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Andreas Herzig
IRIT - Université de Toulouse

Laurent Perrussel
IRIT - Université de Toulouse

Abstract

We provide a logical analysis of abstract argumentation
frameworks and their dynamics. Following previous work,
we express attack relation and argument status by means of
propositional variables and define acceptability criteria by
formulas of propositional logic. We here study the dynamics
of argumentation frameworks in terms of basic operations on
these propositional variables, viz. change of their truth val-
ues. We describe these operations in a uniform way within a
well-known variant of Propositional Dynamic Logic PDL: the
Dynamic Logic of Propositional Assignments, DL-PA. The
atomic programs of DL-PA are assignments of propositional
variables to truth values, and complex programs can be built
by means of the connectives of sequential and nondeterminis-
tic composition and test. We start by showing that in DL-PA,
the construction of extensions can be performed by a DL-PA
program that is parametrized by the definition of acceptance.
We then mainly focus on how the acceptance of one or more
arguments can be enforced and show that this can be achieved
by changing the truth values of the propositional variables de-
scribing the attack relation in a minimal way.

Introduction

Argumentation is a reasoning model based on the construc-
tion and on the evaluation of arguments. The seminal ap-
proach by Dung (Dung 1995) represents an argumentation
framework AF as a set of abstract arguments, the struc-
ture and origin of which are left unspecified, along with an
attack relationship between arguments. Dung and his fol-
lowers have defined semantics for the evaluation of the ac-
ceptability of arguments (see (Baroni and Giacomin 2009)
for a comprehensive overview). We focus in this paper on
extension-based semantics, that define collectively accept-
able sets of arguments, called extensions.

Dung’s AF has already been represented in various log-
ics, notably in propositional logic, starting with (Besnard
and Doutre 2004). There, AF is described by means of a
boolean formula in a logical language whose propositional
variables represent the attacks (the attack variables). Fur-
thermore, extensions of the AF under a given semantics σ
can also be described by means of boolean formulas con-
straining valuations to correspond to the extensions under

the semantics. This is done in an extension of the language
of attack variables by variables representing argument ac-
ceptance.

Based on such a logical representation, several authors
have recently investigated the dynamics of the AF, such
as (Baumann 2012; Booth et al. 2013; Bisquert et al. 2013;
Coste-Marquis et al. 2013). They start by distinguishing sev-
eral kinds of modification of the AF, such as the addition
or the removal of attacks, or the enforcement of the accept-
ability of an argument a (e.g. such that a is part of at least
one extension). All these papers build on previous work in
belief change, either referring to AGM theory (Alchourrón,
Gärdenfors, and Makinson 1985), such as (Booth et al. 2013;
Coste-Marquis et al. 2013), or to KM theory (Katsuno and
Mendelzon 1992), such as (Bisquert et al. 2013). They ex-
press the modification as a logical formula describing some
goal, i.e., a property that AF should satisfy: the task is to
revise/updateAF so that this formula is true.

The above papers do not provide a single framework en-
compassing at the same time AF, the logical definition of
the enforcement constraint and the change operations: there
is usually one language for representing AF and another
language for representing constraints, plus some definitions
in the metalanguage connecting them. This has motivated
us to provide a general, unified logical framework for the
representation and the update of argumentation frameworks.
We make use of a flexible yet simple logic: Dynamic Logic
of Propositional Assignments, abbreviated DL-PA (Balbiani,
Herzig, and Troquard 2013). DL-PA is a simple instanti-
ation of Propositional Dynamic Logic PDL (Harel 1984;
Harel, Kozen, and Tiuryn 2000) whose atomic programs are
assignments of propositional variables to either true or false.
Complex programs are built then from atomic programs by
the standard PDL program operators of sequential composi-
tion, nondeterministic composition, and test. We here more-
over add a less frequently considered PDL program operator,
namely the converse operator. The language of DL-PA has
formulas of the form 〈π〉ϕ and [π]ϕ, where π is a program
and ϕ is a formula. The former expresses that ϕ is true after
some possible execution of π, and the latter expresses that
ϕ is true after every possible execution of π. It is shown in
(Balbiani, Herzig, and Troquard 2013) that every DL-PA for-
mula can be reduced to an equivalent propositional formula.
The reduction extends to the converse operator in a straight-



forward manner and provides a syntactical representation of
the modified belief base.

We start by showing that the construction of extensions
under a given semantics can be performed by a DL-PA pro-
gram that is parametrized by the formula describing the se-
mantics. Then we consider modifications of the attack re-
lation and/or of the extensions. Modifications of the ex-
tensions are enforced by changing the attack relation only
(addition or removal of attacks between the existing argu-
ments). This can be achieved by changing the truth values
of the attack variables. More precisely, to every input for-
mula A describing the desired modification we associate a
DL-PA program πA implementing the update by A. We can
then check whether a formula C is true in all (resp. in some)
extensions of (the argumentation framework resulting from)
the updateAF by the goal A.

The paper is organized as follows. In the next section we
recall the definitions of an argumentation framework and of
various semantics as well as their encoding in propositional
logic. We then introduce DL-PA and show how to use it to
construct extensions, before applying it to the modification
of the attack relation and of the extensions. After that, we
discuss several ways to extend our framework in order to
capture other kinds of modifications. The last section dis-
cusses related work and concludes.1

Representing argumentation frameworks
In the present section we set the stage for our paper: we re-
call the definition of argumentation frameworks and provide
a logical language to reason about them.

Argumentation frameworks An abstract argumentation
framework as defined by Dung in (Dung 1995) is a pair
AF = (A,R) where A is a finite set of abstract arguments
and R ⊆ A × A is a binary relation on A, called the at-
tack relation: (a, b) ∈ R means that a attacks b. So an argu-
mentation framework is a directed graph with arguments as
vertices and attacks as edges.

An argumentation framework AF can be represented in
propositional logic as follows. First, a set of attack variables
is associated to the set of argumentsA:

ATTA = {Atta,b : (a, b) ∈ A ×A}

Let LAtt be the set of all formulas that are built from attack
variables. Theory ofAF = (A,R) is the boolean formula

ThAF =
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Example 1. Consider the set of arguments A1 = {a, b} and
the two argumentation frameworks AF1 = (A1,R1) and
AF2 = (A1,R2), with R1 = {(a, b)} and R2 = {(a, b), (b, a)}.
They are depicted in Figure 1.
AF1 andAF2 are described by the theories

ThAF1
= Atta,b ∧ ¬Attb,a ∧ ¬Atta,a ∧ ¬Attb,b

ThAF2
= Atta,b ∧ Attb,a ∧ ¬Atta,a ∧ ¬Attb,b

1A longer version of the paper including proofs is avail-
able at http://www.irit.fr/˜Laurent.Perrussel/

paper96-kr14-long.pdf.

a ✲ b a
✲

✛ b

Figure 1:AF1 (on the left) andAF2 (on the right)

Argumentation semantics Many semantics have been
defined for acceptability. Some of them are extension-based,
some others are labelling-based. In this paper we only con-
sider the first: they prevail in the literature, and moreover
equivalent extension-based formulations of labelling-based
semantics are available (Baroni and Giacomin 2009).

