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Abstract
The Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) is one of the most
prominent algorithms to solve multi-objective
optimization problems. Recently, the first
mathematical runtime guarantees have been
obtained for this algorithm, however only for
synthetic benchmark problems.
In this work, we give the first proven per-
formance guarantees for a classic optimization
problem, the NP-complete bi-objective mini-
mum spanning tree problem. More specifically,
we show that the NSGA-II with population
size N ≥ 4((n − 1)wmax + 1) computes all ex-
tremal points of the Pareto front in an expected
number of O(m2nwmax log(nwmax)) iterations,
where n is the number of vertices, m the num-
ber of edges, and wmax is the maximum edge
weight in the problem instance. This result
confirms, via mathematical means, the good
performance of the NSGA-II observed empiri-
cally. It also shows that mathematical analyses
of this algorithm are not only possible for syn-
thetic benchmark problems, but also for more
complex combinatorial optimization problems.
As a side result, we also obtain a new analysis
of the performance of the global SEMO algo-
rithm on the bi-objective minimum spanning
tree problem, which improves the previous best
result by a factor of |F |, the number of extremal
points of the Pareto front, a set that can be as
large as nwmax. The main reason for this im-
provement is our observation that both multi-
objective evolutionary algorithms find the dif-
ferent extremal points in parallel rather than
sequentially, as assumed in the previous proofs.

∗Author-generated version of a paper appearing in the
proceedings of IJCAI 2023.

†Work done while visiting École Poytechnique, France.

1 Introduction
Many optimization problems consist of several conflict-
ing objectives. In such a situation, it is not possible to
compute a single optimal solution. The most common
solution concept therefore is to compute a set of Pareto
optima (solutions which cannot be improved in one ob-
jective without accepting a worsening in another objec-
tive) and let a decision maker select the final solution
based on their preference.

Besides mathematical programming approaches, evo-
lutionary algorithms (EAs) are the standard approach
to multi-objective problems with many successful appli-
cations [Zhou et al., 2011]. EAs profit here from their
general ability to work with sets of solutions (“popu-
lations”). The by far most prominent multi-objective
evolutionary algorithm (MOEA) is the Non-Dominated
Sorting Genetic Algorithm II (NSGA-II) proposed by
Deb, Pratap, Agarwal, and Meyarivan [Deb et al., 2002]
(with over 50,000 citations on Google Scholar).

While very successful in practice, this algorithm is
only little understood from a fundamental perspective,
giving the users little general advice on how to optimally
employ this algorithm, e.g., how to set its parameters
right. In fact, it was only at AAAI 2022 that the first
mathematical runtime analysis of the NSGA-II was pre-
sented [Zheng et al., 2022], a work that was quickly fol-
lowed up more runtime analyses on this algorithm (see
the previous works section). All these works analyze the
performance of the NSGA-II on simple benchmark prob-
lems, mostly multi-objective variants of the OneMax,
LeadingOnes, and Jump benchmarks well-studied in
the theory of single-objective randomized search heuris-
tics [Auger and Doerr, 2011].

In this work, we conduct the first mathematical run-
time analysis of the NSGA-II on a classic combinatorial
problem, namely the NP-complete bi-objective minimum
spanning tree problem. In this problem, we are given an
undirected graph with n vertices and m edges. In the
basic single-objective version of the minimum spanning
tree (MST) problem, we are also given non-negative inte-
gral edge weights and the task is to compute a minimum



spanning tree. This problem is easily solved by classic al-
gorithms. It has also been used to understand how EAs
solve combinatorial optimization problems. As a first re-
sult in this direction, Neumann and Wegener [Neumann
and Wegener, 2007] showed that the (1 + 1) EA com-
putes a minimum spanning tree in an expected number
of O(m2 log(nwmax)) iterations (and fitness evaluations).
Here wmax denotes the maximum edge weight. Using
a balanced mutation operator, this can be improved to
O(mn log(nwmax)).

In the bi-objective variant of the problem, we are
given two weight functions and the target is to com-
pute the Pareto front of the problem of computing a
spanning tree minimizing both weight functions. This
problem is NP-complete, but it is possible to compute
in polynomial time the extremal points of the Pareto
front [Hamacher and Ruhe, 1994]. The first result on
how MOEAs solve this problem is [Neumann, 2007].
It shows that the global SEMO algorithm, a multi-
objective analogue of the basic (1 + 1) EA, computes the
extremal points of the Pareto front in an expected num-
ber of O(m2nwmin(|F | + log(nwmax))) iterations, where
F denotes the set of extremal points of the Pareto front
and wmin denotes the minimum of the maximum edge
weights of the two weight functions. As in [Neumann
and Wegener, 2007], this guarantee improves by a factor
of Ω(m/n) when using balanced mutation.

