃ v1 ∈ VR1 : BLOCK k E , v1 ≥ β v1 2 2 /2 + 7 i=0 P ∃ v2 ∈ VR2 : BLOCK k E , v2 ≥ β v2 2 2 /2 (3) 
Since the error probability is independent of the choice of Voronoi relevant vector for vectors of the same type (because the distribution of each entry of E is symmetric, centered at 0), without loss of generality we can choose v 1 = (1, 1, 0, 0, 0, 0, 0, 0) and

v 2 = ( 1 2 , 1 2 , 1 2 , 1 2 , 1 2 , 1 2 , 1 2 , 1 2 
). This reduces the computations to just two cases. Choosing the value of n and the modulus q, we can compute an upper bound for the above expression for different values of σ. The R.H.S. of equation ( 3) becomes:

8 • 112 • P E 0,0 + E 1,1 ≥ β + 8 • 128 • P E 0,0 + • • • + E 7,7 ≥ 2β .
In order to upper bound P e , we use the following.

Remark 1: A discrete distribution p taking values in Z is unimodal with mode 0 if p(n + 1) ≤ p(n -1) ∀n ≥ 0, and p(n + 1) ≥ p(n) ∀n < 0. The convolution of two symmetric discrete unimodal distributions is symmetric unimodal [START_REF] Dharmadhikari | Unimodality, convexity and applications[END_REF]Theorem 4.7].

Since the distribution χ is symmetric unimodal, so are the distributions χ 2 , χ 4 , χ 8 of the sum of two, four and eight independent copies of E i,j respectively. While χ 2 and χ 4 can be calculated efficiently, the computation of χ 8 is slow. Thanks to unimodality, we can estimate the term P E 0,0 + • • • + E 7,7 ≥ 2β by upper bounding χ 8 by a piecewise constant function.

V. SECURITY a) IND-CPA security: Our scheme only modifies the encoding and decoding functions, the choice of parameters q and σ, and the error distribution. As shown in [START_REF] Naehrig | FrodoKEM. tech. rep[END_REF], the IND-CPA security of FrodoPKE is upper bounded by the advantage of the decision-LWE problem for the same parameters and error distribution [Theorem 5.9, Theorem 5.10]. We note that the security proof relies on the pseudorandomness of the adversary's observation (similarly to [START_REF] Lindner | Better key sizes (and attacks) for LWE-based encryption[END_REF]Theorem 3.2]) and thus the choice of encoding function has no effect on the security level, which is only affected by the parameters and error distribution. In terms of security against known attacks, the best known bound is given by the BKZ attacks, which involve both primal and dual attacks [START_REF] Chen | BKZ 2.0: Better lattice security estimates[END_REF].

b) IND-CCA security: It was shown in [START_REF] Naehrig | FrodoKEM. tech. rep[END_REF] that applying the Fujisaki-Okamoto transformation to the IND-CPA secure protocol FrodoPKE yields an IND-CCA secure key encapsulation mechanism FrodoKEM, even if they use different error distributions, provided that the Rényi divergence between these error distributions is small. In particular, FrodoKEM using the finite support distribution χ Frodo is IND-CCA secure provided that the FrodoPKE protocol using a rounded Gaussian distribution Ψ σ is IND-CPA secure, and the classical IND-CCA advantage Adv ind-cca can be upper bounded by [START_REF] Naehrig | FrodoKEM. tech. rep[END_REF]Equation (3)] ∀α > 1:

qRO |M| + 2•qRO+1
|M| + q RO • P e + 3 • Adv ind-cpa • e t•Dα(P ||Q) 1-1 α where q RO is the maximum number of oracle queries, |M| = 2 is the cardinality of the set of keys, and t = 2n(8+8)+64 is the total number of samples (drawn from the error distribution χ) used to generate E, S, E , S and E in Table I. In our case, P = χ and Q is the rounded Gaussian Ψ σ . The security loss will be minimized by optimizing over the order α. 

  . Alice generates A AS + E and outputs a public key (A, B). Bob chooses S , E , E ← χ n×n Frodo , then computes the LWE samples U = S A + E and V = S B + E . A message m in {0, 1} is generated unilaterally on Bob's side and encoded into Z n×n q using the function FRODO.ENCODE(•) [8, Algorithm 1]. Alice recovers m using the decoding mechanism [8, Algorithm 2]. The two messages are the same except with probability P e = P{m = m}. The number of message bits ∈ {128, 192, 256} depends on the assigned security level.