For a given AF, a semantics identifies sets of acceptable
arguments, called extensions. There may be none, one or
several such extensions. In order to characterize extensions
we associate toA a second set of propositional variables:

INA = {Ina : a ∈ A}

where Ina stands for “argument a belongs to an extension”.

As proposed in (Besnard and Doutre 2004) and as exten-
sively discussed in (Gabbay 2011), several semantics can be
captured in propositional logic. Among such semantics, we
consider at first the well-known stable, admissible and com-
plete semantics.2

We write the propositional formulas capturing these se-
mantics in a language that is built from the set of proposi-
tional variables P = ATTA ∪ INA by means of the boolean
connectives in the usual way. Let LAtt,,In be our language of
Boolean formulas.

A stable extension of AF = (A,R) is a set S ⊆ A such
that it does not exist two arguments a and b in S such that
(a, b) ∈ R (that is, S is conflict-free), and for each argument
b < S , there exists a ∈ S such that (a, b) ∈ R (any argument
out of the extension is attacked by the extension). This can
be rephrased in propositional logic as follows (Besnard and
Doutre 2004):

StableA =
∧
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∨
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An admissible set of AF = (A,R) is a conflict-free set
S ⊆ A that defends all its elements: for all a ∈ S , if there
exists b such that (b, a) ∈ R, then there is some argument
c ∈ S such that (c, b) ∈ R.

AdmA =
∧
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A complete extension of AF = (A,R) is an admissible
set S ⊆ A that contains all the arguments it defends, that is:
if an argument a is such that, for all b such that (b, a) ∈ R,

2Admissibility is usually considered to be a building brick of
other, stronger semantics, but we consider it here as a semantics
on its own, the construction of admissible sets following the same
process as the construction of extensions.



there exists some c ∈ S such that (c, b) ∈ R, then a ∈ S .

CompleteA =
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The justification state of an argument (Baroni and Gia-
comin 2009) depends on the extensions it belongs to; basi-
cally, an argument is credulously justified (resp. skeptically
justified) under a given semantics, if it belongs to at least one
of (resp. all) the extensions under the semantics.

Extensions and valuations Argumentation frameworks
and semantics being encoded in propositional logic, com-
puting the extensions under the semantics consists in finding
the models of the formulas representing the argumentation
system and the semantics. A valuation is a subset of the set
of propositional variables P = ATTA ∪ INA. The set of all
valuations is 2P. We use v, v1, v2, etc. to denote valuations.
A given valuation determines the truth value of the boolean
formulas of the language LAtt,,In in the usual way. The set of
valuations where A is true is called the set of models of A or
the set of A-valuations and is noted ||A||.

The following proposition, adapted from (Besnard and
Doutre 2004), connects extensions and valuations.

Proposition 1. Let AF = (A,R) be an argumentation
framework and let E ⊆ A. Consider the valuation vE =

{Atta,b : (a, b) ∈ R} ∪ {Ina : a ∈ E}.

1. E is a stable extension of AF if and only if vE is a model
of ThAF ∧ StableA.

2. E is an admissible set of AF if and only if vE is a model
of ThAF ∧ AdmA.

3. E is an complete extension of AF if and only if vE is a
model of ThAF ∧ CompleteA.

Given a definition of a semantics σ (either stable, admis-
sible, or complete), we denote the associated propositional
formula describing the semantics by Semanticsσ.

Corollary 1. LetAF = (A,R) be an argumentation frame-
work. Let σ be a semantics. Let C ∈ LAtt,,In be a formula
describing some property of A. All extensions of AF have
property C if and only if ThAF ∧ SemanticsσA → C is valid.

Example 2. Let us consider again Example 1. AF1 has a
single stable extension {a}, two admissible extensions {} and
{a}, and one complete extension {a}; that is:

ThAF1
∧ StableA1

→ Ina ∧ ¬Inb

ThAF1
∧ AdmA1

→ ¬Inb

ThAF1
∧ CompleteA1

→ Ina ∧ ¬Inb

DL-PA: Dynamic Logic of Propositional

Assignments

We have just seen that looking for the extensions of an ar-
gumentation frameworkAF with respect to some semantics
σ amounts to looking for the models of the formulas repre-
senting AF and σ. We now consider a way to build these

models in a logic which makes operations on valuations,
namely the Dynamic Logic of Propositional Assignments
DL-PA (Herzig et al. 2011; Balbiani, Herzig, and Troquard
2013). DL-PA is based on Propositional Dynamic Logic PDL
(Harel 1984; Harel, Kozen, and Tiuryn 2000). Just as PDL,
it has operators of sequential and nondeterministic composi-
tion of programs, test and iteration (the Kleene star), which
enable reasoning about programs. The atomic programs of
DL-PA are assignments of truth values to propositional vari-
ables, such as assigning true or false to p, respectively writ-
ten p←⊤ and p←⊥. The formulas of DL-PA can express
how valuations are modified by programs so that after this
modification stage, some property holds. In our context, they
express how to build the valuations representing the exten-
sions of AF w.r.t. σ. Before showing this we define syntax
and semantics of DL-PA and state complexity results.

We here base our work on the star-free version of DL-PA
of (Herzig et al. 2011), that we extend by the operator of con-
verse execution of programs. We keep on calling that logic
DL-PA.

Language The language of DL-PA is defined by the fol-
lowing grammar:

π F p←⊤ | p←⊥ | ϕ? | π; π | π ∪ π | π−

ϕ F p | ⊤ | ⊥ | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ

where p ranges over P.

Key formulas are: [π]ϕ which stands for “after every exe-
cution of the program π formula ϕ holds” and 〈π〉ϕ which
stands for “after some execution of the program π formula ϕ
holds”. The formula [π]ϕ abbreviates ¬〈π〉¬ϕ.

The atomic program p←⊤makes p true and p←⊥makes
p false. The operators of sequential composition (“;”), non-
deterministic composition (“∪”) and test (“(.)?”) are famil-
iar from PDL. The operator “(.)−” is the converse operator:
formula [π−]ϕ stands for “before every execution of the pro-
gram π formula ϕ was true” and 〈π−〉ϕ stands for “before
some execution of the program π formula ϕ was true”.

The length of a formula ϕ, noted |ϕ|, is the number of
symbols used to write down ϕ, without “〈”, “〉”, and paren-
theses. For example, |¬(q ∨ ¬r)| = 1+(1+1+2) = 5 and
|〈q←⊤〉(q ∨ r)| = 3+3 = 6. The length of a program π, noted
|π|, is defined in the same way. For example, |p←⊥; p?| =
3+1+2 = 6.