We note that [Neumann and Witt, 2022] propose the
convex global SEMO algorithm and show that it can
solve the bi-objective MST problem in polynomial time
regardless of wmax. Given that this algorithm is very
new and not yet established, we do not follow this line
of research. [Neumann and Witt, 2022, Theorem 4] also
implies a runtime bound for the classic global SEMO
algorithm, but this becomes superior to ours only when
the size of the Pareto front is at most nwmin/ℓ, where
ℓ is a problem parameter which in general can only be
estimated by Θ(m2). So this result appears to be an
improvement only in special cases.

In this work, we conduct a mathematical runtime
analysis of the NSGA-II on the bi-objective MST prob-
lem. This is the first runtime analysis of this algo-
rithm on a combinatorial problem. Besides showing
that such analyses are possible, it proves that also the
NSGA-II can efficiently compute the extremal points
of the Pareto front, and this in an expected num-
ber of O(m2 log(nwmax)) iterations, hence a number of
O(Nm2 log(nwmax)) fitness evaluations, when the popu-
lation size N is at least N ≥ 4nwmin. This results holds
for various ways of generating the offspring population
including the use of crossover. As in the previous works,
we obtain a bound lower by a factor of Ω(m/n) when
using balanced mutation.

We note that our runtime guarantees are smaller than
the ones proven in [Neumann, 2007] for the global SEMO
by essentially a factor of |F |, the number of extremal
points, for which the only general upper bound is nwmin.
This improvement stems from our observation that the
NSGA-II makes progress towards the different extremal

points in parallel, whereas the proof in [Neumann, 2007]
assumed that these were found sequentially. We show
the same improvement for the GSEMO, lowering Neu-
mann’s bound to O(m2nwmin log(nwmax)).

2 Previous Work
The multi-objective version of the minimum spanning
tree problem, usually called multi-criteria minimum
spanning tree problem (mc-MST), is an important com-
binatorial optimization problem with many applications
in network design. We refer to Ehrgott [Ehrgott,
2005] for an extensive discussion of the problem and
the different algorithmic approaches to it. Being NP-
complete, many heuristic approaches have been de-
veloped [Arroyo et al., 2008], including many based
on evolutionary algorithms [Knowles and Corne, 2000;
Knowles and Corne, 2001; Bossek and Grimme, 2017;
Parraga-Alava et al., 2017; Majumder et al., 2020].

In this work, we investigate how the NSGA-II solves
the bi-objective MST problem. As in most theoretical
works on randomized search heuristics, our aim is not
so much finding the best possible algorithm to solve this
problem (for this problem-specific algorithms will usu-
ally be superior), but we aim at understanding how a
certain algorithm, here the NSGA-II, solves a certain
problem. The broader aim is to understand which al-
gorithms are suitable for which problems, what are the
right parameter settings, and to detect possible short-
comings and remedies for these. We refer to the text-
books [Auger and Doerr, 2011] for a broader introduc-
tion into the research field of mathematical analyses of
randomized search heuristics and its achievements.

We briefly review the most relevant literature. The
mathematical runtime analysis of EAs was started in
the 1990s with analysis how very simple EAs such as the
(1 + 1) EA optimize very simple benchmark problems
such as OneMax or LeadingOnes [Mühlenbein, 1992;
Bäck, 1993; Rudolph, 1997; Droste et al., 2002]. The
first runtime analyses of MOEAs followed a similar ap-
proach, estimating the runtime of multi-objective ana-
logues of the (1 + 1) EA such as the SEMO or GSEMO
on bi-objective analogues of OneMax and Leading-
Ones [Laumanns et al., 2002; Giel, 2003; Thierens,
2003]. The analyses of single-objective EAs quickly pro-
gressed towards more complex problems such as short-
est paths, maximum matchings, the partition prob-
lem, the MST problem, and many others [Neumann
and Witt, 2010], or more complex algorithms such as
the (1 + λ) EA [Jansen et al., 2005], (µ + λ) EA [Witt,
2006], (µ + λ) EA [Antipov and Doerr, 2021], and non-
elitist algorithms [Dang et al., 2021].