	$ ← -Z n×n q	, then samples S, E ← χ n×n Frodo , computes the LWE
	samples B =

Parameters: q; n ∈ {640, 976, 1344}; n = 8

FrodoKEM's distribution χ Frodo Alice (server) Bob (Client)

  1} to (βE 8 ) 8 /qZ 64 ⊆ Z 8×8 . This function is oneto-one if the number of points in (βE 8 ) 8 /qZ 64 , which is Vol qZ 64 /Vol (βE 8 ) 8

8 

⊆ E 8 ⊆ 1 2 Z 8 . Our aim is to define an encoding function from {0,

  8 as follows: map the first 8 bits into E 8 /2Z 8 , and the remaining ones into 2Z 8 /4Z 8 . This last mapping is obtained by simply multiplying the input string by 2. This example can be extended to the cases = 192 and = 256 by considering the chain E 8 ⊇ 2Z 8 ⊇ 4Z 8 ⊇ 8Z 8 ⊇ 16Z 8 . We denote the function that maps the remaining /8 -8 bits by g. The encoding function FRODO.ENCODE(•) can now be changed to E8.ENCODE(•) as shown in Algorithm 1.

	Algorithm 1 Gosset Lattice Encoding
	1: function E8.ENCODE(m ∈ {0, 1} )

2:

TABLE II MODIFIED

 II PARAMETERS FOR IMPROVING THE BANDWIDTH, THE SECURITY LEVEL AND/OR INCREASING THE KEY SIZE FOR FRODOKEM.

The condition σ ≥

2.12 is imposed in[START_REF] Naehrig | FrodoKEM. tech. rep[END_REF] to allow the reduction from the bounded distance decoding with discrete Gaussian sampling (BDDwDGS) to the decision LWE problem. Note that for efficiency reasons, σ is equal to 1.4 in Frodo-1344, while still guaranteeing a large number N of discrete Gaussian samples, namely N ≈ 2 111 . For Frodo-1344 we take σ = 1.15, which still leads to a large number of discrete Gaussian samples, namely N ≈ 2 75 .[START_REF] Lyubashevsky | On ideal lattices and learning with errors over rings[END_REF] The communication requirements of the protocol are computed using the functions Frodo.Pack and Frodo.Unpack presented in[START_REF] Naehrig | FrodoKEM. tech. rep[END_REF]. In our case we pack both U ∈ Z n×n and C ∈ Z n×n . Those two vectors, concatenated together, carry (log 2 (q) × n + log 2 (q) × 8) bytes.[START_REF] Langlois | Worst-case to average-case reductions for module lattices[END_REF] The security level of FrodoKEM with respect to primal/dual attacks is already higher than the brute force security level, but this might change due to improvements in the best known attacks. So this choice of parameters represents an even more conservative option for long-term security.
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VI. PERFORMANCE COMPARISON

In this section we show the performance of the proposed modification of FrodoKEM. We propose three sets of parameters: the first aims at improving the security level, the second at reducing the bandwidth and the third at increasing the key size. Note that for all sets of parameters, n and n will remain unchanged. The performance comparison is shown in Table II. The security level refers to the primal and dual attack via the FrodoKEM script pqsec.py with parameters n, σ, q.

a) Parameter set 1 -Reducing the bandwidth: For the first set of parameters, we aim at reducing the bandwidth while keeping the same security level. This is achieved by reducing the modulus q by half, which in turn requires a reduction in standard deviation σ in order to preserve a low error probability 1 . Overall, the modulus to noise ratio of the protocol is increased. Compared to the original FrodoKEM, this allows to reduce the bandwidth by approximately 7% 2 .

b) Parameter set 2 -Improving the security level: For the second parameter set, we aim at increasing the plausible security level 3 while keeping the same bandwidth and a similar error probability level as in the original FrodoKEM protocol. To do so, we increase the variance σ while keeping q unchanged. Note that we can increase σ because of the higher error correction capability provided by our modified encoder. c) Parameter set 3 -Increasing the key size: For the last set of parameters, we aim to increase the key size for Frodo-640 and Frodo-976 with comparable security and error probability. We generate 192 bits from Frodo-640 instead of 128 bits, as well as 256-bit key instead of 192 bits in Frodo-976. The modulus q remains unchanged.