Conjunction (∧), implication (→) and equivalence (↔)
are considered with their usual meaning. We also make use
the exclusive disjunction ϕ⊕ψ which abbreviates (ϕ∧¬ψ)∨
(¬ϕ∧ψ). Furthermore, several program abbreviations are fa-
miliar from PDL. First, skip abbreviates ⊤? (“nothing hap-
pens”). Second, for n ≥ 0, we define inductively πn and π≤n

as follows:

πn =

{

skip if n = 0

π; πn−1 if n ≥ 1

π≤n =

{

skip if n = 0

(skip ∪ π); π≤n−1 if n ≥ 1



||p←⊤|| = {(v1, v2) : v2 = v1 ∪ {p}}

||p←⊥|| = {(v1, v2) : v2 = v1 \ {p}}

||ϕ?|| = {(v, v) : v ∈ ||ϕ||}

||π; π′|| = ||π|| ◦ ||π′||

||π ∪ π′|| = ||π|| ∪ ||π′||

||π−|| = ||π||−1

||p|| = {v : p ∈ v}

||⊤|| = 2P

||⊥|| = {}

||¬ϕ|| = 2P \ ||ϕ||

||ϕ ∨ ψ|| = ||ϕ|| ∪ ||ψ||

||〈π〉ϕ|| =
{

v : there is v′ s.t. (v, v′) ∈ ||π|| and v′ ∈ ||ϕ||
}

Table 1: Interpretation of the DL-PA connectives

Let us now introduce assignments of literals to variables by
way of the following abbreviations:

p←q = (q?; p←⊤) ∪ (¬q?; p←⊥)

p←¬q = (q?; p←⊥) ∪ (¬q?; p←⊤)

The former assigns to p the truth value of q, while the latter
assigns to p the truth value of ¬q. So p←p does nothing and
p←¬p flips the truth value of p. Note that both abbreviations
have constant length, viz. 14.

Semantics Models of DL-PA are nothing but models of
classical propositional logic, i.e., subsets of the set of propo-
sitional variables P, alias valuations. We sometimes write
v(p) = 1 when ∈ v and v(p) = 0 when < v. DL-PA pro-
grams are interpreted by means of a (unique) relation be-
tween valuations. For instance, suppose P = {p} and con-
sider the atomic program π = p←⊤, and the two valua-
tions v1 = {} and v2 = {p}. The execution of π relates v1

to v2, and v2 to itself. In other words, π is interpreted as
||π|| = {(v1, v2), (v2, v2)}.

Atomic programs of the form p←⊤ and p←⊥ are inter-
preted as update operations on valuations, and complex pro-
grams are interpreted just as in PDL by mutual recursion.
Table 1 gives the interpretation of the DL-PA connectives.

Two formulas ϕ1 and ϕ2 are formula equivalent if ||ϕ1|| =

||ϕ2||. Two programs π1 and π2 are program equivalent if
||π1|| = ||π2||. In that case we write π1 ≡ π2. For example,
the program equivalence π; skip ≡ π holds.

An expression is a formula or a program. When we
say that two expressions are equivalent we mean program
equivalence if we are talking about programs, and formula
equivalence otherwise. Equivalence is preserved under re-
placement of a sub-expression by an equivalent expression
(Balbiani, Herzig, and Troquard 2013).

Eliminating the modal operators DL-PA formulas being
interpreted through classical propositional logic valuations,
modal operators can be eliminated. In order to do this, we

(ϕ?)− ≡ ϕ?

(π1; π2)− ≡ π−2 ; π−1

(π1 ∪ π2)− ≡ π−1 ∪ π
−
2

p←⊤− ≡ p?; (skip ∪ p←⊥)

≡ p? ∪ (p?; p←⊥)

p←⊥− ≡ ¬p?; (skip ∪ p←⊤)

≡ ¬p? ∪ (¬p?; p←⊤)

Table 2: Reduction axioms for the converse operator

first eliminate the converse operator. Table 2 lists the rele-
vant program equivalences (aka reduction axioms). Iterating
their application we can eliminate the converse operator with
only linear increase in program size. For example, for as-
signments of variables to literals we have:

p←q− ≡

{

p←p if p = q

p↔q?; (p←⊤∪ p←⊥) otherwise

p←¬q− ≡

{

p←¬p if p = q

p⊕q?; (p←⊤∪ p←⊥) otherwise

Proposition 2. For every DL-PA formula ϕ there is an
equivalent DL-PA formula ϕ′ such that ϕ′ is without (.)− and
such that the length of ϕ′ is linear in the length of ϕ.

Next, we remind the following key result: for converse-
free DL-PA, every formula is equivalent to a boolean formula
(Herzig et al. 2011; Balbiani, Herzig, and Troquard 2013).
With Proposition 2 we obtain the following result for our
present language with converse.

Theorem 1. For every DL-PA formula there is an equivalent
boolean formula.

For example, for different propositional variables r and
p, the formula 〈p←⊥〉(p ∨ r) is successively equivalent to
〈p←⊥〉p ∨ 〈p←⊥〉r, to ⊥ ∨ r, and to r.

Note that the boolean formula might be exponentially
longer than the original formula.

Validity and complexity results A formula ϕ is DL-PA
valid if it is equivalent to ⊤, i.e., if ||ϕ|| = 2P. It is DL-PA sat-
isfiable if it is not a formula equivalent to ⊥, i.e., if ||ϕ|| ,
{}. For example, the formulas 〈p←⊤〉⊤ and 〈p←⊤〉ϕ ↔
¬〈p←⊤〉¬ϕ are DL-PA valid.

Due to Proposition 2, the complexity results of (Herzig
et al. 2011) transfer to our extension with the converse op-
erator: both model checking and satisfiability checking are
PSPACE complete for our language.

Constructing extensions with DL-PA

Let us first show how the extensions of an argumentation
framework can be constructed by means of DL-PA programs.
Remember that such programs modify valuations: our aim is
to define a program which sets the truth values of the vari-
ables representing the acceptance of an argument so that af-
ter the execution of that program, the formula characterizing



the semantics holds. We first present a few definitions that
will help us to define that program.

Sorting variables of LAtt,,In formulas For every LAtt,,In

formula A we consider two sets: the set of attack vari-
ables occurring in A, noted ATT(A), and the set of ac-
cept variables occurring in A, noted IN(A). For example,
ATT(¬Atta,b ∨ Ina) = {Atta,b} and IN(¬Atta,b ∨ Ina) = {Ina}.
It is the modifications of ATT(A) that will be minimized in
order to construct the extensions, while the modifications of
the set IN(A) will not be minimized: given the truth values
of the attack variables, the semantics determines the truth
values for the accept variables (or rather, the possible com-
binations of accept variables, because there may be several
extensions).

Evaluating the difference between valuations The sym-
metric difference between two valuations v1, v2 ⊆ P is the
number of variables whose truth values differ, formally de-
fined as

v1−̇v2 = (v1 \ v2) ∪ (v2 \ v1)

So v1−̇v2 is the set of all those p such that v1(p) , v2(p).
The Hamming distance between two valuations v1, v2 ⊆ P

is the cardinality of their symmetric difference: v1−̇v2 is the
number of all those p such that v1(p) , v2(p).