In contrast, due to the more difficult population dy-
namics of MOEAs, the progress was slower in multi-
objective evolutionary computation. There are only few
mathematical results on simple MOEAs solving com-
binatorial optimization problems (to the best of our
knowledge only for the MST [Neumann and Wegener,
2007; Neumann and Witt, 2022], shortest path prob-



lems [Horoba, 2009; Neumann and Theile, 2010], and
the travelling salesman problem [Lai and Zhou, 2020]).
Also, only few results analyze more complex algorithms
such as the (µ + 1) SIBEA [Brockhoff et al., 2008;
Nguyen et al., 2015; Doerr et al., 2016], the MOEA/D [Li
et al., 2016; Huang et al., 2019; Huang and Zhou, 2020],
the NSGA-II [Zheng et al., 2022; Zheng and Doerr,
2022a; Zheng and Doerr, 2022b; Bian and Qian, 2022;
Doerr and Qu, 2023a; Doerr and Qu, 2023b; Doerr and
Qu, 2023c; Dang et al., 2023], the NSGA-III [Doerr
and Wietheger, 2023], and the SMS-EMOA [Bian et al.,
2023]. Very roughly speaking, the works on the NSGA-II
show that this algorithm can find the Pareto front of sim-
ple bi-objective benchmark problems when the popula-
tion size is chosen large enough (typically by a constant
factor larger than the Pareto front). When the popula-
tion size is only equal to the size of the Pareto front or
when the number of objective is more than two, already
on the simple OneMinMax benchmark the NSGA-II
needs exponential time to find the full Pareto front. So
far, no mathematical runtime analysis of the NSGA-II
on a combinatorial optimization problem exists.

3 Preliminaries: Basic Notation
The Multi-Objective Minimum Spanning Tree problem
is stated as follows. Given an input connected graph
G = (V, E), and a weight function w : E −→ Nd on
the edges of G, define the weight of any subgraph H
of G denoted w(H) ∈ Nd as the sum of the weights of
all edges present in H. We want to find all possible
”optimum” subtree weight values w ∈ Nd, in the sense
that no subtree of G has a weight value for which all
coordinates are smaller that those of w, and there exists
a spanning tree that has weight w. Here, we focus on
the case where d = 2. The search space is the set of
all subgraphs and is represented with S = {0, 1}m as a
subgraph is a choice of edges. Let w = (w1, w2) : E → N2

be the weight function. For a search point s, we refer
to its weight as the geometric point of N2 denoted by
ps = w(s). We further define

• wmax
i = max{wi(e), e ∈ E}, for i ∈ {1, 2},

• wmax = maxi∈{1,2} wmax
i

• wmin = mini∈{1,2} wmax
i

• wub = n2wmax.
As in [Neumann, 2007], the fitness of an individual

s ∈ S is given by a vector f(s) = (f1(s), f2(s)) with

fi(s) = (c(s) − 1)w2
ub + (e(s) − (n − 1))wub +

∑
j|sj=1

wi(j)

for i ∈ {1, 2}, and where wi(j) is the weight of edge ej

with respect to the function wi. c(s) is the number of
connected components in the graph described by s, and
e(s) is the number of edges in this same graph. Note
that for a spanning tree s, fi(s) =

∑
j|sj=1 wi(j).

Definition 1 (Domination). For s, s′ ∈ S, we say that
s dominates s′ and we note s ⪯ s′ if s Pareto-dominates

s′ according to the fitness functions f1 and f2, i.e. if
f1(s) ≤ f1(s′) and f2(s) ≤ f2(s′). We say that s strictly
dominates s′ and we note s ≺ s′ if s ⪯ s′ and s and s′

have different fitness values.
Since the relation of domination only depends on the

objective value, we also use ”domination” to compare
objective values rather than individuals.
Definition 2 (Pareto optimality). s ∈ S is called
Pareto optimal if there is no search point s′ ∈ S that
strictly dominates s. The set of all Pareto optimal search
points Spareto is called the Pareto set. F = f(Spareto)
is the set of all Pareto optimal objective vectors and is
called the Pareto front.

The goal is to find for each q ∈ F of the considered
objective function f an object s ∈ Spareto with f(s) =
q. From now on, as in [Neumann, 2007], we denote by
conv(F ) the lower-left part of the convex hull of F . The
reader may find an illustration of conv(F ) in appendix
of the Arvix version of the paper.
Definition 3 (Extremal points). The extremal points
of the Pareto front F are the vertices of the polygonal
line forming conv(F ) .