Example 3. Suppose two valuations: {p, q} and {q, r, s}.
Their symmetric difference is {p, r, s} and their Hamming
distance is 3.

Changing variables through DL-PA programs Let us
consider the two following DL-PA programs that can change
the truth value of one or more propositional variables in the
finite subset P = {p1, . . . , pn} of the set of propositional vari-
ables P = ATTA ∪ INA.

vary(P) = (p1←⊤∪ p1←⊥); · · · ; (pn←⊤∪ pn←⊥)

flip1(P) = p1←¬p1 ∪ · · · ∪ pn←¬pn

The intuitive meaning of program vary(P) is “the program
is composed of a sequence of n steps and at each step i,
the value of variable pi is nondeterministically set to either
to true or false”; one may also say that vary(P) forgets the
values of the variables in P. Second, program flip1(P) should
be read as “one variable from P is randomly chosen and is
nondeterministically set to either true or false”. Observe that

the programs vary(P) and
(

flip1(P)
)≤n

are equivalent.
Note that the length of each program is linear in the car-

dinality of P.
The following lemma characterises the behaviour of the

two programs in semantic terms.

Lemma 1. The following hold:

1. (v1, v2) ∈ ||vary(P)|| iff v1−̇v2 ⊆ P

2. (v1, v2) ∈ ||flip1(P)|| iff v1−̇v2 = {pk} for some pk ∈ P

Given an LAtt,,In formula A, PA is defined as the set of
variables from P occurring in A. The first item of Lemma 1
hence tells us that the program vary(PA); A? accesses all rel-
evant A-valuations (where ‘relevant’ means that only those
A-valuations are accessed which keep constant the truth val-
ues of variables not occurring in A).

Example 4. Consider the formula A = Ina ∧ ¬Inb. The set
of variables of A is PA = {Ina, Inb}. The models of A can
be built by, first, varying the truth values of the variables
of the formula (vary(PA)), and second, by testing which of
the resulting valuations satisfy the formula, and by keeping
them only (A?). vary(PA) is here:

(Ina←⊤∪ Ina←⊥); (Inb←⊤∪ Inb←⊥)

Its execution relates each valuation for PA, i.e., each of {},
{Ina}, {Inb}, and {Ina, Inb}, to every other, including itself.
Among the couples of valuations making up that relation,
there is only one relating the model of A (that is, {Ina}) to
itself. So the execution of the test A? only keeps this pair in
the relation. So the pair ({Ina}, {Ina}) is a possible execution
of the program vary(PA); A?.

Our example illustrates that the satisfiability of a boolean
formula A can be expressed in DL-PA as the existence of
valuation that is accessible by the program vary(PA); A?, i.e.,
by means of the formula

〈vary(PA); A?〉⊤

The formula says that there is a way of changing the truth
value of some variables of A so that A is true afterwards.

Lemma 2. Let A be a propositional formula. A is (proposi-
tionnally) satisfiable iff 〈vary(PA); A?〉⊤ is DL-PA valid.

Defining extensions in DL-PA Let us now show how a
DL-PA program can express in a concise and natural way
the construction of extensions of an argumentation frame-
workAF under a semantics σ. The program makeExtσA be-
low constructs the valuations representing extensions w.r.t.
a semantics σ, of argumentation frameworks over the set of
arguments A. Remember that the set of attack variables is
ATTA, that the set of accept variables is INA, and that σ is
either stable, complete, or admissible acceptability seman-
tics. We define the DL-PA program makeExtσA as follows:

makeExtσA = vary(INA); SemanticsσA?

The following result says that if v1 completely describes
the attack relation then the set of accept variables of the val-
uations v2 such that (v1, v2) ∈ ||makeExtσA|| characterises the
extensions of AF w.r.t. semantics σ. It is a consequence of
Corollary 1 and Lemma 2.

Lemma 3. Let AF be an argumentation framework. Let σ
be either the stable, complete or admissible semantics. Let
v1 be a model of ThAF. Then (v1, v2) ∈ ||makeExtσA|| iff v2 is
a model of ThAF ∧ SemanticsσA.

Lemma 3 entails that we can construct all the extensions
of a given argumentation system w.r.t. some semantics by
means of a DL-PA program.

Proposition 3. Let AF = (A,R) be an argumentation
framework and let C be a boolean formula. The boolean for-
mula ThAF ∧ SemanticsσA → C is propositionally valid if
and only if the DL-PA formula ThAF → [makeExtσA]C is
valid. Moreover, the equivalence

ThAF ∧ SemanticsσA ↔ 〈(makeExtσA)−〉ThAF

is DL-PA valid.



According to Proposition 3, given a description of the at-
tack relation, program makeExtσA can construct valuations
where the formula describing the semantics is true, and so
in a way such that only acceptance variables are changed,
while the attack variables do not change. Note that the equiv-
alence takes care of situations where there is no extension.
Let the LAtt,,In formula A be a goal, i.e., a boolean formula
that should be satisfied by the extensions of some AF. By
means of the program makeExtσA one can check what has
been called σ-consistency in (Coste-Marquis et al. 2013):
whether there exists an argumentation framework AF such
that some or every extension w.r.t. σ satisfies A. Adopting
the standard terms for characterizing a justification state, we
distinguish the notions of credulous and skeptical consis-
tency.

Definition 1 (σ-consistency). Let AF = (A,R) be an ar-
gumentation framework, let σ be either the stable, admis-
sible, or complete semantics. The LAtt,,In formula A is σ-
credulously-consistent forA iff 〈makeExtσA〉A is satisfiable;
A is σ-skeptically-consistent for A iff [makeExtσA]A is sat-
isfiable.

Example 5. Consider the set of arguments A2 = {a, b} and
the goal A = ¬Ina ∧ ¬Inb ∧ ¬Atta,a. Then 〈makeExtσA〉A
is unsatisfiable; in particular, it is false in every valuation
for ThAF2

of Example 1. Therefore the formula A is stable-
credulous inconsistent forA2.

To sum it up, we have shown how extensions can be
constructed through programs modifying propositional vari-
ables. In the next section we show how to modify an argu-
mentation framework and its extensions.

Modifying an argumentation framework

We start by discussing several kinds of modifications of an
argumentation framework AF and then focus on the most
involved family of operations: modifications enforcing a
goal either in all extensions or in some extension ofAF.

Generally speaking, when we want to incorporate a new
piece of information A into a belief base B then we want
to build a new belief base that retains as much as possi-
ble the initial beliefs of B while entailing A. Neither AGM
theory (Alchourrón, Gärdenfors, and Makinson 1985) nor
KM (Katsuno and Mendelzon 1992) theory provide a sin-
gle, concrete belief change operation: they rather constrain
the set of ‘reasonable’ belief change operations by means of
a set of postulates. Several concrete belief change operations
satisfying the AGM or KM postulates have been defined
in the literature. Among the most prominent are Winslett’s
‘possible models approach’ (PMA) (Winslett 1988; 1990),
Forbus’s update operation (Forbus 1989), Winslett’s stan-
dard semantics (WSS) (Winslett 1995), and Dalal’s revi-
sion operation (Dalal 1988); see (Herzig and Rifi 1999;
Lang 2007) for an overview. According to Katsuno and
Mendelzon’s distinction between update and revision opera-
tions (Katsuno and Mendelzon 1992), the first three are up-
date operations, usually written ⋄, while Dalal’s is a revision
operation, usually written ∗.

Kinds of change Several kinds of modifications of a given
argumentation framework AF = (A,R) have been dis-
tinguished (Cayrol, Dupin de Saint Cyr Bannay, and
Lagasquie-Schiex 2010):

1. One may modify the set of arguments A by adding or
removing an argument.

2. One may modify the attack relation R by adding or re-
moving an edge between two arguments.

3. One may wish to modify the extensions ofAF.

The first kind of operation, viz. adding an argument to the
set of arguments A or removing it, requires more linguistic
resources than our language LAtt,,In provides; we will sketch
a way of implementing it in DL-PA in an augmented lan-
guage in the end of the paper.

Addition and removal of an attack edge between two ar-
guments a, b ∈ A are rather simple operations: we just
add or subtract (a, b) from R. In our logical representation,
these operations correspond to making propositional vari-
ables true or false: the addition of (a, b) to R can be imple-
mented by the update of ThAF by Atta,b, and the removal of
(a, b) from R can be implemented by the update of ThAF
by ¬Atta,b.3 In DL-PA, the update of ThAF by Atta,b can be
implemented by the program Atta,b←⊤, and the update by
¬Atta,b by Atta,b←⊥. Indeed, we have:

ThAF ⋄ Atta,b = 〈Atta,b←⊤
−〉ThAF

ThAF ⋄ ¬Atta,b = 〈Atta,b←⊥
−〉ThAF

where ⋄ is any of the above belief change operations. Once
ThAF has been updated by some Atta,b or ¬Atta,b, the exten-
sions of the resulting framework can be obtained by conjoin-
ing the result with SemanticsσA.

Adding an argument to extensions or removing it is more
involved because it has to be achieved indirectly, by chang-
ing the underlying attack relation of AF (or by changing
the set of arguments, but as we said, we disregard this op-
tion for the time being). Moreover, when an argumentation
framework has several extensions, one may wish to change
the justification status of a, so that it be skeptically justified
(that is, added in all the extensions), or credulously justified
(added in at least one extension), or credulously justified but
not skeptically justified (added in at least one extension, but
removed from at least one), or even not credulously justified
(removed from all extensions).

While the distinction between update and revision was ir-
relevant for the modification of the attack relation, it gets
important when it comes to the modification of extensions:
which operation should we apply? We dedicate the next sec-
tion to the problem of modifying an extension.

3We note that the question whether this is an update or a revi-
sion does not really play a role here because we are in a simple sit-
uation: as far as the language LAtt is concerned, the formula ThAF
is complete (it has a unique model), and the update of complete
theories by literals leads to the same result for all the belief change
operations that we have mentioned, WSS, PMA, Forbus, and Dalal,
be they update or revision operations.



The modification of extensions In order to discuss which
change operation is the most appropriate, let us consider
again the above argumentation framework AF2 = (A2,R2)
and the stable semantics. AF2 has two stable extensions
Ea = {a} and Eb = {b}. We have seen that the associated
boolean formula ThAF2

∧ StableA2
has two LAtt,,In models:

va = {Atta,b,Attb,a, Ina}

vb = {Atta,b,Attb,a, Inb}

Suppose we wish to modifyAF2 such that a is in none of its
stable extensions. What we have to do is to adapt the attack
relation ofAF2 in a way that is minimal and that guarantees
that a does not occur in any of its extensions, while guar-
anteeing that a is rejected. We view minimality as minimal-
ity of the number of modifications of the attack relation; in
contrast, the current extensions may be modified in a non-
minimal way. This policy agrees with (Coste-Marquis et al.
2013), where the minimization of the changes on the attack
relation is considered to be secondary.

What we do is to modify the models of ThAF2
∧StableA2

one by one so that Ina holds: we minimally modify the at-
tack variables such that the result is stable. As we can see,
enforcing a constraint is similar to update and we will here-
after commit to this reading.

To sum up, enforcing A consists in minimally updat-
ing the attack relation of an initial argumentation frame-
work AF = (A,R) with respect to some goal A in a way
such that A holds in all of the extensions of the resulting
AF ′ = (A,R′). Another perspective is however possible,
too, where enforcing consists in minimally modifying the
attack relation such that A holds in some of the extensions
of the resulting AF ′ = (A,R′). This operation seems to be
closer in spirit to a revision operation. So ‘enforcement’ can
be understood in two different ways, leading to two differ-
ent definitions. In both cases, there is a key difference with
standard revision and update operations: in classical belief
change, output is limited to one belief set, while here, sev-
eral AF ′ may be produced by the enforcement operations.
LetAF⋄Cred,σ A denote the credulous enforcement of prop-
erty A inAF w.r.t. semantics σ, and letAF⋄Skep,σ A denote
the skeptical enforcement of property A inAF. We consider
that both⋄Cred,σ and ⋄Skep,σ are operations mapping an ar-
gumentation framework and an LAtt,,In formula to a set of
argumentation frameworks.

In line with the definitions of classical revision and up-
date operations, we now define some postulates that ‘reason-
able’ operations ⋄ should satisfy. They are mainly inspired
by (Coste-Marquis et al. 2013).

We have shown above that both attack relations and σ-
consistency can be captured by DL-PA formulas. As more-
over the goal A is an LAtt,,In formula, too, our postulates can
be formulated in terms of DL-PA formulas.

Definition 2 (enforcement postulates). Let ⋄ be an opera-
tion mapping an argumentation framework and an LAtt,,In

formula to a set of argumentation frameworks. Let σ be ei-
ther the stable, admissible, or complete semantics. The op-
eration ⋄ is a credulous enforcement operation iff it satisfies
the following postulates:

E1.C For allAF ′ ∈ AF ⋄σ A, |= ThAF ′ → 〈makeExtσA〉A.

E2.C If |= ThAF ∧ SemanticsσA → 〈makeExtσA〉A then
AF ⋄σ A = {AF}.

E3 If |= A1 ↔ A2 then for every AF1 ∈ AF ⋄
σ A1 there

existsAF2 ∈ AF ⋄
σ A2 such that |= ThAF1

↔ ThAF2
.

The operation ⋄ is said to be a skeptical enforcement op-
eration iff it satisfies postulate E3 plus the following:

E1.S For allAF ′ ∈ AF ⋄σ A, |= ThAF ′ → [makeExtσA]A.

E2.S If |= ThAF ∧ SemanticsσA → [makeExtσA]A then
AF ⋄σ A = {AF}.