Note that for each spanning tree T on the convex hull
there is a λ ∈ [0, 1] such that T is a minimum spanning
tree with respect to the single weight function λw1 +(1−
λ)w2 (see e.g. [Knowles and Corne, 2001], [Neumann,
2007]).

Let q1, q2, . . . , qr be the extremal points sorted in in-
creasing f1 value.

Observe that q1 (resp. qr) realises by construction the
minimum of w1 (resp. w2) in w(S).

Those points are interesting because they give a so-
lution which is a 2-approximation of the Pareto front
([Neumann, 2007]).

3.1 Algorithms
Here, we describe the NSGA-II algortihm. Let N be
the population size and n the chromosome size. We also
give pseudocode for the global SEMO (GSEMO), since
part of our results directly come from the study of this
algorithm in [Neumann and Wegener, 2007], and since
most of these results also apply to this algorithm.

The NSGA-II
The NSGA-II is an evolutionary algorithm, which means
it maintains a population of N ∈ N solutions to an op-
timization problem, named individuals (here, subgraphs
of G). This population evolves at each over multiple
generations. In each iteration, the algorithm generates
an offspring population from selected parents in the cur-
rent population, using some reproduction and mutation
mechanisms. Note however that these mechanisms are
not intrinsic to the NSGA-II and have to be specified for
the task at hand. From the combined parent and off-
spring population, the algorithm decides which individ-
uals to keep according to their fitness. The NSGA-II is
centered around two notions. First, rank, which defines



how good an individual is in the current population, and
second, crowding distance, which quantifies how much
diversity it brings to the population.
Definition 4 (Rank). Let X be a population. We re-
cursively define the rank of every individual in X. An
individual that is not strictly dominated by any individ-
ual in X has rank 1. Then, if ranks 1, . . . , k are defined,
an individual that is not strictly dominated by any in-
dividual of X, except those of rank 1, . . . , k, and that is
dominated by at least one individual of rank k, has rank
k + 1.

The ranks of individuals in a given population X
can be computed in quadratic time using the fast-non-
dominated-sort algorithm. The reader will find in ap-
pendix of the Arvix version of the paper the associated
pseudocode.

We now introduce the notion of crowding distance.
Definition 5 (Crowding distance). Let X be a finite
set, and f : X −→ R. Let x1, . . . , xN be the elements
of X, sorted in increasing order of f values. Then, the
crowding distance of each xi is defined as

cDis(xi) =
{

+∞ if i = 1 or i = n
f(xi+1)−f(xi)

f(xl)−f(x1) otherwise. (1)

Note that in our case, we are dealing with multiple
fitness functions (f1, f2). The crowding distance of an
element is then the sum of the crowding distances of
this element for each function. Computing the crowd-
ing distance of each individual in a population of size N
can be done naively with two sortings and O(N) subtrac-
tions and divisions. It can then be done in O(N log(N)),
which is negligible compared to fast-non-dominated sort.

The pseudocode for NSGA-II can be found in Algo-
rithm 1.

Algorithm 1: The NSGA-II.
1 Generate initial population P ∈ ({0, 1}m)N

2 repeat
3 Generate offspring population Q ∈ ({0, 1}m)N

4 Let R = P ∪ Q
5 Sort R with fast-non-dominated-sort to get

the sets Fi, i ∈ N of the individuals of rank i

6 Find icut = max{i |
∑i−1

k=0 |Fk| < N}
7 Calculate crowding distance of each individual

in Ficut

8 Let F̃icut
be the N −

∑icut−1
k=0 |Fk| individuals

in Ficut
with largest crowding distance,

chosen at random in case of a tie
9 P = (

⋃icut−1
i=0 Fi) ∪ F̃icut

10 until forever;

The Global Simple Evolutionary Multiobjective
Optimizer (GSEMO)
GSEMO is also an evolutionary algorithm, studied on
the mc-MST problem in [Neumann, 2007] and [Neumann

and Wegener, 2007]. Its functioning is simpler than that
of the NSGA-II. It generates one individual s at each
generation, adding it to the population if it is not dom-
inated by any other individual, and removes those that
are dominated by s. A pseudocode for GSEMO, as de-
scribed in [Neumann, 2007] can be found in Algorithm 2.

Algorithm 2: GSEMO
1 Generate initial population P , which consists of a

unique individual s ∈ {0, 1}n, chosen randomly.
2 repeat
3 Choose a random s ∈ P
4 Generate an offspring s′ from x, flipping each

bit with probability 1
n .

5 if no individual in P dominates s′ then
6 Add s′ to P
7 Remove all individuals in P that s′

dominates
8 until forever;

4 Analysis of the GSEMO and the
NSGA-II on the Bi-Objective
Minimum Spanning Tree Problem

In this section, we prove two main results on the ex-
pected runtime of the GSEMO and the NSGA-II on the
Bi-Objective Minimum Spanning Tree Problem.

To state our theorem on the NSGA-II in the strongest
possible form, we need to introduce two parameters
which depend on the offspring generation mechanism
which the NSGA-II works with.

For any population P containing no spanning tree, any
s ∈ F1 and any position i ∈ {1, . . . , n} of a bit of value 0,
let p1 be a lower bound (that does not depend on P, s, i
and j) of the probability that there exists in the offspring
a child generated with s as (one of) the parent(s), that
differs from s on exactly bit i.

For any population P containing at least a spanning
tree, any s ∈ F1, and any pair of bits of different value
i, j ∈ {1, . . . , n}, let p2 be a lower bound (that does not
depend on P, s, i and j) of the probability that there
exists in the offspring a child generated with s as (one
of) the parent(s), that differs from s on exactly bits i, j.
In Section 5, we will detail why such precise definitions
might reveal useful.
Theorem 6. The expected number of generations until
the NSGA-II, working on the fitness function f with a
population of size N ≥ 4((n − 1)wmin + 1) and with any
offspring generation mechanism resulting in p1 and p2,
constructs a population which includes a spanning tree
for each extremal vector of conv(F ) is upper bounded by
O( log n

p1
+ log(nwmax)

p2
).

Theorem 7. The expected number of fitness evalua-
tions until the GSEMO working on the fitness function f
constructs a population, which includes a spanning tree



for each extremal vector of conv(F) is upper bounded by
O(m2nwmin log(nwmax)).

The proof is split into three parts. First, we prove
that the NSGA-II and the GSEMO find spanning trees
in negligible time. Secondly, we introduce an elitism
property of the NSGA-II from the moment when the
population includes spanning trees. Then, we bound the
time taken by both NSGA-II and GSEMO to find the
extremal points from this point.

4.1 Sampling the First Spanning Tree
Regarding the first phase of the optimization process, the
proof of [Neumann, 2007, Lemma 5] bounds the expected
time until the population of the GSEMO contains at
least one spanning tree from above, giving the following
lemma.
Lemma 8. The GSEMO working on the fitness function
f constructs a population with at least one spanning tree
in expected time O(m log n).

We argue that a similar bound holds for the NSGA-II.
Lemma 9. The NSGA-II working on the fitness func-
tion f constructs a population with at least one spanning
tree in expected time O( log n

p1
).

The proof is essentially an adaptation of [Neumann,
2007, Lemma 5], the details of which are in the appendix
of the Arvix version of this paper. We first bound the
time before the population contains a connected graph:
to do so, we observe that for a subgraph H with l ≥ 2
connected components, there are at least l−1 edges of G
that decrease l. This allows us to use p1 to give a lower
bound for the probability that these specific edges are
added, and thus that connected components merge fast
enough. A similar argument is used for the second phase,
to show that excessive edges are deleted at roughly the
same speed.

4.2 An Elitism Property of the NSGA-II
One of the observations that make the study of the
GSEMO easier is that it has an elitism property: an
individual will not disappear from the population unless
it is replaced by a dominating one. Here, we introduce
a lemma, inspired by [Zheng and Doerr, 2022a], which
shows that under a certain condition on the population
size, the NSGA-II has a similar property.
Lemma 10. Let P be a population such that |P | >
4((n−1)wmin +1) and having at least one spanning tree.
Let P ′ be the next population. For each individual s in
P , there is an individual s′ in P ′ such that s′ ⪯ s.

The proposed proof for this lemma requires to intro-
duce the notion of incomparable set, which is used to
bound the size of F1.
Definition 11 (Incomparable set). A ⊆ S is an incom-
parable set if there is no pair of individuals s, s′ ∈ A,
such that s′ ≺ s.

We now make the following observation regarding the
size of incomparable sets.

Lemma 12. Let P be an incomparable set containing
at least one spanning tree. Then the number of objective
values of P is bounded by (n − 1)wmin + 1.