The postulates E1.C and E1.S say that success in re-
quired for credulous and skeptical enforcement E2 repre-
sents a minimal change principle: it states that if A already
holds then AF is unchanged. Postulate E3 is the postulate
of syntax independence: enforcement should be based on the
content of a goal and not on its syntax.

Additional postulates may be formulated; see (Bisquert et
al. 2013; Coste-Marquis et al. 2013) for more details. A key
difference is that we do not consider postulates based on the
expansion operation. The main reason is that this operation
is actually useless: first, if an attack has to be changed then
expansion cannot be used because, as we have seen above,
ThAF is complete for LAtt. Now consider that an argument
has to be enforced in a credulous way. We face two cases:
(i) either the argument is already credulously acceptable and
there is no reason to change the argumentation framework,
or (ii) the argument is not credulously acceptable. Then as
all possible extensions are considered, some attacks must be
changed so that new extensions can be constructed (and A
will then hold). The same reasoning can be made for skepti-
cal acceptance.

Let us now show how DL-PA helps us to reason about
enforcement.

Expressing extension modification in DL-PA

The aim of this section is to show how modification pro-
grams can be defined. These programs should satisfy the
enforcement postulates that we have defined. Second, they
should only minimally change the attack relations of an ini-
tial argumentation framework. As previously mentioned, en-
forcement is close to update, and we will root our programs
in the update operations that guarantee minimal change. One
of the most popular is Forbus’s update operation (Forbus
1989), where minimal change involves counting how many
variables have been changed. Our solution is strongly con-
nected to it.

The Hamming distance predicate Let us define the
DL-PA formula h(A,≥m), where A is anLAtt,,In formula, P is
a set of propositional variables, and m ≥ 0 is an integer:

h(A, P,≥m) =

{

⊤ if m = 0

¬〈
(

flip1(P)
)≤m−1

〉A if m ≥ 1

We call h(A, P,≥m) the Hamming distance predicate w.r.t.
the set of variables P: it is true at a valuation v exactly
when the A-valuations v′ that are closest to v in the sense
of the Hamming distance differ in at least m variables from



v, where the computation of the distance only considers vari-
ables from the set P, while the other variables in P \ P keep
their value.

Proposition 4. Let v a valuation, A a boolean formula, P
some set of propositional variables, and m ≥ 0. Then

1. v ∈ ||h(A, P,≥m)|| iff the A-valuations that are closest
to v w.r.t. P have Hamming distance at least m, i.e., iff
card(v−̇v′) ≥ m for every v′ ∈ ||A|| s.t. v−̇v′ ⊆ P.

2. (v, v′) ∈ ||h(A, P,≥m)?;
(

flip1(P)
)m

; A?|| iff v′ is one of the
A-valuations that is closest to v w.r.t. P, i.e., iff v′ ∈ ||A||
and card(v−̇v′) = m for every v′ ∈ ||A|| s.t. v−̇v′ ⊆ P.

It follows from the first item of Proposition 4 that when P
equals PA then v ∈ ||h(A,PA,≥m)|| iff the A-valuations that
are closest to v have Hamming distance at least m, i.e., iff
card(v−̇v′) ≥ m for every v′ ∈ ||A||. This is used in Forbus’s
udpate operation.

Forbus’s update operation Forbus’s update operation is
based on minimization of the Hamming distance. First, the
Forbus update of a valuation v by A is the set of those A-
valuations whose Hamming distance to v is minimal. Sec-
ond, the Forbus update of a belief base B by A collects the
Forbus updates of all B-valuations by A.

The following DL-PA program performs Forbus’s update
operation:

forbus(A) =
⋃

m≤card(PA)

(

h(A,PA,≥m)?;
(

flip1(PA)
)m
)

; A?

The program nondeterministically chooses an integer m,
checks if the Hamming distance to A-valuations is at least
m and flips m of the variables of A. Finally, the test A? only
succeeds for A-valuations.

Proposition 5. The formula C is true after the Forbus up-
date of B by A if and only if B → [forbus(A)]C is DL-PA
valid.

Argumentation framework update The update of argu-
mentation frameworks has some specificities: first, we are
going to modify only the attack variables while leaving the
accept variables unchanged; second, the target formula is not
going to be a boolean formula, but a formula saying that A
will be the case after building extensions. Let us define the
program credEnf(A) modifyingAF w.r.t. some semantics σ
such that the boolean formula A ∈ LAtt,,In becomes true in
some σ-extensions:

credEnf(A) =
⋃

m≤card(ATTA)

(

h
(

〈makeExtσA〉A, ATTA,≥m
)

?;
(

flip1(ATTA)
)m
)

;

〈makeExtσA〉A?

The following program enforces a constraint in a skeptical
way.

skepEnf(A) =
⋃

m≤card(ATTA)

(

h
(

[makeExtσA]A, ATTA,≥m
)

?;
(

flip1(ATTA)
)m
)

;

[makeExtσA]A?

The length of these two programs is polynomial in the car-
dinality of A. (The cardinality of the set ATTA is quadratic
in that of A and the length of (flip1(ATTA)

)m
is quadratic in

that ofA.)
To check whether C is true in all extensions of AF mod-

ified by A (for A,C ∈ LAtt,,In ) can then be done by check-
ing whether the DL-PA formula ThAF → [skepEnf(A)]C is
valid. In particular we have the following proposition which
states that if there is a chance to get A by modifying the at-
tack variables then the enforcement will succeed:

Proposition 6.

|= [credEnf(A)]〈makeExtσA〉A

|= [skepEnf(A)][makeExtσA]A

The second key property is that an argumentation frame-
work is unchanged if the goal already holds.

Proposition 7. For every goal A that is credulously justified,
the credulous update program does not change anything:

|= (ThAF ∧ 〈makeExtσA〉A ∧ C) → [credEnf(A)]C

For every goal A that is skeptically justified, the skeptical
update program does not change anything:

|= (ThAF ∧ [makeExtσA]A ∧ C) → [skepEnf(A)]C

The modified argumentation frameworks can be
extracted from the formulas 〈credEnf(A)−〉ThAF and
〈skepEnf(A)−〉ThAF representing it in DL-PA (or rather,
their reduction) by forgetting the accept variables, as pro-
posed in (Coste-Marquis et al. 2013). This operation can be
implemented in our framework by the program vary(INA).

Definition 3 (⋄σ,enf). Let σ be either the stable, admissible,
or complete semantics. Let enf be either the skepEnf or the
credEnf program. Let ⋄σ,enf be an operation mapping an ar-
gumentation framework and an LAtt,,In formula to a set of
argumentation frameworks. The update ofAF by A under σ
and enf is

AF ⋄σ,enf A =
{

(A,Rv) : v ∈ ||〈(enf(A))−〉ThAF ||
}

where Rv is the attack relation extracted from v, defined as
Rv = {(a, b) : Atta,b ∈ v}.

The two preceding propositions guarantee that our en-
forcement operations satisfy the postulates.

Theorem 2. Operation ⋄σ,credEnf satisfies E1.C and E2.C.
Operation ⋄σ,skepEnf satisfies E1.S and E2.S. Both opera-
tions ⋄σ,credEnf and ⋄σ,skepEnf satisfy E3.

This result is actually not a surprise, given that our tool
for enforcement is a variant of Forbus’s update operation.

Example 6. Let us take up the argumentation framework
AF2 of Example 1. Remember that AF2 = (A1,R2), with
A1 = {a, b} and R2 = {(a, b), (b, a)} and that ThAF2

=

Atta,b ∧ Attb,a. Let us consider the stable semantics and sup-
pose our goal is to enforce that a is always acceptable (skep-
tical enforcement). We disregard self-attacks for the sake
of simplicity. The nondeterministic part

⋃

m≤card(ATTA)(. . .)
of the program SkepEnf(Ina) changes one variable from



ThAF2
, either Atta,b or Attb,a. This corresponds to two candi-

date extensions: one where a only attacks b and one where b
only attacks a. Only the former case gives valuations where
a is always acceptable. Hence:

AF ⋄Stable,skepEnf Ina =
{

(A1, {(a, b)})
}

Going Further

We have illustrated how DL-PA offers a fruitful framework
for representing argumentation framework and reasoning
about them. We now sketch several ways of extending our
account.

Other argumentation semantics Our exposition focused
on the stable, admissible, and complete semantics. This can
however be generalized to every semantics Σ whose exten-
sions can be characterized by a propositional formula ΣA
built from the set of attack variables ATTA and the set of ac-
cept variables INA. In the previous sections we have given
DL-PA programs modifying valuations (that represent ar-
gumentation frameworks) in a minimal way and producing
(representations of) extensions. Therefore all minimization-
based semantics can be handled in an elegant way, as well
as all maximization-based semantics. Semantics such as the
grounded semantics can then be described in terms of pro-
grams minimizing valuations.

Other update semantics The modification programs that
we have defined in the present paper basically applies For-
bus’s update operation to the attack variables. It is possible to
use other such operations, such as Winslett’s Possible Mod-
els Approach (PMA) (Winslett 1988), or revision operations
such as Dalal’s (Dalal 1988).

Other kinds of change Up to now we did not cover ad-
dition and removal of some argument from an argumenta-
tion framework. Let us sketch how this could be done in a
fairly straightforward way in the framework of DL-PA. First
of all, we have to add a further ingredient to argumentation
frameworks: let us consider triples AF = (A0,A,R) where
A ⊆ R×R as before, and moreoverA0 is a (possibly infinite)
set such thatA ⊆ A0. We think ofA0 as the background set
of all possible arguments, whileA is the set of all arguments
that are currently under consideration. We have to modify
the logical language LAtt,,In accordingly. First, we suppose
that there are propositional variables Atta,b and Ina for every
a, b in the background setA0. Second, we add propositional
variables Consa, one per argument a ∈ A0, where Consa

reads “a is considered”. Let us denote the resulting language
by LAtt,,In,Cons . Then the theory of AF = (A0,A,R) is the
boolean formula

ThAF =
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So ThAF does not say anything about the arguments that are
currently not under consideration: the models of ThAF have
arbitrary truth values for Atta,b, Attb,a, Ina, and Consa as soon
as a < A.

The semantic definitions have to be adapted, too, and
should only quantify over arguments in A, and not over

those inA0. For stable semantics we get:

StableA =
∧

a∈A

















Consa →
(

Ina ↔ ¬
∨

b∈A

(Inb ∧ Attb,a)
)

















In this setting, the mere addition or deletion of an argu-
ment a can be achieved straightforwardly, viz. by changing
the status of a from ‘disregarded’ to ‘considered’ by means
of the assignments Consa←⊤ and Consa←⊥. Subsequently,
the attack relation can be modified as sketched above: one
has to first delete all the Atta,b and Attb,a such that b ∈ A,
and then add the attack relation as desired.

Conclusion

The main result of this paper is the encoding of argumen-
tation frameworks and their dynamics in DL-PA. More pre-
cisely, our contribution is threefold.

First, as long as argument acceptability can be expressed
in propositional logic, finding acceptable arguments and en-
forcing acceptability can be done in DL-PA. Other logical
frameworks allow capturing and computing argument ac-
ceptability (see (Charwat et al. 2013) for an overview), but
few of them allow capturing and computing acceptability
change as well.

Second, as DL-PA formulas can be rewritten as propo-
sitional logic formulas, the result of the modification of
an argumentation framework is described by a proposi-
tional formula from the models of which one may retrieve
the modified argumentation frameworks. Our proposal is
hence more ‘operational’ than those of (Bisquert et al. 2013;
Coste-Marquis et al. 2013) because we use a formal logic en-
compassing the representation of change operations. More-
over, we consider not only credulous acceptability changes,
as most of the current approaches do (Baumann 2012; Coste-
Marquis et al. 2013), but skeptical acceptability change as
well.

Third, our framework takes advantage of the complex-
ity results for DL-PA: both model checking and satisfiabil-
ity checking are in PSPACE. A closer look at the formu-
las expressing the modifications shows that the alternation
of quantifications is bounded, which typically leads to com-
plexity bounds at the second level of the polynomial hierar-
chy.

The richness of our framework makes it expandable to
other kinds of changes, other update semantics, and other
argumentation semantics beyond those that are detailed in
the present paper. We plan to investigate this research avenue
in future work.
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Proofs

Proposition 1. Let AF = (A,R) be an argumentation
framework and let E ⊆ A. Consider the valuation vE =

{Atta,b : (a, b) ∈ R} ∪ {Ina : a ∈ E}.

1. E is a stable extension ofAF if and only if vE is a model
of ThAF ∧ StableA.

2. E is an admissible set of AF if and only if vE is a model
of ThAF ∧ AdmA.

3. E is an complete extension of AF if and only if vE is a
model of ThAF ∧ CompleteA.

Proof. These three items are propositions 5, 6, and 8 in
(Besnard and Doutre 2004). �

Corollary 1. Let AF = (A,R) be an argumentation
framework. Let σ be a semantics. Let C ∈ LAtt,,In be a for-
mula describing some property of A. All extensions of AF
have property C if and only if ThAF ∧ SemanticsσA → C is
valid.

Proof. According to Proposition 1, C is true in all exten-
sions ofAF if and only if C is true in every model of ThAF∧
SemanticsσA, i.e., if and only if ThAF ∧ SemanticsσA → C
is valid in classical propositional logic. �

Proposition 2. For every DL-PA formula ϕ there is an
equivalent DL-PA formula ϕ′ such that ϕ′ is without (.)− and
such that the length of ϕ′ is linear in the length of ϕ.