Proof. Since f is designed such that a spanning tree
strictly dominates every non-spanningtree graph, P con-
sists of spanning trees only. Among two spanning trees
of P with the same f1 value, one of them necessarily
dominates the other. P being an incomparable set, this
does only happens if the two spanning trees have the
same objective value. Thus, for a fixed value of f1, there
is at most one point in f(P ) having this f1 value. Since
a spanning tree has n − 1 edges, and since by definition
0 ≤ w1(e) ≤ wmax

1 for any edge e, we deduce that, for
any spanning tree s, 0 ≤ f1(s) ≤ (n − 1)wmax

1 . It follows
that

|w(P )| ≤ |f1(ST )| ≤ (n − 1)wmax
1 + 1,

where ST is the set of elements of S representing a span-
ning tree constructed from G. We do the same with f2,
which gives |w(P )| ≤ (n − 1)wmin + 1, this bound being
the minimum of the two bounds previously obtained.

The subsequent formal proof for Lemma 10 is rather
long, and may be found in appendix of the Arvix version
of the paper. However, we give a sketch of the principal
arguments: we observe that, by definition of the fronts,
the lemma requires to be proven only for individuals of
the first front. Then, we show that, for a given fitness
value p, there are at most 4 individuals that have fit-
ness p and positive crowding distance. Finally, we use
Lemma 12 to conclude that, because the NSGA-II will
first choose individuals with positive crowding distance,
the size of the population is such that the new generation
will represent all fitness values of the first front.

4.3 Sampling the Extremal Points of the
Pareto Front

This section gives upper bounds for the expected run-
times of the two algorithms, assuming the population
contains at least a spanning tree and therefore proves
Theorem 6 and 7.

We build our analysis on the fact that the extremal
points are the unique minimums for specific linear com-
binations of the weights w1 and w2. The following lemma
gives the combination for qi, when 1 ≤ i ≤ r.
Lemma 13. Let i ∈ {1, . . . , r} and let for all objective
values p,

di(p) := (w1(qi−1) − w1(qi+1))(w2(p) − w2(qi))
+(w2(qi+1) − w2(qi−1))(w1(p) − w1(qi)).

Then, for a given objective value p = w(s) of some indi-
vidual s, di(p) ≥ 0 and di(p) = 0 ⇔ p = qi.

Proof. As shown in Figure 1, the set of all objective
values is contained in the intersection of the upper-half
planes Hj of the lines qjqj+1, 1 ≤ j ≤ r − 1. For any
such j, let

vj =
(

w2(qj)−w2(qj+1)
2

w1(qj+1)−w1(qj)
2

)
.



Figure 1: Position of w(S) relative to the qiqi+1

This vector is normal to the line qjqj+1 and is pointing
towards w(S). Thus, for all p ∈ R2, p ∈ Hj if and only if
p·vj ≥ q ·vj for any point q lying on qjqj+1, with equality
if and only if p ∈ (qj , qj+1). Now let us fix i ∈ {2, . . . , r−
1}. We know that qi lies on both (qi, qi+1) and (qi−1, qi),
so, for all p ∈ w(S), p · vi ≥ qi · vi and p · vi−1 ≥ qi · vi−1,
with equality if and only if p ∈ (qi, qi+1) or p ∈ (qi−1, qi),
respectively. By summing these two inequalities, we get
(p − qi) · (vi + vi−1) ≥ 0, that is di(p) ≥ 0, with equality
if and only if p ∈ (qi, qi+1) ∩ (qi, qi−1). Since qi and qi+1
are extremal points, these two lines cannot be parallel,
hence (qi, qi+1) ∩ (qiqi−1) = {q}, which concludes the
proof.

We suppose from now on that the population P con-
tains a spanning tree, which is true after an expected
number of O(m log n) iterations by Lemmas 8 and 9.

For all i ∈ {2, . . . , r − 1}, we define di(p) as stated in
Lemma 13. The lemma further suggests that we define

d1(p) = w1(p) − w1(q1),
dr(p) = w2(p) − w2(qr).

To prove the claimed upper bound, we use multiplica-
tive drift analysis [Doerr et al., 2012] on a quantity de-
rived from these functions. A reminder for this technique
may be found in appendix of the Arvix version of the pa-
per.

To use the multiplicative drift theorem, we introduce
a potential that has a multiplicative drift. For a given
population P , let di(P ) = minp∈w(P ) di(p) and d(P ) =∑r

i=1 di(P ).
Lemma 14. Let P (t) be the population of the NSGA-II
or the GSEMO algorithm after t iterations. Then
di(P (t)) for any 1 ≤ i ≤ r, and d(P (t)) are nonnega-
tive integers and are non-increasing with respect to t.

Proof. Let pi(t) = arg minp∈w(P (t)) di(p). Using
Lemma 10 in the case of the NSGA-II, and by the defini-
tion in the case of the GSEMO, there exists an element
p′

i ∈ w(P (t + 1)) such that p′
i ⪯ pi. Hence,

min
p′∈w(P (t+1))

di(p′) ≤ di(p′
i) ≤ di(pi) = min

p∈w(P (t))
di(p),

so di(P (t)) is non-increasing. Lemma 13 gives that
di(P (t)) is nonnegative. Summing di for 1 ≤ i ≤ r gives
the same two properties for d(P (t)).

In order to apply drift analysis, we need another
lemma given by [Neumann and Wegener, 2007].
Lemma 15 ([Neumann and Wegener, 2007], Lemma 2).
Let w̃ : S −→ R be any function which is a linear com-
bination with nonnegative coefficients of w1 and w2. Let
s be a search point describing a spanning tree T . Let
w̃opt be the minimum value taken by w̃ on spanning trees.
Then there exists a set of n 2-bit flips resulting on new
spanning trees, such that the average weight decrease of
these flips is at least w̃(s)−w̃opt

n

We now prove the following lemma:
Lemma 16. The expected number of generations until
the NSGA-II (resp. GSEMO), working on the fitness
function f with a population of size N ≥ 4((n−1)wmin +
1) and with any offspring generation mechanism (resp.
its intrinsic mechanism), constructs a population P such
that d(P ) = 0 is upper bounded by O( log(nwmax)

p2
) (resp.

O(m2wmin log(nwmax))).

Proof. For any i ∈ {1, . . . , r} and any iteration t, let si,t

be an individual such that di(si,t) = di(P (t)). Then, let
p2,(i,t) be a lower bound over all pairs of bit positions of
the probability that there exists, in the offspring, a child
generated with s(i,t) as (one of) the parent(s) that differs
from s(i,t) on exactly this pair of bits. For the NSGA-II
algorithm, by definition of p2, we have p2,(i,t) ≥ p2.

For the GSEMO algorithm, if there is at least one
spanning tree in the population, the size of the popula-
tion is upper-bounded by (n − 1)wmin + 1 by Lemma 12.
Therefore,

p2,(i,t) ≥ 1
(n − 1)wmin + 1 ·

(1 − 1
m )m−2

m2 ≥ 1
((n − 1)wmin + 1)em2

We also denote p2 = 1
(n−1)wminem2 when analysing

GSEMO, such that we have p2,(i,t) ≥ p2 for both al-
gorithms.

We now apply drift analysis on d(P (t)). Indeed, for
i ∈ {1, . . . , r}, di(p) is a linear combination of w1 and
w2 with non-negative coefficients minimum dopt

i = 0.
Focusing only on the set of n 2-bits flips given

by Lemma 15 on a search point being one of
arg mins∈P di(s), and noticing that, since di is non-
increasing (Lemma 14), all other bit flips contribute pos-
itively to the drift, we have:

E[di(P (t))−di(P (t+1))|di(P (t)) = x] ≥ (x/n)·n·p2,(i,t).

Using this estimate, we show the following lower bound
for the drift of our potential:

E[d(P (t)) − d(P (t + 1)) | d(P (t)) = x] ≥ x · p2.

Let T = min{t ∈ N | d(P (t)) = 0}. Since d(P ) is
an non-negative integer, the minimum strictly positive
value of d(P ) is 1. Since each edge has a weight at



most 2w2
max, d(P ) ≤

∑r
i=1 2mw2

max ≤ 2rn2w2
max. Fi-

nally, since the convex hull is an incomparable set, we
have r ≤ (n−1)wmin +1 by Lemma 12. Hence we derive
the following upper bound for d(P (t)):

max
t

d(P (t)) ≤ ((n−1)wmin+1)mwmax = O(n3wmaxwmin).

Using multiplicative drift theorem, we obtain

E(T ) ≤ 1
p2

log maxt∈N d(P (t))
1 = O

(
log n + log wmax

p2

)
.

We then conclude the proof by plugging in the value of
p2 for GSEMO, which does only one fitness evaluation
per iteration.

Combining the last lemma with Lemma 13, and notic-
ing that NSGA-II and GSEMO do respectively N and
1 fitness evaluation(s) per generation, we conclude the
proof of theorems 6 and 7.

5 Study of Offspring Generation
Mechanisms of the NSGA-II

This section is dedicated to demonstrating applications
of Theorem 6 on the study of the influence of particular
offspring generation mechanisms on the expected run-
time of the NSGA-II before finding the extremal points.

We start with a very rudimentary mechanism, com-
posed of fair selection (selecting every individual s in P
as a parent), and standard bitwise mutation with con-
stant c, 0 ≤ c ≤ m (mutating every bit of a given
parent with probability c

m ). Then, we can set p1 =
c
m (1 − c

m )m−1 ≥ c
ecm , and p2 = c2

m2 (1 − c
m )m−2 ≥ c2

ecm2 .
Theorem 6 then gives the following corollary.
Corollary 17. The expected time until the NSGA-II,
working on the fitness function s with a population of
size N ≥ 4((n − 1)wmin + 1) and using standard bit-
wise mutation and fair selection, constructs a population
which includes a spanning tree for each extremal vector
of conv(F ) is upper bounded by O(m2 log(nwmax)) gen-
erations, and O(m2N log(nwmax)) fitness evaluations.

Theorem 6 also ensures that adding crossover with
constant probability 0 < q < 1 does not worsen the
asymptotic complexity of the NSGA-II. To be more pre-
cise, let us consider a random monoparental reproduc-
tion scheme M, which, from an individual s ∈ S, gen-
erates an offspring M(s). From this operator, and a
given crossover operator C we derive a biparental repro-
duction scheme M′, which, from a pair of individuals
s, s′, generates, with probability q, the children C(s, s′)
and C(s′, s), and with probability (1 − q), the children
M(s), and M(s′). Now, consider an offspring genera-
tion scheme which puts the selected parents into pairs
and applies M′ to these pairs. Finally, note that if p1,
p2 and p′

1, p′
2 are the pairs of probabilities defined in 6

for the offspring generation mechanism using M or M′,
then we have trivially p′

1 ≥ (1−q)p1 and p′
2 ≥ (1−q)p2.

This gives the following corollary.

Corollary 18. For a given NSGA-II implementation,
replacing M by M′, as described above (i.e. adding
crossover with constant probability) does not worsen the
asymptotic expected runtime (up to a multiplicative con-
stant).

Finally, to demonstrate the relevance of the p2
parameter, let us introduce a problem-specific “bal-
anced” mutation operator, described in [Neumann and
Wegener, 2007]. For any tree individual s ∈ S the muta-
tion operator flips each 1-bit with probability 1

n−1 , and
each 0-bit with probability 1

m−n+1 , and applies standard
bitwise mutation otherwise. We use fair selection for
this example. By definition, the value of p1 remains un-
changed compared to standard bitwise mutation, that is,
O( 1

m ). However, one can show that p2 is increased from
O( 1

m2 ) to O( 1
(m−n)n ) (see appendix of the Arvix version

of the paper). Theorem 6 automatically gives:
Corollary 19. The expected runtime of the NSGA-II,
working on fitness function f , with |P | > 4((n−1)wmin+
1), using fair selection and balanced mutation is O((m−
n)n log(nwmax) + m log n) generations and O(N((m −
n)n log(nwmax) + m log n)) fitness evaluations.

6 Conclusion
In this first mathematical runtime analysis of the
NSGA-II on a combinatorial optimization problem, we
provided a general approach to proving runtime guaran-
tees for MOEAs solving the bi-objective MST problem.
For the global SEMO, this gave a bounds lower than the
previously known ones by a factor of Ω(|F |). More inter-
estingly, we could prove the same performance guaran-
tees for the much more complex NSGA-II. Our result ap-
plies to several variants of the NSGA-II, including some
that use crossover. As for the simple global SEMO al-
gorithm, we obtain better guarantees when employing a
balanced mutation operator (which supports the general
belief that analyses on simple toy algorithms can nev-
ertheless give useful hint for the use of more complex
algorithms).

Overall, this work indicate that mathematical runtime
analyses for the NSGA-II are possible also for combinato-
rial optimization problems. In this first work, we mostly
concentrated on proving performance guarantees at all.
For future work, it would be interesting to derive more
insights on how to optimally use the NSGA-II on the par-
ticular problem (we only saw that balanced mutation is
preferable). That such results are possible in principle is
again indicated by the simpler works on artificial bench-
marks, where, e.g., [Doerr and Qu, 2023a] gave some
indications on the right mutation rate. Clearly, runtime
analyses of the NSGA-II on other combinatorial opti-
mization problems would also be desirable to put this
research direction on a broader basis.
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