Proof. Given a formula ϕ, we choose some innermost con-
verse operator (such that no other converse operator is in its
scope) and apply the reduction axioms of Table 2 from the
left to the right: the first three of them ‘push the converse
operator down’ until it reaches an atomic program; in the fi-
nal stage, we eliminate these atomic programs p←⊤− and
p←⊥− by the last two reduction axioms. �

Theorem 1. For every DL-PA formula there is an equiva-
lent boolean formula.

Proof. Let ϕ be a DL-PA formula. By Proposition 2 there
is an equivalent formula ϕ′ without the converse operator.
Then there is a boolean formula ϕ′′ that is equivalent to ϕ′

by Theorem 2 of (Balbiani, Herzig, and Troquard 2013). �

Lemma 1. The following hold:

1. (v1, v2) ∈ ||vary(P)|| iff v1−̇v2 ⊆ P

2. (v1, v2) ∈ ||flip1(P)|| iff v1−̇v2 = {pk} for some pk ∈ P

Proof. For Item 1, if the set P = {p1, . . . , pn} is empty then
||vary(P)|| = ||skip|| and we are done. If it is a singleton then
we have

||{p1}|| = ||p1←⊤∪ p1←⊥||

= ||p1←⊤|| ∪ ||p1←⊥||

=
{

(v1, v2) : v2 = v1 ∪ {p}
}

∪
{

(v1, v2) : v2 = v1 \ {p}
}

=
{

(v1, v2) : v2 = v1−̇v2 ⊆ {p}
}

Then the result for the general case of an arbitrary set of
variables P should be clear (but the proof is a bit lengthy to
spell out).

For Item 2, if P is empty then ||flip1(P)|| = ||skip||. For a
single flip we have:

||pk←¬pk || = ||(pk?; pk←⊥) ∪ (¬pk?; pk←⊤)||

= ||pk?; pk←⊥|| ∪ ||¬pk?; pk←⊤||

= {(v1, v2) : pk ∈ v1 and pk < v2} ∪

{(v1, v2) : pk < v1 and pk ∈ v2}

= {(v1, v2) : v1−̇v2 = {pk}}

Therefore

||flip1(P)|| =
⋃

1≤k≤n

||pk←¬pk ||

= {(v1, v2) : v1−̇v2 = {pk} for some pk ∈ P}

�

Lemma 2. Let A be a propositional formula. A is (propo-
sitionnally) satisfiable iff 〈vary(PA); A?〉⊤ is DL-PA valid.

Proof. Suppose 〈vary(PA); A?〉⊤ is DL-PA valid. Let v
be some valuation. By the interpretation of the dynamic
operator there exists a valuation v′ such that (v, v′) ∈
||vary(PA); A?||. This means that there exists a valuation v′′

such that (v, v′′) ∈ ||vary(PA)|| and (v′′, v′) ∈ ||A?||. The latter
means that v′ ∈ ||A||: we have found a valuation where A is
true.

The other way round, suppose A is propositionnally satis-
fiable, i.e., there is some A-valuation vA. Let v be an arbitrary
valuation. Let v′

A
be the valuation which interprets the vari-

ables of A in the same way as vA and interprets the other
variables in the same way as v:

v′A = (vA ∩ PA) ∪ (v ∩ (P \ PA))

This is clearly also an A-valuation. (Indeed, for every p that
does not occur in ϕ we have v ∪ {p} ∈ ||ϕ|| iff v \ {p} ∈ ||ϕ||.)
As v−̇v′

A
⊆ PA we have (v, v′

A
) ∈ ||vary(PA)|| by Item 1 of

Lemma 1. And as v′
A

is an A-valuation we have (v′
A
, v′

A
) ∈

||A?||. So (v, v′
A
) ∈ ||vary(PA); A?||, from which it follows that

v ∈ ||〈vary(PA); A?〉⊤||. As v was arbitrary, 〈vary(PA); A?〉⊤
is DL-PA valid. �

Lemma 3 LetAF be an argumentation framework. Let σ
be either the stable, complete or admissible semantics. Let
v1 be a model of ThAF. Then (v1, v2) ∈ ||makeExtσA|| iff v2 is
a model of ThAF ∧ SemanticsσA.

Proof. Let v1 be a model of ThAF and suppose (v1, v2) ∈
||makeExtσA||. Therefore there is a valuation that is accessi-
ble from v1 via the relation ||vary(INA); SemanticsσA?|| and
from which v2 can be accessed via ||SemanticsσA?||. As the
test program SemanticsσA? does not modify any truth value
that valuation must be v2 itself, which moreover must be a
model of SemanticsσA. By Item 1 of Lemma 1, v2 differs
from v1 only by the truth values of the INA variables and
has the same truth values for the ATTA variables. Therefore
v2 is also a model of ThAF.



The other way round, let v1 be a model of ThAF and sup-
pose v2 is a model of ThAF ∧ SemanticsσA. As ThAF is a
complete theory for the ATTA variables, v1 and v2 give the
same values to the ATTA variables. By Item 1 of Lemma 1,
the set of valuations that can be accessed from v1 via the
program vary(INA) is made up of valuations which cover
all possible variations of the truth values of the INA vari-
ables, while giving the same truth values to the remain-
ing variables, i.e., the ATTA variables. Therefore (v1, v2) ∈
||vary(INA)||. And as v2 is a model of SemanticsσA, we have
(v2, v2) ∈ ||SemanticsσA?||. Putting things together, we have
proved that (v1, v2) ∈ ||vary(INA); SemanticsσA?||. �

Proposition 4. Let v a valuation, A a boolean formula, P
some set of propositional variables, and m ≥ 0. Then

1. v ∈ ||h(A, P,≥m)|| iff the A-valuations that are closest
to v w.r.t. P have Hamming distance at least m, i.e., iff
card(v−̇v′) ≥ m for every v′ ∈ ||A|| s.t. v−̇v′ ⊆ P.

2. (v, v′) ∈ ||h(A, P,≥m)?;
(

flip1(P)
)m

; A?|| iff v′ is one of the
A-valuations that is closest to v w.r.t. P, i.e., iff v′ ∈ ||A||
and card(v−̇v′) = m for every v′ ∈ ||A|| s.t. v−̇v′ ⊆ P.

Proof. For Item 1, things are clear for m = 0, and we only
consider the case m > 1.

From the left to the right, suppose v is a model of

h(A, P,≥m), i.e., of ¬〈
(

flip1(P)
)≤m−1

〉A. Then there is no A-

valuation v′ such that (v, v′) ∈
(

||flip1(P)||
)k

, for some k < m.
So by Lemma 1, for every valuation v′ ∈ ||A|| such that
v−̇v′ ⊆ P we must have card(v−̇v′) ≥ m.

From the right to the left, suppose for every valuation v′ ∈
||A|| such that v−̇v′ ⊆ P we have card(v−̇v′) ≥ m. Then by
Lemma 1, there cannot be a v′ such that (v, v′) ∈ ||flip1(P)||k

for some k < m and v′ ∈ ||A||. Therefore v must be a model

of ¬〈
(

flip1(P)
)≤m−1

〉A.
Item 2 then follows from Item 1 and Lemma 1. �


