
HAL Id: hal-04103450
https://hal.science/hal-04103450v1

Preprint submitted on 23 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

New Garside structures and applications to Artin groups
Thomas Haettel, Jingyin Huang

To cite this version:
Thomas Haettel, Jingyin Huang. New Garside structures and applications to Artin groups. 2023.
�hal-04103450�

https://hal.science/hal-04103450v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ar
X

iv
:2

30
5.

11
62

2v
1 

 [
m

at
h.

G
R

] 
 1

9 
M

ay
 2

02
3

New Garside structures and applications to Artin groups

Thomas Haettel and Jingyin Huang

May 22, 2023

Abstract. Garside groups are combinatorial generalizations of braid
groups which enjoy many nice algebraic, geometric, and algorithmic
properties. In this article we propose a method for turning the direct
product of a group G by Z into a Garside group, under simple assump-
tions on G. This method gives many new examples of Garside groups,
including groups satisfying certain small cancellation condition (includ-
ing surface groups) and groups with a systolic presentation.
Our method also works for a large class of Artin groups, leading to
many new group theoretic, geometric and topological consequences for
them. In particular, we prove new cases of K(π, 1)-conjecture for some
hyperbolic type Artin groups.

1 Introduction

The notion of Garside group originated in Garside’s work on word problems and conju-
gacy problems for braid groups [Gar69]. It turns out the key structure needed in Garside’s
argument also appears in more general groups later, notably in spherical Artin groups
[BS72] and fundamental groups of complexified central simplicial arrangement comple-
ments [Del72]. An axiomatic setting up was provided in [DP99, Deh02], to study groups
that share a similar structure as a class, called Garside groups. Since then, other impor-
tant classes of groups were proven to be Garside groups, including but not limited to some
semi-direct products [CP05], some complex braid groups [Bes15, CP11, CLL15], structure
groups of non-degenerate, involutive and braided set-theoretical solutions of the quantum
Yang-Baxter equation [Cho10], crystallographic braid groups [MS17] etc. Garside groups
are also known to be closed under certain kind of amalgamation products and HNN ex-
tensions [Pic22], as well as Zappa–Szép products [GT16]. There are also a number of
variations and generalizations of Garside groups, applying to more natural examples - we
refer to the book [Deh15] for a comprehensive review.

Garside groups in this article always means Garside groups of finite type, i.e. the
Garside element has finitely many divisors. If it has infinitely many, then we will call it
a quasi-Garside group. Garside groups are known to enjoy a long list of nice geometric,
group theoretic and topological properties - they are biautomatic [Cha92a, Deh02], hence
have solvable word problems and conjugacy problems, they are torsion-free, and admit
finite K(π, 1) spaces [CMW04, DL03], they act geometrically on Helly graphs and on
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injective metric spaces [HO21b, Hae21], hence satisfies the Farrell-Jones conjecture and
coarse Baum-Connes conjecture [CCG+20] etc. Also Garside groups of finite or infinite
type plays central role in the proof of the K(π, 1)-conjecture for different classes of complex
hyperplane complements, see [Del72, Bes15, MS17, PS21].

1.1 New Garside groups

While Garside groups enjoy nice properties, they have a very strong algebraic constraint:
since a power of the Garside element is central, they have infinite center. This explains
why the list of known examples of Garside groups is somehow limited. In this article, we
propose a simple approach to circumvent this obstruction and use Garside theory to study
some groups with possibly trivial center. Namely, given a group G, we will consider the
direct product of G with Z to artificially create a center, which will serve as the Garside
axis. Then we work backward to find necessary conditions on G to make sure G × Z is
actually a Garside group, leading to the following simple criterion.

Theorem A. (=Theorem 3.9) Let U be a finite set, endowed with a positive partial multi-
plication (see Definition 3.1), and associated prefix order 6L and suffix order 6R. Assume
that the following hold:

• (U,6L) and (U,6R) are semilattices.

• For any a, u, v, w ∈ U such that a · u, a · v ∈ U and w is the join for 6L of u and v,
then a · w ∈ U .

• For any a, u, v, w ∈ U such that u · a, v · a ∈ U and w is the join for 6R of u and v,
then w · a ∈ U .

• For any a, b, u, v ∈ U such that a · u, a · v, b · u, b · v ∈ U , either a, b have a join for
6R, or u, v have a join for 6L.

Consider the group GU given by the following presentation:

GU = 〈U | ∀u, v, w ∈ U such that u · v = w, we have uv = w〉.

Then the group GU × Z is a Garside group, with Garside element (e, 1).

First note that if a group G is such that G×Z is a Garside group, then we can deduce
an impressive list of consequences for G, see Theorem D below.

This method can be applied to several classes of groups that we discuss in this article.
For instance, it applies to some groups given by a T (5) positive presentation, see Theo-
rem 3.10 for a precise statement. In particular, we deduce the following nice consequence.

Corollary B. (=Corollary 3.11) For any surface S of finite type (possibly non-orientable),
except the projective plane, π1(S)× Z is a Garside group.

Another interesting family of examples comes from groups given by a presentation such
that the associated flag Cayley complex is systolic, called systolic restricted presentation
by Soergel in [Soe21], where they are defined and studied. We refer to Definition 3.12.
Examples include some amalgams of Garside groups and some 2-dimensional Artin groups.
For these groups, we prove the following.

Corollary C. (=Corollary 3.13) Let G denote a group with a systolic restricted presenta-
tion. Then G× Z is a Garside group.
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Theorem A also applies a class of groups with positive square presentations in the sense
of Definition 3.14, where a criterion for such groups times Z to be Garside is provided in
Theorem 3.15. This applies to a subclass of groups arising from word labeled oriented
graphs in the sense of [HR15], as well as some of the mock right-angled Artin groups
defined in [Sco08].

In order to motivate the study of groups G for which G × Z is a Garside group, we
record here a list of direct consequences. We recall the definition of Garside groups in
Section 2.4, and we recall various nonpositive curvature notions in Section 2.5.

Theorem D. Assume that G is a group such that G × Z is Garside. Then the following
hold:

1. The group G× Z is Helly.

2. The group G is torsion-free.

3. The group G is CUB, more precisely it acts geometrically on a finite-dimensional
metric space with a unique convex geodesic bicombing. Moreover, this metric space
is a simplicial complex such that each simplex is equipped with a polyhedral norm.

4. The group G acts geometrically on a weakly modular graph.

5. The group G is biautomatic, and in particular:

• The centralizer of a finite set of elements of G is biautomatic.

• G has solvable word and conjugacy problems.

• Any polycyclic subgroup of G is virtually abelian, finitely generated and undis-
torted.

• G has quadratic Dehn function, as well as Euclidean higher dimensional Dehn
function.

6. Any element of G has rational translation length, with uniformly bounded denomina-
tor.

7. The group G has contractible asymptotic cones.

8. The group G satisfies the Farrell-Jones conjecture with finite wreath products.

9. The group G satisfies the coarse Baum-Connes conjecture.

10. The group ring K[G] satisfies Kaplansky’s idempotent conjecture, if K is a field with
characteristic zero.

We defer the references for this theorem to Section 2.1.

1.2 Applications to Artin groups

One of the main motivation for our work comes from Artin groups, see Section 2.2 for basic
definitions. To each Coxeter group, there is an associated Artin group, in the same fashion
that the n-strand braid group is associated to the symmetric group of order n. General
Artin groups are largely mysterious, and even basic questions such as the following are still
widely open (see [GP12], [Cha], [McC17]).

1. Are Artin groups torsion-free?

2. What is the center of Artin groups?

3. Do Artin groups have solvable word problem?
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4. Is the natural hyperplane complement a classifying space for Artin groups (the
K(π, 1) conjecture, see Section 2.3)?

Note that a positive answer to the K(π, 1) conjecture implies that the corresponding
Artin group is torsion-free, and also that its center is known (see [JS23]).

For Artin groups of spherical type, i.e. when the associated Coxeter group is finite, all
these questions have a precise answer, which all rely on the existence of Garside structures.
In fact, Artin groups of spherical type enjoy two different Garside structures: the standard
one, associated with the longest element in the associated finite Coxeter group, and the dual
one, associated with a Coxeter element. For an Artin group of non-spherical type, only the
dual structure could be studied. In this case, the dual interval is always infinite, so one can
only hope for a quasi-Garside structure, which has much fewer consequences. Nevertheless,
it is known that for an Artin group of affine type Ãn, C̃n or G̃2 ([Dig06, Dig12, McC15]),
or for an Artin group of rank 3 [DPS22], this dual structure turns the Artin group into
a quasi-Garside group. In fact, for every Artin group of affine type, McCammond and
Sulway manage to provide a natural embedding of the Artin group into a quasi-Garside
crystallographic braid group, which is central in the proof of the K(π, 1) conjecture by
Paolini and Salvetti ([PS21]).

However, even though a quasi-Garside structure might be sufficient to find classifying
spaces, we already mentioned that a Garside structure on the direct product with Z is much
more interesting, see Theorem D. In order to state our results concerning Artin groups,
let us first recall some notations, we refer to Section 2.2 for more details on our notations
on Artin groups and their associated Coxeter groups. In particular, each Artin group or
Coxeter group has a Coxeter presentation graph Γ, and a Dynkin diagram Λ. We will write
AΓ (resp. WΓ) to denote the Artin group (resp. Coxeter group) with Coxeter presentation
graph Γ.

We say an Artin group is of cyclic type if its Dynkin diagram is a cycle, and any proper
parabolic subgroup is spherical. We refer to Table 1 for a complete list of cyclic type
Artin groups. In particular, it contains some Artin groups that are associated with certain
Coxeter groups acting on the hyperbolic spaces H3 or H4 - all of the four basic questions
are open for these Artin groups.

Theorem E. (=Proposition 5.6) Suppose AΓ is of cyclic type. Then AΓ × Z is a Garside
group.

As we will see later (Corollary H), Theorem E gives rise to new examples of Artin
groups satisfying the K(π, 1)-conjecture. We emphasize that an advantage of the method
here is that it not only gives the K(π, 1)-conjecture, also it implies a long list of highly
nontrivial algorithmic, geometric and topological consequences as in Theorem D.

We can also treat a much more general class of Artin groups which are obtained by
gluing cyclic Artin groups and spherical Artin groups in the following way.

Given a 4-cycle ω ⊂ Γ with consecutive vertices {xi}
4
i=1, a pair of antipodal vertices in

ω means either the pair {x1, x3}, or the pair {x2, x4}. A 4-cycle in Γ has diagonal means
it has a pair of antipodal vertices of ω which are connected by an edge in Γ. We say an
induced subgraph of Γ is of cyclic type or spherical type if the Artin group defined on this
subgraph is of cyclic type or spherical type. An edge of Γ is large if it has label ≥ 3. For
an induced subgraph Λ of Γ, let Λ⊥ be the induced subgraph of Γ spanned by vertices of
Γ \ Λ that commute with each vertex of Λ.

Theorem F. (=Theorem 6.3) Let Γ be a Coxeter presentation graph such that

• each complete subgraph of Γ is a join of a cyclic type graph and a spherical type graph
(we allow one of the join factors to be empty);
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• for any cyclic type induced subgraph Λ ⊂ Γ, Λ⊥ is spherical.

We assume in addition that there exists an orientation of all large edges of Γ such that

1. the orientation restricted to each cyclic type subgraph of Γ gives a consistent orien-
tation on the associated circle;

2. if ω is a 4-cycle in Γ with a pair of antipodal points x1 and x2 such that each edge of
ω containing xi ∈ {x1, x2} is either not large or oriented towards xi, then the cycle
has a diagonal.

Then AΓ × Z is a Garside group.

Below we include two simple examples of Coxeter presentation graph Γ where the
Theorem F applies, see Figure 1. The first is an amalgamation of two Artin groups of type
Â4 along a spherical parabolic subgroup of type A3. The second examples is a bit more
complicated, made of a few cyclic type Artin groups glued together in a cyclic way. Note
that the edges without label are assumed to be labeled by 2.
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Figure 1: Examples of Artin groups to which Theorem F applies.

In particular, all consequences listed in Theorem D hold this class of Artin groups. All
of these consequences are new for this class, including the solvability of word problem. As
a more precise comparison to previous results, we view the class of Artin groups in the
above theorem as a combination of basic building blocks made of cyclic type Artin groups
and spherical Artin groups. Then

1. All consequences listed in Theorem D were known before for spherical Artin groups
[Cha92b, HO21b, HH22], hence also known for the Artin group of type Ãn, as the
direct product of this Artin group with Z has finite index in a spherical Artin groups
[KIP02];

2. All consequences of Theorem D except the first one (acting geometrically on a Helly
graph) are known before for cyclic Artin groups with at most three generators - as
these groups act geometrically on CAT(0) complexes made of equilateral triangles
[BM00];

3. All consequences of Theorem D are new for the remaining cyclic type Artin groups.
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4. To the best of our knowledge, for each of the property in the list of consequences of
Theorem D, there does not exist combination theorem which is powerful enough to
cover the pattern of combination of cyclic type and spherical type Artin groups in
Theorem F, thus all consequences are new for the class of Artin groups in Theorem F.
For example, the most recently combination theorem for Farrell-Jones conjecture
[Kno19] requires an acylindrical action of the group on a tree, which is not satisfied
in our situation.

5. Artin groups in Theorem F are in general not of type FC, so consequences of Theo-
rem D for this class does not follow from [HO21b].

These conditions are the most general that we can deal with. In particular, we isolate
simple families of Artin groups to which this result applies.

Corollary G. Assume that AΓ is one of the following Artin groups:

• AΓ has rank at most 3.

• AΓ is right-angled, without induced square.

Then AΓ × Z is Garside.

We emphasize that even for the simplest and extensively studied class of Artin group,
namely the class of right-angled Artin groups, not much is known about the connection to
Garside groups. Even for the free group Fr or rank r, Bessis has defined a quasi-Garside
structure on Fr ([Bes06]). It is somehow striking that we are able to endow the direct
product Fr × Z with an actual Garside structure, and not a mere quasi-Garside structure.

Assumptions of Theorem F have a close connection to an existing result for a class of 2-
dimensional Artin groups by [BM00]. More precisely, [BM00] studied the class of large type
Artin groups, i.e. each edge in the Coxeter presentation graph has label ≥ 3. A dihedral
subgroup of AΓ is a subgroup generated by two vertices in an edge of Γ. Interestingly,
if we restrict Theorem F within the class of large type Artin groups, the left forbidden
configuration in [BM00, Figure 5] corresponds exactly to Assumption 1 in Theorem F, and
the right forbidden configuration in [BM00, Figure 5] corresponds exactly to Assumption
2 in Theorem F. There is a very interesting geometric phenomenon behind this.

The strategy in [BM00] is to consider a dual Garside structure of each dihedral subgroup
(choosing a dual Garside structure amounts to choosing an orientation of the associated
edge), metrize each triangle in the presentation complex with respect to the dual Garside
structure as flat equilateral triangles, and gluing these presentation complexes for dihedral
subgroup in a natural way to obtain a complex with fundamental group AΓ. Then [BM00,
Thereom 7] implies that as long as the presentation graph Γ avoids two configurations in
[BM00, Figure 5], then resulting is locally CAT(0).

Theorem F has a geometric counterpart (cf. Corollary 6.4). More precisely, given
an Artin group AΓ, we can choose a dual Garside structure on each standard spherical
parabolic subgroups in a consistent way (again such information can be encoded as an ap-
propriate orientation of all large edges of Γ). The dual Garside structure on each spherical
parabolic subgroup H gives an associated Garside complex (Definition 2.7) with fundamen-
tal group H. By gluing these Garside complexes in a natural way, we obtain a complex XΓ

with fundamental group AΓ. Here we metrize each simplex in XΓ by a polyhedral norm
which is related to the Ãn-geometry, see [Hae22] (the norm here is not Euclidean), which
echoes the work of [BM00] where they metrize triangles with Euclidean Ã2 shape. And
the assumptions in Theorem F will ensure that the universal cover of XΓ with such metric
is a space with convex geodesic bicombing (see Definition 2.12), which can be viewed as a
form of non-positive curvature, and echoes the CAT(0) metric in [BM00].
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It is natural to ask if we metrize each simplex in XΓ by Euclidean simplices with
Ãn-shape, whether the complex we obtain is locally CAT(0). However, it is notoriously
difficult to verify local CAT(0)-ness in high dimension. Here this issue is bypassed through
metrizing the simplices with different kinds of norm rather then the Euclidean norm. While
the resulting metric is not locally CAT(0), it is almost as good as CAT(0) in the sense
that it implies most of the consequences of CAT(0) groups. We refer to [Hae22, Hae21],
as well as [DL15, DL16] for more discussion in this direction.

Interestingly, for every Artin group as in Theorem E, we have an answer to all four
questions stated above for general Artin groups. In particular, we can deduce new cases
of K(π, 1)-conjecture from Theorem E.

Corollary H. (=Corollary 5.8) Assume that AΓ is of hyperbolic cyclic type. Then AΓ

satisfies the K(π, 1) conjecture and has trivial center.

More precisely, the K(π, 1)-conjecture is new for 6 examples of Artin groups whose Cox-
eter groups act cocompactly on H3 or H4. These examples seem to be rather difficult from
the viewpoint of other approaches of K(π, 1)-conjecture. Though the K(π, 1)-conjecture
when AΓ is 2-dimension hyperbolic cyclic type follows from previous work [CD95], and
there is also a more recent proof in [DPS22] using dual quasi-Garside structures.

To put Corollary H in another context, note that the K(π, 1)-conjecture is proved by
Artin groups associated with reflection groups acting on Sn by Deligne [Del72], and Artin
groups associated with reflection groups acting on En by Paolini and Salvetti [PS21]. The
next step is to look at Artin groups associated with reflection groups acting on Hn (we
call them hyperbolic type Artin groups), whose K(π, 1)-conjecture is widely open. A fun-
damental subclass of hyperbolic type Artin groups are those associated with hyperbolic
reflection groups whose fundamental domain is a compact simplex. This subclass is classi-
fied by Lanner [Lan50], which consists in infinitely many members in dimension 2 (whose
K(π, 1)-conjecture is already understood [CD95, DPS22]), and in 14 remaining cases in
higher dimension. From this perspective, Corollary H treats 6 out of these 14 remaining
cases.

Corollary H also follows from another article of the second named author [Hua23,
Theorem 1.4], via an alternative approach to the K(π, 1)-conjecture. However, the method
here establishes all the properties in Theorem D for hyperbolic cyclic type Artin groups,
which are not consequences of [Hua23].

Structure of the article In Section 2, we collect some background, notably on Garside
groups, Artin groups and nonpositively curved spaces. In Section 3, we discuss the general
criterion of making G×Z a Garside group and prove Theorem A. Then we discuss examples
of T (5) and systolic restricted presentation groups. In Section 4, we adapt Theorem A to
the special situation of Artin groups, and produce a criterion of when an Artin group times
Z is Garside, see Proposition 4.2 and Corollary 4.4. In Section 5, we verify the criterion in
Proposition 4.2 and Corollary 4.4 for cyclic type Artin groups. In Section 6 we treat more
general Artin groups and prove Theorem F.
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2 Background

We start by giving references for Theorem D in the introduction, then we collect background
definitions and results concerning Artin groups, Garside groups and nonpositively curved
spaces.

2.1 Proof of Theorem D

We now give precise references for the various items of Theorem D from the introduction,
listing consequences for a group G such that G× Z is Garside.

Proof. 1. This is a consequence of [HO21b], see also [Hae21].

2. This is a consequence of [Deh15, Proposition 3.25].

3. This is a consequence of [Hae22, Corollary 9.8].

4. This is a consequence of [HH22].

5. This is a consequence of [Mos97]. For consequences of biautomaticity, see for in-
stance [BH99, Wen03, BD19].

6. This is a consequence of [CCG+20, Proposition 7.10].

7. This is a consequence of [LL07], see also [HO21a].

8. Since G acts geometrically on a metric space with a convex geodesic bicombing,
according to [KR17, Theorem 6.1], it satisfies the Farrell-Jones conjecture with finite
wreath products.

9. Since G acts geometrically on a metric space with a convex geodesic bicombing,
according to [FO20], it satisfies the coarse Baum-Connes conjecture.

10. This is a consequence of the Farrell-Jones conjecture and [BLR08, Theorem 0.12].

2.2 Coxeter groups and Artin groups

We recall the definitions of Coxeter groups and Artin groups.

For every finite simple graph Γ with vertex set S and with edges labeled by some integer
in {2, 3, . . .}, one associates the Coxeter group W (Γ) with the following presentation:

W (Γ) = 〈S | ∀{s, t} ∈ Γ(1),∀s ∈ S, s2 = 1, [s, t]m = [t, s]m if the edge {s, t} is labeled m〉,

where [s, t]m denotes the word ststs . . . of length m. Such a graph Γ may be called a
Coxeter presentation graph, emphasizing the fact that edges correspond to relations.

We will also be using a graph closely related to Γ, the Dynkin diagram ΓD: it has
the same vertex set S, with some edges labeled in {4, 5, . . . ,∞}, with the following edges
between vertices s, t ∈ S:

• If there is an edge labeled 2 between s and t in Γ, there is no edge between s and t
in ΓD.

• If there is an edge labeled 3 between s and t in Γ, there is an unlabeled edge between
s and t in ΓD.

• If there is an edge labeled by m > 4 between s and t in Γ, there is the same edge
between s and t in ΓD labeled m.

8



Name Ãn, for n > 3 Triangle 3− 3− 3− 4 3− 3− 3− 5

Dynkin diagram . . .

> 3

> 3

> 3
4 5

Name 3− 4− 3− 4 3− 4− 3− 5 3− 5− 3− 5 3− 3− 3− 3− 4

Dynkin diagram

4 4 4 5 5 5
4

Table 1: Diagrams of cyclic type

• If there is no edge between s and t in Γ, there is an edge between s and t in ΓD

labeled ∞.

The associated Artin group A(Γ) is defined by a similar presentation:

A(Γ) = 〈S | ∀{s, t} ∈ Γ(1), [s, t]m = [t, s]m if the edge {s, t} is labeled m〉.

The groups A(Γ) are also called Artin-Tits groups, since they have been defined by Tits
in [Tit66].

Note that only the relations s2 = 1 have been removed, so that there is a natural
surjective morphism from A(Γ) to W (Γ). Also note that when m = 2, then s and t
commute, and when m = 3, then s and t satisfy the classical braid relation sts = tst.

For a subset S′ of the generating S, the subgroup of A(Γ) or W (Γ) generated by S′ is
called a standard parabolic subgroup. A standard parabolic subgroup of an Artin group is
itself an Artin group [VdL83]. A similar statement is true for Coxeter groups [Bou02]. A
parabolic subgroup is a conjugate of a standard parabolic subgroup.

Most results about Artin-Tits groups concern particular classes. The Artin group A(Γ)
is called:

• of spherical type if its associated Coxeter group W (Γ) is finite, i.e. may be realized
as a reflection group of a sphere.

• of Euclidean type if its associated Coxeter group W (Γ) may be realized as a reflection
group of a Euclidean space.

• of hyperbolic type if its associated Coxeter group W (Γ) may be realized as a reflection
group of a real hyperbolic space.

We say a Coxeter group WS is of cyclic type if the associated Dynkin diagram is a
cycle, and the parabolic subgroup generated by S \ {s} is spherical for any vertex s ∈ Γ.
We list in Table 1 the Dynkin diagrams of cyclic type. Note that we use in this table the
convention of Dynkin diagrams: vertices that are not joined by an edge commute, and we
drop the label 3 from edges. Note that cyclic type Coxeter groups are either of Euclidean
type or of hyperbolic type.

For an element g in Coxeter group WS, we can represent g as a word in the free monoid
on S. Such representation is reduced if its length is the shortest possible among words in
the free monoid that represent g. It is known that any two reduced words representing
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the same element in WS differ by a finite sequence of moves applying the relation in WS .
Thus each element in WS has a well-defined support, which is the collection of elements in
S which appears in a reduced word representing this element.

A subset S′ ⊂ S is irreducible if it spans a connected subgraph of the Dynkin diagram,
otherwise S′ is reducible.

Lemma 2.1. The support of each reflection is irreducible.

Proof. Let r = wsw−1 be a reflection in WS with s ∈ S and w ∈ WS . If Supp(r) is
reducible, then Supp(r) = I1 ⊔ I2 with elements in I1 commuting with elements in I2. As
〈r〉 is a parabolic subgroup of WS which is contained in the standard parabolic subgroup
WI1∪I2 , by [Qi07], there exists w′ ∈ WI1∪I2 and s′ ∈ I1 ∪ I2 such that r = w′s′(w′)−1. We
assume without loss of generality that s′ ∈ I1. Write w′ = w′

1w
′
2 with w′

i ∈ WIi for i = 1, 2.
Then r = w′

1s
′(w′

1)
−1 and Supp(r) ⊂ I1, which is a contradiction. Thus the lemma is

proved.

2.3 The K(π, 1)-conjecture

Artin groups are closely related to hyperplane complements, which can be presented in a
simple way in spherical, Euclidean and hyperbolic types. Fix a Coxeter group W = W (Γ)
of spherical type, Euclidean or hyperbolic type acting by isometries on a sphere Sn−1,
Euclidean space Rn−1 or a real hyperbolic space Hn−1, where the standard generators act
by reflections.

In the case of Sn−1, we will consider W as a subgroup of O(n) acting by linear trans-
formations on Ω = Rn. In the case of Rn−1, we will consider W as a subgroup of GL(n)
acting by linear transformations on Rn, preserving the hyperplane {xn = 1} and acting
by isometries on it. The group W preserves the open cone Ω = {xn > 0} of Rn. In the
case of Hn−1, we will consider W as a subgroup of O(n − 1, 1) acting linearly on Rn, and
preserving the open cone Ω = Hn−1. A conjugate of an element of the standard generating
set S is called a reflection of W . Let R denote the set of reflections of W . Consider the
family of linear hyperplanes of Rn

H = {Hr | r ∈ R},

where Hr ⊂ Rn denotes the fixed point set of the reflection r.

The analogue of the complement of the complexified hyperplane arrangement is

M(Γ) = (Ω× Ω)\
⋃

r∈R

(Hr ×Hr),

see [Par14] for more details. Note that W acts naturally on M , and we have the following
(see [VdL83]):

π1(W (Γ)\M(Γ)) ≃ A(Γ).

So the Artin group A(Γ) appears as the fundamental group of (a quotient of) the comple-
ment of a complexified hyperplane arrangement. One very natural question is to decide
whether it is a classifying space. This is the statement of the following conjecture.

Conjecture (K(π, 1) conjecture). The space M(Γ) is aspherical.

This conjecture has been proved for spherical type Artin groups by Deligne in [Del72],
for 2-dimensional and type FC Artin groups by Charney and Davis in [CD95], and for
Euclidean type Artin groups by Paolini and Salvetti in [PS21] very recently.
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2.4 Interval groups and Garside groups

We will follow McCammond’s article [McC05] for the description of interval groups.

Definition 2.2 (Posets). A poset P is called bounded if it has a minimum, denoted 0, and
a maximum, denoted 1.

For x ≤ y in a poset P , the interval between x and y is the restriction of the poset to
those elements z with x ≤ z ≤ y. We denote this interval by [x, y]. A poset P is called
graded if for any x ≤ y in P , any chain in [x, y] belongs to a maximal chain and all maximal
chains have the same finite length.

A poset P is called weakly graded if there is a poset map r : P → Z, i.e. such that
for every x < y in P , we have r(x) < r(y): the map r is called a rank map. A poset P is
called weakly boundedly graded if there is a rank map r : P → Z with finite image.

An upper bound for a pair of elements a, b ∈ P is an element c ∈ P such that a ≤ c, b ≤ c.
A minimal upper bound for a, b is an upper bound c such that there does not exist upper
bound c′ of a, b such that c′ < c. The meet of two elements a, b in P is an upper bound c of
them such that for any other upper bound c′ of a, b, we have c ≤ c′. We define lower bound,
maximal lower bound, and join similarly. In general, the meet or join of two elements in
P might not exist. A poset P is a lattice if any pair of elements have a meet and a join.

A poset P is a meet-semilattice (resp. join-semilattice) if any pair of elements have a
meet (resp. a join).

Definition 2.3. We say that a poset P contains a bowtie if there exist pairwise distinct
elements a, b, c and d such that a, b < c, d, and there exists no x ∈ P such that a, b 6 x 6

c, d.

It turns out that bowties are the only obstruction to being a lattice, for a weakly graded
poset. This is proved in [BM10, Proposition 1.5] for bounded graded lattices. This also
holds for weakly graded lattices, so we give a proof here for the convenience of the reader.

Proposition 2.4. Let L denote a weakly graded poset. Then L ∪ {0, 1} is a lattice if and
only if L has no bowtie.

Proof. Assume that L∪ {0, 1} is a lattice, and consider a, b < c, d in L. Then the meet x
of c, d is such that a, b 6 x 6 c, d. So L has no bowties.

Conversely, assume that L has no bowtie. Note that L ∪ {0, 1} has no bowtie either.
Fix a, b ∈ L, and let M denote the set of upper bounds of a and b in L ∪ {0, 1}: we have
1 ∈ M , so M is not empty. Let us consider a sequence (xn)n∈N in M such that for each
n ∈ N, we have xn > xn+1. Let r : P → Z denote a weak grading on P . Then the sequence
(r(xn))n∈N in Z is non-increasing and bounded below by r(a), so it is eventually constant.
This implies that the sequence (xn)n∈N itself is eventually constant.

We may therefore consider a minimal element x of M . We will prove that x is a unique:
by contradiction, assume that y ∈ M is a minimal element distinct from x. Then a, b < x, y
form a bowtie. Hence x is the unique minimal element of M , and it is the join of a and b
in L ∪ {0, 1}.

Similarly, any two elements of L has a meet in L ∪ {0, 1}. So L ∪ {0, 1} is a lattice.

Here is one definition of Garside groups. We refer the reader to [Deh15] and [McC05]
for more background on Garside groups. We also refer the reader to [HH22] to equivalent
definitions of Garside groups, which are more geometric in flavour.

Definition 2.5 (Garside group). Let G denote a group, S ⊂ G a finite subset and ∆ ∈ G.
The triple (G,S,∆) is called a Garside structure if the following conditions hold. Let G+

denote the submonoid of G generated by S.
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1. The group G is generated by S.

2. For any element g ∈ G+, there is a bound on the length of expressions g = s1 . . . sn,
where s1, . . . , sn ∈ S\{1}.

3. We define the partial 6L, 6R on G+ by a 6L b if and only if b = ac for some c ∈ G+

and a 6R b if and only if b = ca for some c ∈ G+. The left 6L and right 6R orders
on G+ are lattices.

4. The set S is a balanced interval between 1 and ∆, i.e.

S = {g ∈ G+ | 1 6L g 6L ∆} = {g ∈ G+ | 1 6R g 6R ∆}.

A group is called Garside if it admits such a Garside structure, and ∆ is called the Garside
element. If the set S is allowed to be infinite, we may say that (G,S,∆) is a quasi-Garside
structure.

Definition 2.6 (Labeled posets). If P is a poset, the set of intervals is I(P ) = {(x, y) ∈
P 2 |x 6 y}.

Let P denote a bounded poset, and let S denote a labeling set.
An interval-labeling of P is a map λ : I(P ) → S.
An interval-labeling λ is group-like if, for any two chains x 6 y 6 z and x′ 6 y′ 6 z′

having two pairs of corresponding labels in common, the third pair of labels are equal.
An interval-labeling λ is balanced if

{λ(0, x) |x ∈ P} = {λ(x, 1) |x ∈ P} = {λ(x, y) | (x, y) ∈ I(P )}.

Note that McCammond’s definition of balanced interval labeling ([McC05, Defini-
tion 1.11]) only requires the first equality to hold. However, McCammond states that
the second inequality is a consequence of being balanced and group-like, which does dot
seem obvious. We therefore chose to strenghten the definition of a balanced labeling, in
order to ensure that all consequences of a combinatorial Garside structure hold.

Definition 2.7 (Interval complex and interval group). Let P denote a poset with a group-
like interval-labeling λ.

Let us consider the quotient KP of the geometric realization |P | of P , where the k-
simplices corresponding to two k-chains (x0 < x1 < · · · < xk) and (x′0 < x′1 < · · · < x′k)
are identified if and only if λ(x0, x1) = λ(x′0, x

′
1), . . . , λ(xk−1, xk) = λ(x′k−1, x

′
k). It is called

the interval complex of P .
The fundamental group GP of KP is called the interval group of P , it is naturally a

quotient of the free group over S.

Example. Let us consider the Boolean lattice P = P(S) consisting of all subsets of a
finite set S. The geometric realization |P | of P is isomorphic to a simplicial subdivision of
the cube [0, 1]S .

For each x ⊂ y ⊂ S, let us consider the labeling λ(x, y) = y−x ∈ P . The corresponding
quotient KP is isomorphic to a simplicial subdivision of the torus (S1)S . The interval group
GP is isomorphic to the free abelian group ZS, with the following presentation:

GP = 〈P | ∀x ⊂ y ⊂ z ⊂ S, (y − x) · (z − y) = (z − x)〉 ≃ Z
S .

Definition 2.8 (Combinatorial Garside structure). A combinatorial Garside structure is
a poset P with an interval-labeling λ : I(P ) → S such that:

• P is a (finite) bounded, weakly graded lattice.

12



• λ is group-like and balanced.

If P is infinite, we may say that it is a quasi-Garside.

Combinatorial Garside structures are just an explicit combinatorial way to describe
arbitrary Garside groups, as explained by McCammond.

Theorem 2.9. [McC05, Theorem 1.17] A group G is a Garside group if and only if G is
isomorphic to the interval group of a finite combinatorial Garside structure.

Remark. More generally, a group is quasi-Garside if and only if it is isomorphic to the
interval group of an arbitrary combinatorial Garside structure.

2.5 Nonpositive curvature: Helly graphs and CUB spaces

We will present briefly various notions of metric spaces and graphs of nonpositive curvature
which are relevant to Garside groups.

Let us start with Helly graphs: we refer the reader to [CCG+20] for more details.

Definition 2.10 (Helly graph, Helly group). A connected graph Γ is called Helly if any
family of pairwise intersecting combinatorial balls have a non-empty total intersection.

A group is called Helly if it acts geometrically by automorphisms on a Helly graph.

Helly groups enjoy many properties which are typical of nonpositive curvature, see for
instance [CCG+20], [Lan13] and [HO21a] and also Theorem D.

A much weaker, but way broader notion is that of weakly modular graphs, see [CCHO21].
These graphs encompass many "nonpositive curvature type" graphs, such as Helly graphs,
(weakly) systolic graphs, median and quasi-median graphs, modular graphs.

Definition 2.11 (Weakly modular graph). A connected graph Γ is called weakly modular
if it satisfies the triangle condition (TC) and the quadrangle condition (QC):

(TC) For any x, y, z ∈ Γ(0) such that d(y, z) = 1 and d(x, y) = d(x, z) = n > 2, there exists
t ∈ Γ(0) such that d(t, y) = d(t, z) = 1 and d(x, t) = n− 1.

(QC) For any x, y, z, u ∈ Γ(0) such that d(y, u) = d(z, u) = 1, d(y, z) = 2, d(x, u) = n > 3
and d(x, y) = d(x, z) = n− 1, there exists t ∈ Γ(0) such that d(t, y) = d(t, z) = 1 and
d(x, t) = n− 2.

Many of the consequences for Helly groups rely simply on the existence of a convex
geodesic bicombing, whose definition we recall here. We also recall the definition of CUB
spaces and groups, defined in [Hae22].

Definition 2.12 (Bicombing, CUB). A convex geodesic bicombing on a metric space X is
a map σ : X ×X × [0, 1] → X such that:

• For each x, y ∈ X, the map t ∈ [0, 1] 7→ σ(x, y, t) is a constant speed reparametrized
geodesic from x to y.

• For each x, x′, y, y′ ∈ X, the map t ∈ [0, 1] 7→ d(σ(x, y, t), σ(x′, y′, t)) is convex.

A metric space is called CUB, for Convexly Uniquely Bicombable, if it admits a unique
convex geodesic bicombing. A group is called CUB if it acts geometrically by isometries
on a CUB space.
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Groups acting on spaces with convex bicombings enjoy many properties, see for in-
stance [DL16] and [DL15]. Furthermore, CUB groups satisfy some extra properties pre-
sented in [Hae22], see also Theorem D.

One major incarnation of the nonpositive curvature properties of Garside groups is the
following.

Theorem 2.13 ([HO21b], see also [Hae21]). Any Garside group acts geometrically by
automorphisms on a Helly graph.

The quotient of a Garside group by the cyclic subgroup generated by the Garside
element also has nonpositive curvature in the following sense.

Theorem 2.14 ([Hae22],[HH22]). Let G denote a Garside group, with Garside element
∆. Then the group G/〈∆〉 acts geometrically by isometries on a CUB space, and it acts
geometrically by automorphisms on a weakly modular graph.

2.6 Dual Garside structures on spherical type Artin groups

Dual Garside structure on spherical type Artin groups have been studied notably by
Birman-Ko-Lee ([BLR08]) and Bessis ([Bes03]), see also [Pao21] for an overview of dual
Garside structures on general Artin groups. We also refer the reader to [McC05] for the
point of view of interval groups that we are presenting here.

Let Γ denote a Coxeter presentation graph, with vertex set S. Given any linear ordering
S = {s1, . . . , sn} of S, we have an associated Coxeter element δ = s1s2 . . . sn in the Coxeter
group W = W (Γ).

Let R denote the set of reflections of W , i.e. the set of all conjugates of elements of S.
Since R generates W , we may consider its associated word norm ‖·‖R. In the Cayley graph
of W with respect to R, let us consider the interval P between e and δ: more precisely

P = {u ∈ W | ‖u‖R + ‖u−1δ‖R = ‖δ‖R = n}.

The set P has a natural partial (prefix) order 6L: if u, v ∈ P , we say that u 6L v if
‖u‖R + ‖u−1v‖R = ‖v‖R. Equivalently, u is a prefix of a minimal expression of v as a
product of reflections. Also equivalently, u lies on a geodesic in the Cayley graph between
e and v.

The poset P is easily seen to be bounded and graded. Let us define an interval-labeling
λ : I(P ) → W by λ(u, v) = u−1v ∈ W : this labeling is group-like and balanced. The poset
P is finite if and only if W is finite, i.e. if Γ is of spherical type.

Definition 2.15 (Dual Artin group). The dual Artin group associated to Γ and δ is the
interval group Aδ(Γ) of the poset P .

Theorem 2.16 (Birman-Ko-Lee [BKL98], Bessis [Bes03]). If Γ is of spherical type, for
any Coxeter element δ, the dual Artin group Aδ(Γ) is isomorphic to the standard Artin
group A(Γ). Moreover, the poset P is a lattice: in particular, the Artin group A(Γ) is a
Garside group.

2.7 Complexes associated with Garside groups

Consider a Garside group G, with positive monoid G+, Garside element ∆ and Garside
generating set S as in Definition 2.5. Let ≤L and ≤R be the orders as in Definition 2.5,
which also extend to orders in G. More precisely, for a, b ∈ G, a ≤L b if b = ac for some
c ∈ G+, and a ≤R b if b = ca for some c ∈ G+.
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The Garside complex of G is the simplicial complex X̂G with vertex set G, and with
simplices corresponding to chains g1 <L g2 <L · · · <L gn such that gn ≤L g1∆. Note that
G acts properly and cocompactly by simplicial automorphisms on its Garside complex.
Alternatively, from the Garside group G, we can define an associated combinatorial Garside
structure with the underlying poset P being the set {e} ∪ S equipped with the the order
≤L, and λ(x, y) = x−1y for x, y ∈ P . Then the universal cover of the interval complex
associated with this combinatorial Garside structure is the Garside complex.

The Bestvina complex of G is the simplicial complex XG whose vertices are corresponds
to cosets of 〈∆〉 in G ([Bes99]). There is an edge between two vertices in this complex if
they have coset representatives differ by right multiplication by element in S \ {∆}, and
the Bestvina complex is the flag complex induced by this graph. Note that Ḡ = G/〈∆〉
acts properly and cocompactly by simplicial automorphisms on the Bestvina complex.
Topologically X̂G is homeomorphic to XG × R.

Theorem 2.17. ([Hae21, Theorem E]) For a Garside group G, if we metrize each simplex
in the Garside complex X̂G as orthoschemes with ℓ∞-metric, then X̂G is an injective metric
space. In particular it is CUB. Moreover, the injective metric on X̂G descends to a CUB
metric on the Bestvina complex XG, whose simplices are equipped with special polyhedral
norms in the sense of [Hae22].

3 Garside structure on G× Z

3.1 General construction

We will now present a general construction of a Garside structure on the direct product
G × Z, where G is a group given by a specific presentation with generating set denoted
U . We will consider U as an abstract set endowed with a partial multiplication as defined
below.

Definition 3.1 (Positive partial multiplication). Let U denote a set. A map · defined on
a subset of U × U with range U is called a positive partial multiplication if the following
hold:

• Left associativity For any u, v, w ∈ U such that u · v and (u · v) · w are defined,
we require that v · w and u · (v · w) are defined, and that we have the equality
(u · v) · w = u · (v · w).

• Right associativity For any u, v, w ∈ U such that v · w and u · (v · w) are defined,
we require that u · v and (u · v) · w are defined, and that we have the equality
u · (v · w) = (u · v) · w.

• Identity There exists a distinguished element e ∈ U such that, for every u ∈ U , we
have e · u = u · e = u ∈ U .

• Positivity For any u, v ∈ U such that u · v = e, we have u = v = 1.

• Left cancellability For any u, v, w ∈ U such that u · v = u · w, we have v = w.

• Right cancellability For any u, v, w ∈ U such that v · u = w · u, we have v = w.

Let us define relations 6L,6R on U by:

u 6L v if there exists w ∈ U such that u · w = v

u 6R v if there exists w ∈ U such that w · u = v.

Remark. Given u, v ∈ U , we will often write in the sequel "u · v ∈ U" in place of "u · v is
defined".

15



Lemma 3.2. The relations 6L, 6R are orders on U .

Proof. By the existence of 1 ∈ U , we know that both relations are reflexive.
By the associativity assumption, we know that both relations are transitive.
We will now prove that 6L is antisymmetric, the proof for 6R is similar. Let us assume

that u, v ∈ U are such that u 6L v and v 6L u. There exists w,w′ ∈ U such that v = u ·w
and u = v ·w′, hence u = (u ·w) ·w′ = u · (w ·w′) by associativity. Since U is cancellable,
we deduce that w ·w′ = e. Since U is positive, we conclude that w = w′ = e, hence u = v.

Note that the poset (U,6L) admits an interval-labeling with labels in U , i.e. for
u, v ∈ U , the label of the interval between u and u · v is v ∈ U . One readily verifies that
this interval-labeling is group-like, so it makes sense to define the interval group GU . In
particular, GU has the following presentation:

GU = 〈U | ∀u, v, w ∈ U such that u · v = w, we have uv = w〉.

We will now describe the construction of a bounded poset E consisting of two "inverted"
copies of U as follows, which will be such that GE is isomorphic to GU × Z.

Let Ū be another copy of U , and we denote ū ∈ Ū to be the element associated with
u ∈ U . We will think ū as a formal inverse of u.

Consider the set E = (U, 0) ⊔ (Ū , 1), with the following relation �:

• (u, 0) � (v, 0) if and only if u 6L v.

• (u, 0) � (v̄, 1) if and only if v · u ∈ U .

• (ū, 1) � (v̄, 1) if and only if v 6R u.

Lemma 3.3. The relation ≺ is an order on E, with minimum (e, 0) and maximum (ē, 1).

Proof. The reflexivity is clear. For transitivity, if (u, 0) ≺ (v̄, 1) and (v̄, 1) ≺ (w̄, 1), then
vu̇ ∈ U and w 6R v. Thus v = w′ · w for some w′ ∈ U . Thus (w′ · w) · u ∈ U . By right
associativity of the partial multiplication, we know w · u ∈ U . Thus (u, 0) ≺ (w̄, 1). Other
cases of transitivity are similar. The antisymmetry of ≺ follows from the antisymmetry of
6L and 6R as in Lemma 3.2.

Note that the poset E is interval-labeled, with labels in E:

• For u, v ∈ U , the label of the interval between (u, 0) and (u · v, 0) is (v, 0) ∈ E.

• For u, v, v · u ∈ U , the label of the interval between (u, 0) and (v̄, 1) is (v · u, 1) ∈ E.

• For u, v, v · u ∈ U , the label of the interval between (v · u, 1) and (ū, 1) is (v, 0) ∈ E.

Lemma 3.4. The interval-labeled poset E is group-like.

Proof. Consider a chain with 3 elements a ≺ b ≺ c in E. Among the three labels λ(a, b),
λ(a, c) and λ(b, c), we will show that two of them determine the third one uniquely.

If λ(a, b) and λ(b, c) are known, there are three possibilities.

• Assume that λ(a, b) = (u, 0) and λ(b, c) = (v, 0). Then λ(a, c) = (u · v, 0) ∈ E.

• Assume that λ(a, b) = (u, 0) and λ(b, c) = (v̄, 1). Then a = (w, 0) for w ∈ U ,
b = (w · u, 0) and c = (x̄, 1), where x · w · u ∈ U . Then λ(a, c) = (x · w, 1) ∈ E.
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• Assume that λ(a, b) = (ū, 1) and λ(b, c) = (v, 0). Then a = (w, 0) for some w ∈ U ,
b = (x̄, 1) and c = (ȳ, 1) such that u = x · w ∈ U and y = v · x ∈ U . Since a ≺ c, we
know that y · w ∈ U , so λ(a, c) = (y · w, 1) = (v · x · w, 1) = (v · u, 1).

If λ(a, b) and λ(a, c) are known, there are three possibilities.

• Assume that λ(a, b) = (u, 0) and λ(a, c) = (v, 0). Since b ≺ c, there exists w ∈ U
such that u · w = v. Such w is unique by cancellability. Hence λ(b, c) = (w, 0) ∈ E.

• Assume that λ(a, b) = (u, 0) and λ(a, c) = (v̄, 1). Then λ(b, c) = (v · u, 1) ∈ E.

• Assume that λ(a, b) = (ū, 1) and λ(a, c) = (v̄, 1). Then a = (w, 0) for some w ∈ U ,
b = (x̄, 1) and c = (ȳ, 1), with x, y ∈ U such that x · w = u and y · w = v. Since
b ≺ c, there exists z ∈ U such that z · y = x. Hence z · y ·w = x ·w, so z · v = u. By
cancellability, z is uniquely determined by u, v. Then λ(b, c) = (z, 1).

By symmetry, the remaining case is similar.

Lemma 3.5. The interval-labeled poset E is balanced.

Proof. The interval between (u, 0) and (u · v, 0) has label (v, 0) ∈ E, which is also the
label of the interval between (e, 0) and (v, 0), and also between (v̄, 1) and (ē, 1).

The interval between (v · u, 1) and (ū, 1) has label (v̄, 1) ∈ E, which is also the label of
the interval between (e, 0) and (v̄, 1), and also between (v, 0) and (ē, 1).

The interval between (u, 0) and (v̄, 1) has label (v · u, 1) ∈ E, which is also the label of
the interval between (e, 0) and (v · u, 1), and also between (v · u, 0) and (ē, 1).

Given u, v ∈ U , a left upper common bound for u, v is a upper bound for ≤L. A left
join of u and v is an element w ∈ U with u ≤L w and v ≤L w, such that w ≤L w′ for any
other left upper common bound w′ of u, v. A left join, if exists, must be unique. A weak
left join of u and v is an element w ∈ U with u ≤L w and v ≤L w such that there does not
exist a left upper common bound w′ of u, v such that w′ < w. Similarly, we define right
upper common bound and right (weak) join for u, v.

Proposition 3.6. Let us consider the interval groups GU , GE associated with the interval-
labeled posets U,E. Then the natural map

E 7→ GU × Z

(u, 0) ∈ U × {0} ⊂ E 7→ (u, 0) ∈ GU × Z

(ū, 1) ∈ U × {0} ⊂ E 7→ (u−1, 1) ∈ GU × Z

extends to an isomorphism of groups between GE and GU × Z.

Proof. Note that GU × Z has generating set (U × {0}) ∪ {(e, 1)}, and the relations are:

1. (e, 1)(u, 0) = (u, 0)(e, 1) for each u ∈ U ;

2. (u, 0)(v, 0) = (w, 0) for any u, v, w ∈ U with u · v = w.

On the other hand, the group GE has generating set E, and the relations are:

1. (u, 0)(v, 0) = (w, 0) for any u, v, w ∈ U with u · v = w;

2. (u, 0)(v̄, 1) = (w̄, 1) for any u, v, w ∈ U with w · u = v;

3. (ū, 1)(v, 0) = (w̄, 1) for u, v, w ∈ U with v · w = u.
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One readily checks that the map defined in the proposition extends to a group homomor-
phism GE → EU as it is compatible with the relations.

We now define the inverse of this map on the standard generators of GU × Z:

(U × {0}) ∪ {(e, 1)} ⊂ GU × Z 7→ GE

(u, 0) 7→ (u, 0) ∈ GE

(e, 1) 7→ (ē, 1) ∈ GE .

This map is also compactible with the relations of GU and GE , note that we see the second
kind of relations of GU × Z in GE as follows:

(u, 0)(ē, 1) = (u, 0)((ū, 1)(u, 0)) = ((u, 0)(ū, 1))(u, 0) = (ē, 1)(u, 0).

Note that the composition of these two maps are identity on the generators, thus they are
inverses of each other. Then we are done.

Proposition 3.7. Assume that U satisfies the following:

1. (U,6L) and (U,6R) are weakly boundedly graded posets.

2. (U,6L) and (U,6R) are meet-semilattices.

3. For any a, u, v, w ∈ U such that a · u, a · v ∈ U and w is the join for 6L of u and v,
then a · w ∈ U .

4. For any a, u, v, w ∈ U such that u · a, v · a ∈ U and w is the join for 6R of u and v,
then w · a ∈ U .

5. For any a, b, u, v ∈ U such that a · u, a · v, b · u, b · v ∈ U , either a, b have a join for
6R, or u, v have a join for 6L.

Then E is a lattice.

Proof. Assumption 1 implies E is a bounded graded poset. By Proposition 2.4, it is
sufficient to prove that E contains no bowtie.

Assume that (u, 0), (v, 0) ≺ (w, 0), (x, 0) is a bowtie in E, where u, v, w, x ∈ U : hence
u, v 6L w, x is a bowtie in U , which contradicts that (U,6L) is a meet-semilattice.

Assume that (ā, 1), (b̄, 1) 6 (c̄, 1), (d̄, 1) is a bowtie in E, where a, b, c, d ∈ U : hence
a ∈ U · c, and c 6R a. So c, d 6R a, b is a bowtie in U , which contradicts that (U,6R) is a
meet-semilattice.

Assume that (u, 0), (v, 0) ≺ (w, 0), (ā, 1) is a bowtie in E, where u, v, w, a ∈ U : hence
u, v 6L w, so since we assumed to have a bowtie, we have w = u∨L v. Also a · u, a · v ∈ U .
By assumption, this implies that a · w ∈ U , so (w, 0) ≺ (ā, 1).

Assume that (a, 0), (w̄, 1) ≺ (ū, 1), (v̄, 1) is a bowtie in E, where u, v, w, a ∈ U : hence
u, v 6R w, so since we assumed to have a bowtie, we have w = u∨R v. Also u ·a, v ·a ∈ U .
By assumption, this implies that w · a ∈ U , so (w̄, 1) ≺ (a, 0).

Assume that (u, 0), (v, 0) ≺ (ā, 1), (b̄, 1) is a bowtie in E, where u, v, a, b ∈ U : hence
a · u, a · v, b · u, b · v ∈ U . By assumption, this implies that either a, b have a join c for 6R

or u, v have a join w for 6L. In each case, either (c̄, 1) or (w, 0) is in the middle of the
bowtie, which is a contradiction.

Let KE denote the interval complex of the labeled poset E.

Theorem 3.8. Under the assumption of Proposition 3.7, the piecewise ℓ∞ norm on KE is
injective and CUB. The group GE ≃ GU × Z is quasi-Garside with Garside element (e, 1)
and set of simple elements E. If U is finite, then E is finite and GE is Garside.
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In particular, we can deduce the following result stated in the introduction.

Theorem 3.9. Let U be a finite set, endowed with a positive partial multiplication, and
let GU denote the associated interval group. Assume that the following hold:

• (U,6L) and (U,6R) are semilattices.

• For any a, u, v, w ∈ U such that a · u, a · v ∈ U and w is the join for 6L of u and v,
then a · w ∈ U .

• For any a, u, v, w ∈ U such that u · a, v · a ∈ U and w is the join for 6R of u and v,
then w · a ∈ U .

• For any a, b, u, v ∈ U such that a · u, a · v, b · u, b · v ∈ U , either a, b have a join for
6R, or u, v have a join for 6L.

Then the group GU × Z is a Garside group, with Garside element (e, 1).

Remark. We may remark that there are very simple situations where we can apply The-
orem 3.9. For instance, let us consider the free group F over a finite set S, and let
U = S ∪ {e}. Then U satisfies the assumptions of Proposition 3.7, and in particular the
group F ×Z is Garside. This particular case can also be deduced from [Pic22] via different
methods. We will however see, in the rest of the article, more interesting applications of
this result.

3.2 Some examples where Theorem 3.9 applies

Theorem 3.10. Let us consider a group G given by a finite presentation 〈S | r1 = r′1, . . . , rn =
r′n〉. Assume that the following hold:

• For each 1 6 i 6 n, the words ri, r
′
i are positive words in S, without common prefix

or suffix.

• For each 1 6 i 6 n, the word ri (and r′i) does not appear as a subword of some of the
other 2n− 1 words.

• For each distinct s, t ∈ S, there exist at most one 1 6 i 6 n such the the first letters
of {ri, r′i} are {s, t}.

• For each distinct s, t ∈ S, there exist at most one 1 6 i 6 n such the the last letters
of {ri, r′i} are {s, t}.

• The presentation is T (5), i.e. the link of the vertex in the presentation complex has
girth at least 5.

Then G× Z is Garside.

Proof. Let U denote the quotient of the set of subwords of the words R = {r1, r
′
1, . . . , rn, r

′
n}

in F(S), under the equivalence relation defined by ri ∼ r′i, for each 1 6 i 6 n. Given two
positive words u1, u2 of F(S), we will write u1 = u2 if they are the same word in F(S), and
u1 ≡ u2 if they gives the same element in U . Let us endow U with the partial multiplica-
tion induced by the free group F(S) on S. For any u ∈ U , let us define u · e ≡ e · u ≡ u.
For any u, v ∈ U\{e}, then u · v exists and is equal to uv ∈ F(S) if and only if u, v 6∈ R
and there exists r ∈ R such that uv is a subword of r.

We will show that this defines a positive partial multiplication on U .

Assume that u, v, w ∈ U are such that u · v ∈ U and (u · v) · w ∈ U . We will consider
u, v, w as representatives inside F(S). Then there exists r1 ∈ R such that uv is a subword
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of r1. Moreover, uv,w /∈ R and uvw is a subword of r ∈ R. Hence vw is a subword of
r. Note that v /∈ R, otherwise we will contradict the second assumption of the theorem.
Thus by the definition of product, v · w ≡ vw ∈ U . So U is left associative, and similarly
we can show it is right associative.

The identity element e ∈ F(S) is an identity element for (U, ·). Now we check positivity.
If u ·v ∈ U and u ·v ≡ e, then u, v /∈ R and uv is a subword of r ∈ R. This forces u = v = e
as u and v are positive words. For the cancellability, if u ·v ≡ u ·w, then either uv = uw in
F(S) and v = w follows from the cancellability in F(S), or there exists i such that uv = ri
and uv = r′i, which implies u = e as we assume for each 1 6 i 6 n, the words ri, r

′
i have

no common prefix or suffix.

So U satisfies Definition 3.1. In particular, we may consider the left and right orders
on U .

Let us prove that (U,6L) is weakly boundedly graded. It is clear that e ∈ U is the
minimum of U . For each u ∈ U , let r(u) ∈ N denote the maximal length of a representative
for u in F(S). The map r : U → N is a rank map with respect to 6L and 6R. Since R is
finite, r has finite image. So (U,6L) and (U,6R) are weakly boundedly graded.

Let us prove that (U,6L) is a semilattice. According to Proposition 2.4, it is sufficient
to prove that (U,6L) does not contain a bowtie. By contradiction, assume that u, v 6L x, y
is a bowtie in U , with r(x)−r(u) minimal, where r : U → N is a weak grading. Let s, t ∈ S
denote the first letters of u, v respectively. Since r(x) − r(u) is minimal, we have s 6= t.
We have s, t 6L x, y. This implies that x, y ∈ R. By assumption, this implies that x = y,
so u, v 6L x, y is not a bowtie: contradiction. Hence (U,6L) is a semilattice.

Let a, u, v ∈ U such that a · u, a · v ∈ U and u ∧L v = w ∈ U . We want to prove
that a · w ∈ U . We will actually prove that u 6L v or v 6L u: if not, this means that
there exists 1 6 i 6 n such that u, v are prefixes of ri, r

′
i respectively (up to switching u

and v). Then the words au, av, u−1v give rise to a triangle in the link of the vertex in the
presentation complex, which contradicts the T (5) assumption. So u 6L v or v 6L u, and
hence a · w ∈ {a · u, a · v} ⊂ U .

Let us assume that a, b, u, v ∈ U are pairwise distinct such that a ·u, a ·v, b ·u, b ·v ∈ U .
We will prove that either a, b are comparable for 6R, or u, v are comparable for 6L. If
not, then the words au, av, bv, bu give rise to a 4-cycle in the link of the vertex in the
presentation complex, which contradicts the T (5) assumption. So for instance a, b are
comparable for 6R, in which case a and b have a join for 6R.

According to Proposition 3.7, we deduce that G× Z is a Garside group.

Corollary 3.11. For any surface S of finite type (possibly non-orientable), except the
projective plane, π1(S)× Z is a Garside group.

Proof. If S is a surface with boundary, its fundamental group is a free group.

If S is the torus, then π1(S) ≃ Z2, which is a Garside group, so π1(S) × Z ≃ Z3 is a
Garside group.

If S is the closed orientable surface with genus g > 2, consider the standard presentation

Gg = 〈a1, b1, . . . , ag, bg | [a1, b1] . . . [ag, bg] = 1〉.

This presentation is not positive, so we will modify it as follows:

G = 〈a1, b1, h2, h3, . . . , hg−1, ag, bg | a1b1h2h3 . . . hg−1agbg = agbgh2h3 . . . hg−1a1b1

a2b2 = h2b2a2, . . . , ag−1bg−1 = hg−1bg−1ag−1〉.
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Then this presentation satisfies the assumptions of Theorem 3.10.

If S is the projective plane, then π1(S) ≃ Z/2Z, so π1(S) × Z has torsion, hence it is
not a Garside group.

If S is the closed non-orientable surface with genus 2, i.e. the Klein bottle, then its
fundamental group has the following presentation

π1(S) = 〈a, b | a2 = b2〉,

which is a Garside presentation with Garside element ∆ = a2 = b2. Hence π1(S) × Z is a
Garside group.

If S is the closed non-orientable surface with genus g > 3, consider the (almost) stan-
dard presentation

G = 〈a1, . . . , ag | a
2
1 . . . a

2
g−1 = a2g〉,

then it is easy to check that it satisfies the assumptions of Theorem 3.10.

Another easy class of groups for which we can apply Theorem 3.8 is the following class
of groups with a systolic presentation. They have been defined and studied by Soergel
in [Soe21].

Definition 3.12 (Soergel [Soe21]). A finite presentation 〈S |R〉 of a group G is called a
systolic restricted presentation if the following hold:

• Each relation r ∈ R is of the form r = abc−1 ∈ F(S), where a, b, c ∈ S.

• The flag completion of the Cayley graph of G with respect to S is simplicial and
systolic.

Note that asking that the Cayley graph of G with respect to S is simplicial is equivalent
to asking that any s ∈ S has image in G different from e, and also for any distinct s, t ∈ S,
their image in G are neither equal nor inverse. Soergel gives a complete characterization
of such systolic restricted presentations in [Soe21, Theorem 1].

Among Garside presentations, Soergel gives a characterization of those which are sys-
tolic, see [Soe21, Theorem 2]. There are essentially amalgams of the following Garside
groups Gn,m, for n,m > 1, defined by the following systolic restricted presentation:

Gn,m = 〈x1, . . . , xn |x1x2 . . . xm = x2x3 . . . xm+1 = . . . xnx1x2 . . . xm−1〉.

Among 2-dimensional Artin groups, Soergel gives a sufficient criterion in terms of ori-
entations of the edges of the Coxeter presentation graph, see [Soe21, Theorem 3]. As a very
restricted example, if the Coxeter presentation graph Γ has no triangles and no squares,
then A(Γ) admits a systolic restricted presentation.

Theorem 3.13. Let G denote a group with a systolic restricted presentation. Then G×Z

is a Garside group.

Proof. Let us denote by U = S ∪ {e} in G, and let us consider the induced partial
multiplication from G. Since the Cayley graph of G with respect to S is simplicial, we
deduce that U embeds in G.

The only non-trivial assumption to check for this partial multiplication is the positivity:
if there exist s, t ∈ S such that st = e in G, this contradicts the fact that the Cayley graph
of G with respect to S is simplicial.

Since U is finite, it is weakly boundedly graded, and it has minimum e. Let us show
that (U,6L) is a meet-semilattice by contradiction: let us assume that we have a bowtie
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a, b <L u, v, with a, b, u, v ∈ S. Then this corresponds to a loop of length 4 in the link of
the vertex e in X. By systolicity, we deduce that there exists a diagonal: either a, b are
comparable, or u, v are comparable. Hence a, b <L u, v is not a bowtie. Similarly, (U,6R)
is a meet-semilattice

Let us now consider a, u, v ∈ U such that au, av ∈ U and u, v have a join w ∈ U for 6L.
Then a−1, u, w, v form a loop of length 4 in the link of the vertex e in X. By systolicity, we
deduce that there exists a diagonal: either u, v are comparable, in which case w ∈ {u, v}
and aw ∈ {au, av} ⊂ U , or there is an edge between a−1 and w, in which case aw ∈ U .

Let us now consider a, b, u, v ∈ U such that au, av, bu, bv ∈ U . Then a−1, u, b−1, v form
a loop of length 4 in the link of the vertex e in X. By systolicity, we deduce that there
exists a diagonal. If there is an edge between a−1 and b−1, this means that a and b are
6R-comparable, so they have a right join. If there is an edge between u and v, this means
that u and v are 6L-comparable, so they have a left join.

According to Theorem 3.8, we conclude that G× Z is a Garside group.

Definition 3.14. A finite presentation 〈S | R〉 is a positive square presentation if each
relator r is of form ab = cd where a, b, c, d are (not necessarily distinct) elements in R.

Some natural examples of groups of square presentation include right-angled Artin
groups, mock right-angled Artin groups in the sense of [Sco08] and groups arising from
word labeled oriented graphs in the sense of [HR15]. We give a criterion showing some of
these groups are Garside groups after taking the product with Z.

Given a finite square presentation, let X be the associated presentation complex. Each
edge loop of X is oriented and labeled by an element in S. Let Λ be the link of the unique
vertex of X. A vertex of Λ is of type o or i if it corresponds to outgoing or incoming edge
at the base vertex.

Theorem 3.15. Let G denote a group with a positive square presentation such that the
link Λ of its presentation complex satisfies the following conditions:

1. there does not exist embedded 2-cycles in Λ of type (o, o) (means a 2-cycle with two
vertices of type o) or type (i, i);

2. there does not exist embedded 3-cycles in Λ of type (o, o, i) or (i, i, o);

3. there does not exist embedded 4-cycles in Λ of type (o, i, o, i).

Then G× Z is a Garside group.

Proof. Suppose the collection of relators are of form {aibi = a′ib
′
i}

k
i=1 where ai, bi, a

′
i, b

′
i ∈ S

for each 1 ≤ i ≤ k. Let U be the set equivalence classes of words in {e} ∪ S ∪ {aibi}
k
i=1 ∪

{a′ib
′
i}

k
i=1, under the equivalence relation generated by aibi ∼ a′ib

′
i for 1 ≤ i ≤ k. We endow

U with the partial multiplication as in the proof of Theorem 3.10. Now we verify the
assumptions of Theorem 3.9: (U,≤L) is a semilattice follows from the lack of 2-cycle of
type (o, o) in Λ, as such kind of 2-cycles correspond to bowties in (U,≤L); (U,≤R) is a
semilattice follows from the lack of 2-cycle of type (i, i) in Λ. Now take a, u, v ∈ S with
u 6= v such that au, av ∈ U and u and v have a left join, then this gives a 3-cycle in Λ
made of vertices of type incoming a, outgoing u, outgoing v, which is excluded by the lack
of 3-cycle of type (o, o, i). Similarly, the third item of Theorem 3.9 follows from the lack of
3-cycle of (i, i, o). For the last item of Theorem 3.9, let a, b, u, v ∈ S with u 6= v and a 6= b.
If au, av, bu, bv ∈ U , this gives a 4-cycle in Λ with consecutive vertices of type a incoming,
u outgoing, b incoming and v outgoing, which is ruled out by the lack of 4-cycle of type
(o, i, o, i). Thus we are done by Theorem 3.9.
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4 Application to Artin groups

We will now explain how we can apply Theorem 3.9 for some Artin groups.
Let (W,S) denote a Coxeter group, and let A denote the associated Artin group. Let

R denote the set of all reflections of W , and let | · | denote the reflection length on W . We
will define the set U inside W , and we will look for conditions on U and W ensuring that
the assumptions from Theorem 3.9 are satisfied.

Given a subset U ⊂ W , we consider the following partial multiplication · on U : if
u, v ∈ U are such that their product uv in the Coxeter group W lies U and furthermore
|u · v| = |u|+ |v|, we define u · v = uv ∈ U . Let RU = R ∩ U .

Lemma 4.1. Suppose U satisfies the following conditions:

1. For every u ∈ U , there exist r1, . . . , rn ∈ RU such that u = r1 · r2 · . . . · rn.

2. For every r1, . . . , rn ∈ RU such that r1 · r2 · . . . · rn ∈ U , we have r1 · r2 · . . . · rn−1 ∈ U
and r2 · r3 · . . . · rn ∈ U .

Then the set (U, ·) satisfies Definition 3.1. In particular, 6L and 6R are orders on U .

Proof. It suffices to verify that for u, v, w ∈ U such that u · v · w ∈ U , we have u · v ∈ U
and v · w ∈ U . Indeed, by Assumption 1, let us write reflection factorizations in RU :
u = r1 · r2 · . . . · rn, v = r′1 · r

′
2 · . . . · r

′
n′ and w = r′′1 · r

′′
2 · . . . · r

′′
n′′ . We then have u · v ·w ∈ U ,

so by assumption 2, we have both u · v ∈ U and v · w ∈ U .

We have a criterion for E to be a lattice.

Proposition 4.2. Assume that we have the following:

1. For every u ∈ U , there exist r1, . . . , rn ∈ RU such that u = r1 · r2 . . . rn.

2. For every r1, . . . , rn ∈ RU such that r1 · r2 · . . . · rn ∈ U , we have r1 · r2 · . . . · rn−1 ∈ U
and r2 · r3 · . . . · rn ∈ U .

3. For every r1 ∈ RU and r2 ∈ RU with a common left upper bound, they have a left
join; similarly, if r1 and r2 have a common right upper bound, then they have a right
join.

4. For every a ∈ U , for any u, v ∈ RU such that u, v have a left join w ∈ U and
a · u, a · v ∈ U , we have a · w ∈ U .

5. For every a ∈ U , for any u, v ∈ RU such that u, v have a right join w ∈ U and
u · a, v · a ∈ U , we have w · a ∈ U .

6. For every a, b, u, v ∈ RU and any x ∈ U such that a ·x ·u, a ·x · v, b ·x ·u, b ·x · v ∈ U ,
we have that either u, v have a left join, or a, b have a right join.

Then U satisfies all the conditions in Proposition 3.7. In particular E is a lattice.

Proof. By Lemma 3.2, it remains to verify that U satisfies the assumptions of Proposi-
tion 3.7.

Assumption 1 of Proposition 3.7 follows by considering the reflection length on U .

We will now prove that (U,6L) is a meet-semilattice. We artificially add an largest
element 1̂ to U , so P = (U ∪ {1̂},≤L) is a bounded poset of finite length (i.e. there is
a finite upper bound on the lengths of its chains). Recall that an element p1 ∈ P covers
p2 ∈ P if p1 > p2 and there does not exist p ∈ P with p1 > p > p2. We claim that if u1, u2

23



are two distinct elements in P that covers v, then u1 and u2 has a join. By assumption
2, we can write u1 = v · r1 and u2 = v · r2 with r1, r2 ∈ RU . If 1̂ is the only common left
upper bound of u1 and u2, then clearly they have a join. If u1 and u2 have a common left
upper bound u′ other than 1̂, then we can write u′ = ui ·wi with wi ∈ U for i = 1, 2. Thus
r1 and r2 has a common left upper bound, which is w′ = r1 · w1 = r2 · w2 ∈ U . Let r be
the left join of r1 and r2. Then r ≤L w′, which implies that v · r ≤L v · w′ = u′. Thus
v · r is the join for u1 and u2. Now it follows from [BEZ90, Lemma 2.1] that P is a lattice.
Thus (U,≤L) is a meet-semilattice. Similarly we can prove (U,≤R) is a meet-semilattice.

We now prove Assumption 3 of Proposition 3.7, i.e. for all a, u, v ∈ U such that u, v
have a join w ∈ U for 6L, and a · u, a · v ∈ U , then a · w ∈ U .

We will prove it by decreasing induction on |a|, and for a fixed value of |a| by increasing
induction on |u| + |v|. Since U is finite, if a is maximal, then u, v = e, so the property is
true. Now consider a, u, v ∈ U , and assume that the property holds for any larger value of
|a|. If u, v ∈ RU , the property holds by assumption. So let us assume that the property
holds for smaller values of |u| + |v|. Let us assume that u 6∈ RU , and write u = u1 · r,
with u1 ∈ U , r ∈ RU and |u1| = |u| − 1. According to Properties 1 and 2, we know that
a · u1 ∈ U . Since u1, v have an upper bound w, and since U is a meet-semilattice, they
have a left join w1 = u1 · w

′, with w′ ∈ U . Since |u1| + |v| < |u| + |v|, we deduce by
induction that a · w1 = a · u1 · w

′ ∈ U . Now u1 · w
′ and u = u1 · r have an upper bound

w ∈ U , so we deduce by Properties 1 and 2 that w′ and r have an upper bound in U ,
hence they also have a join: let us write w′ ∨L r = w′′ ∈ U . Since |au1| > |a|, we deduce
by induction that au1 · w

′′ ∈ U , in particular |au1w
′′| = |au1| + |w′′| = |a| + |u1| + |w′′|.

Note that u = u1r ≤L u1 · w
′′ and v ≤L w1 = u1w

′ ≤L u1w
′′, we know w 6L u1 · w

′′,
hence aw ∈ U by Property 2. On the other hand, u−1

1 w is a left common upper bound
for r and w′. Hence w′′ ≤L u−1

1 w and u1 · · ·w
′′ ≤L w. Then w = u1 · · ·w

′′. In particular
|aw| = |au1w

′′| = |a|+ |u1|+ |w′′| = |a|+ |w|. Thus a · · ·w ∈ U .
Assumption 4 of Proposition 3.7 can be proved in a similar way.

We will now prove Assumption 5 of Proposition 3.7, i.e. for every a, b, u, v, x ∈ U such
that a · x · u, a · x · v, b · x · u, b · x · v ∈ U , we have that either u, v have a left join, or a, b
have a right join.

We will prove it by decreasing induction on |x|, and for a fixed value of |x| by increasing
induction on |a|+ |b|+ |u|+ |v|. Since U is finite, if x is maximal, then a, b, u, v are all equal
to e, so the property is true. Now consider a, b, u, v, x ∈ U , and assume that the property
holds for any larger value of |x|. If a, b, u, v ∈ RU , then the property holds by assumption.
Without loss of generality, assume that a ∈ U\RU , and write a = r · a′, for some r ∈ RU

and a′ ∈ U\{e} so that |a′| = |a| − 1. So a′ · x · u, a′ · x · v, b · x · u, b · x · v ∈ U : since
|a′| < |a|, we deduce by induction that either a′, b have a right join or u, v have a left join,
and in the latter case we have the desired conclusion. Let us then assume that a′, b have
a right join c ∈ U . Let us write c = c′ · a′, where c′ ∈ U .

Since a′ · xu, b · xu ∈ U and a′, b have a right join c ∈ U , according to Property 5,
we deduce that c · xu ∈ U , and similarly c · xv ∈ U . We now consider the four elements
c′ · a′x · u = cxu, c′ · a′x · v = cxv, r · a′x · u, r · a′x · v in U . Since a′ · x ∈ U and |a′x| > |x|,
we deduce by induction that either c′, r have a right join or u, v have a left join, and in the
latter case we have the desired conclusion. Let us then assume that c′, r have a right join
d ∈ U . Since c′ ·a′ = c, r ·a′ = a ∈ U and c′, r have a right join d ∈ U , according to Property
5, we deduce that d ·a′ ∈ U . Now remark that a = ra′ 6R da′ and b 6R c = c′a′ 6R da′, so
a, b have a common right upper bound for 6R. Since (U,6R) is a semilattice, we conclude
that a, b have a right join.

Let us denote by KE the interval complex of the poset E as in Definition 2.7, and let
GE denote the corresponding interval group. We will find a simple criterion ensuring that
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the interval group GE is isomorphic to A × Z, where A is the Artin group associated to
W .

Theorem 4.3. Assume that, for each spherical T ⊂ S, there is a choice of Coxeter element
wT ∈ WT such that, for every spherical T ′ ⊂ T , we have wT ′ 6L wT . Assume that

U =
⋃

T⊂S spherical

[e, wT ].

Then KE has the homotopy type of the Salvetti complex of the Artin group A × Z. In
particular, the interval group GE is isomorphic to A× Z.

Proof. For each spherical T ⊂ S, let us denote UT = [e, wT ] ⊂ U . Consider the sub-
poset ET = (UT × {0}) ⊔

(
UT × {1}

)
⊂ U , and denote by KET

⊂ KE the subcomplex
corresponding to the quotient of the geometric realization of ET .

We claim that KET
has the homotopy type of the Salvetti complex XT of the Artin

group AT × Z. Indeed, let us denote by s0 ∈ AT × Z a generator of Z, so that the
Artin group AT × Z has standard generating system T ′ = T ∪ {s0}. Now w′

T = wT s0 is a
Coxeter element for the spherical Coxeter group W ′

T = WT×Z/2Z, and KET
coincides with

the dual Salvetti complex for w′
T as described in [PS21, Section 5]. According to [PS21,

Remark 5.4], we deduce that KET
has the same homotopy type as the standard Salvetti

complex XT for the spherical Artin group AT × Z.
By assumption on U , it is clear that K is equal to the union of all KET

, for T ⊂ S
spherical. Also remark that the standard Salvetti complex X for the Artin group A×Z is
equal to the union of all KET

, for T ⊂ S spherical.
According to the proof of [PS21, Theorem 5.5], we deduce that KE has the homotopy

type of X.

In particular, the interval group GE of E, which is the fundamental group of KE , is
naturally isomorphic to the Artin group A× Z. Moreover, the standard Salvetti complex
X of A × Z is aspherical, so in particular the standard Salvetti complex of A itself is
aspherical: we deduce that the K(π, 1) conjecture holds for A.

Corollary 4.4. Assume that W is a Coxeter group, with a subset U ⊂ W satisfying the
conditions of Proposition 4.2 and of Theorem 4.3. Let A be the Artin group associated with
W . Then A×Z is Garside, with Garside element (e, 1). Moreover, the K(π, 1) conjecture
holds for A.

Remark. There are some Artin groups for which it is not possible to find a subset U ⊂ A
satisfying the conditions of Proposition 4.2 and of Theorem 4.3. Here are two simple
examples.

1. Consider the right-angled Artin group A ≃ F2×F2 with defining graph a square with
vertices a, u, b, v in this cyclic order (see Figure 2), and assume that the conditions
of Theorem 4.3 hold. Then we have au, av, bu, bv ∈ U , but neither a, b nor u, v have
a join for 6L. Then the conditions of Proposition 4.2 do not hold.

au

b v

Figure 2: The right-angled Artin group A over a square.
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2. Consider the A with defining graph a complete graph over 7 vertices, whose Dynkin
diagram is a line with vertices s1, s2, . . . , s7, with all edge labels equal to 4 (see
Figure 3). Assume that the conditions of Theorem 4.3 hold. Consider the four
elements of U : a = s1s2 or s2s1 (depending on the ordering on S), b = s2s3 or s3s2,
u = s5s6 or s6s5 and v = s6s7 or s7s6. Then au, av, bu, bv ∈ U , but neither a, b nor
u, v have a join for 6L. Then the conditions of Proposition 4.2 do not hold.

4 4 4 4 4 4
s1 s2 s3 s4 s5 s6 s7

a b u v

Figure 3: The Dynkin diagram of an Artin group for which Corollary 4.4 does not apply.

Corollary 4.5. Assume that, for each spherical T ⊂ S, there is a choice of Coxeter element
wT ∈ WT such that, for every spherical T ′ ⊂ T , we have wT ′ 6L wT . Assume that

U =
⋃

T⊂S spherical

[e, wT ].

Let Û be the lift of U from WS to AS via the (compatible) isomorphism between the dual
Artin group associated with AT for each T ⊂ S spherical and AT (cf. Theorem 2.16, and
more precisely [Bes03, Theorem 2.2.5]).

Assume that U satisfying the conditions of Proposition 4.2. Let XS be the flag complex
of the Cayley graph of AS with generating set Û . Then XS admits an AS-equivariant CUB
metric such that each simplex of XS is equipped with a polyhedral norm as in [Hae22].

Proof. By Corollary 4.4, AS×Z is a Garside group with the choice of fundamental interval
E as in Section 3. Note that Bestvina complex (cf. Section 2.7) for the Garside group
AS × Z is isomorphic to flag complex of the Cayley graph of AS with generating set Û .
Thus we are done by Theorem 2.17.

5 Cyclic-type Artin groups

We will now describe a family of Artin groups for which we can find a set U satisfying the
conditions of Proposition 4.2 and of Theorem 4.3.

5.1 Spherical Artin group with linear Dynkin diagram

Lemma 5.1. Let WS be an arbitrary Coxeter group (not necessarily spherical). Let w
denote a word in S representing the trivial element of WS. Then each letter of w appears
at least twice.

Proof. By contradiction, assume that we can write w = usv, where s ∈ S and u, v are
words in S\{s}. Then, in the Coxeter groups WS , the words s and u−1v−1 represent the
same element. Since s in the support of s and not of u−1v−1, this is a contradiction.

Lemma 5.2. Let WS be an arbitrary Coxeter group (not necessarily spherical). Let s ∈ S,
and let w denote a reduced word in S\{s} representing an element commuting with s. Then
every letter of w commutes with s.

Proof. Since w and s have disjoint supports, the words sw and ws are reduced. We can
pass from the reduced word sw to the reduced word ws by applying only standard relations
(see for instance [Dav15, Theorem 3.4.2]). This implies that s commutes with every letter
of w.
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Lemma 5.3. Let WS be an arbitrary Coxeter group (not necessarily spherical). Let
{s1, s2, . . . , sn} ⊂ S such that, for each 1 6 i 6 n − 1, there exists i < j 6 n such
that si and sj do not commute. Then the word

s1 · · · sn−1snsn−1 · · · s1

is reduced.

Proof. We induct on n. Then case n = 1 is trivial. For the general case, by contradiction,
assume that the word w = s1 · · · sn−1snsn−1 · · · s1 is not reduced. According to the deletion
condition (see for instance [Hum75, Theorem 5.8]), w can also be represented by a word
w′ obtained from w by deleting two letters.

Since w represents a reflection of WS, w′ also represents a reflection. According to the
strong exchange condition (see [Hum75, Theorem 5.8]), if we remove one letter from w′

we may obtain the trivial element. According to Lemma 5.1, we deduce that there exists
1 6 i 6 n− 1 such that w′ is obtained from w by removing the two occurences of si.

So we have w′ = s1s2 . . . si−1si+1 . . . sn . . . si+1si−1 . . . s1. By conjugating by s1s2 . . . si−1,
we deduce that the words si · · · sn−1snsn−1 · · · si and si+1 · · · sn−1snsn−1 · · · si+1 represent
the same element of WS. In particular, the element u = si+1 · · · sn−1snsn−1 · · · si+1 com-
mutes with si. As u = si+1 · · · sn−1snsn−1 · · · si+1 is reduced by induction assumption,
according to Lemma 5.2, we deduce that si commutes with every letter si+1, . . . , sn, which
contradicts the assumption.

Lemma 5.4. Suppose S is spherical with linear Dynkin diagram. We label elements of S
as {s1, . . . , sn} using a linear order of coming from the Dynkin diagram. Let U be the dual
Garside interval with respect to the dual Garside element δ = s1s2 · · · sn and let RU be the
set of reflections in U . Assume that u, v ∈ RU are such that u · v ∈ U . Let I = Supp(u)
and J = Supp(v). If min(I)− 1 ∈ J , then I ⊂ J .

Proof. Up to symmetries, the Coxeter group WS is one of the following:

• Type Im with m ≥ 3, and n = 2.

• Type An.

• Type B3, with Dynkin diagram 3− 4, and n = 3.

• Type H3, with Dynkin diagram 3− 5, and n = 3.

• Type B4, with Dynkin diagram 3− 3− 4, and n = 4.

• Type F4, with Dynkin diagram 3− 4− 3, and n = 4.

Let us denote I = Supp(u) and J = Supp(v). Up to passing to a standard parabolic
subgroup, we can assume S = I ∪ J .

Assume first that |S| = 2, i.e. WS is of type Im with m ≥ 3. Assume that I, J 6= S =
{s1, s2}, so that u, v ∈ {s1, s2}. We only have to prove that s2s1 66L δ.

By contradiction, assume that s2s1 6L δ. Since δ = s1s2 has reflection length 2, we
deduce that s2s1 = δ, so s1s2 = s2s1. This contradicts m > 3.

Suppose |S| > 2. We assume that I = [si, . . . , sn] and J = [s1, . . . , sj], with j 6 n− 1,
and we will show that i > j + 2.

Note that for each element g ∈ WS with its reduced expression g = si1si2 · · · sik , we
define ḡ = sik · · · si2si1 . Note that ḡ ∈ WS does not depend on the choice of reduced
expression of g. Then uv 6L δ if and only if v̄ū 6R δ̄ if and only if v̄ū 6L δ̄. This allows us
to reduce the 5−3 case to the 3−5 case, and the 4−3 case to the 3−4 case. Assume that P
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is not of type F4 with i = 2 and j = 3. Then without loss of generality, up to this symmetry,
we may assume that J is of type Aj . Then we know that v = s1s2 · · · sj−1sjsj−1 · · · s2s1.
We also have

δ = s1 · · · sjsj+1 . . . sn = vs1 · · · sj−1sj+1 . . . sn

= (vs1v
−1) · · · (vsj−1v

−1)(vsj+1 . . . snv
−1)v.

By the Garside property, there exists w ∈ [1, δ] with reflection length n − 1 such that
w · v = δ. Thus

(vs1v
−1) · · · (vsj−1v

−1)(vsj+1v
−1) · · · (vsnv

−1)

is a minimal reflection decomposition of w. By [McC15, Lemma 3.7], vskv
−1 6L w for

k 6= j. Since u · v 6L δ, we know that u · v 6R δ by Theorem 2.16. Thus u 6R w.
According to [Bes03, Lemma 1.4.3], the element w is a Garside element for the parabolic

subgroup Pw of P generated by the reflections which are 6L-smaller than w. Since w has
reflection length n− 1, this subgroup Pw equals

Pw = 〈vs1v
−1, · · · vsj−1v

−1, vsj+1v
−1, . . . , vsnv

−1〉 = v (〈s1, . . . , sj−1〉 × 〈sj+1, . . . , sn〉) v
−1.

As u 6R w, we know that u ∈ Pw by [BDSW14, Theorem 1.4]. Hence v−1uv ∈ WS\{sj}.

By Lemma 2.1, Supp(v−1uv) ⊂ {s1, . . . , sj−1} or Supp(v−1uv) ⊂ {sj+1, . . . , sn}. Thus
u ∈ v (〈s1, . . . , sj−1〉) v

−1 or u ∈ v (〈sj+1, . . . , sn〉) v
−1. Also since

v (〈s1, . . . , sj−1〉) v
−1 ⊂ W{s1,...,sj},

we rule out that u ∈ v (〈s1, . . . , sj−1〉) v
−1, hence u ∈ v (〈sj+1, . . . , sn〉) v

−1. In particular,

u ∈ v (〈sj+1, . . . , sn〉) v
−1 ∩WI = 〈vsj+1v

−1, sj+2, . . . , sn〉 ∩ 〈si, . . . , sn〉.

Assume by contradiction that i 6 j+1. Let P = 〈vsj+1v
−1, sj+2, . . . , sn〉∩〈si, . . . , sn〉.

By [Qi07], P is a parabolic subgroup of WS. Note that P ⊃ W{sj+2,...,sn}. On the

other hand, vsj+1v
−1 /∈ W{si,...,sn} as vsj+1v

−1 = s1s2 · · · sjsj+1sj · · · s1 and the word
s1s2 · · · sjsj+1sj · · · s1 is reduced by Lemma 5.3. Hence P = W{sj+2,...,sn}, contradicting
that i 6 j + 1.

The remaining case is in type F4 with i = 2 and j = 3. Then v is a reflection inside the
Coxeter group of B3 generated by s1, s2 and s3, which has Dynkin diagram 3−4. Consider
the canonical representation of Coxeter group of type B3 acting on R3. Then s1 acts by
the orthogonal reflection along x1 = x2, s2 acts by the orthogonal reflection along x2 = x3,
and s3 acts by the orthogonal reflection along x3 = 0. Note that there are nine reflection
in Ws1,s2,s3 , whose reflection hyperplanes are xi = ±xj for 1 ≤ i 6= j ≤ 3 and xi = 0 for
1 ≤ i ≤ 3. Note that reflections along xi = xj for 1 ≤ i 6= j ≤ 3 are supported on Ws1,s2 ;
reflections along x2 = ±x3 or xi = 0 for i = 2, 3 are supported on Ws2,s3 . This gives 6
reflections in total. The remaining three reflections in Ws1,s2,s3 give all the possibilities of
v. More precisely, reflection along x1 = 0 gives v = s1s2s3s2s1, reflection along x1+x3 = 0
gives v = s1s3s2s3s1, and reflection along x1 + x2 = 0 gives v = s2s3s2s1s2s3s2.

The case v = s1s2s3s2s1 is identical to before. Now we assume v = s1s3s2s3s1 =
s3s1s2s1s3 = s3s2s1s2s3. Then

δ = s1s2s3s4 = s1s2s3s4s3s2s1s2s3v

= (s1s2s3s4s3s2s1)(s2)(s3)v.

By the same argument as before, we know u ∈ 〈s1s2s3s4s3s2s1, s2, s3〉. Let

P = 〈s1s2s3s4s3s2s1, s2, s3〉 = s1s2s3〈s4, s1, s2s3s2〉s3s2s1 = s1s2s3s2〈s4, s2s1s2, s3〉s2s3s2s1

= s1s2s3s2〈s4, s1s2s1, s3〉s2s3s2s1 = s1s2s3s2s1〈s4, s2, s3〉s1s2s3s2s1.
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In particular, P is a parabolic subgroup. Note that u ∈ P ∩Ws2,s3,s4 .
By [Qi07], P∩Ws2,s3,s4 is a parabolic subgroup of WS . Note that 〈s2, s3〉 ⊂ P∩Ws2,s3,s4 .

Moreover, s1s2s3s4s3s2s1 ∈ P \Ws2,s3,s4 as s1s2s3s4s3s2s1 is a reduced word by Lemma 5.3.
Thus P ∩Ws2,s3,s4 = 〈s2, s3〉. Thus s4 /∈ Supp(u), which is a contradiction.

It remains to look at the case v = s2s3s2s1s2s3s2. Then

δ = s1s2s3s4 = s1s2s3s4s2s3s2s1s2s3s2v

= (s1s2s3s4s3s2s1)(s1s2s3s2s3s2s1)(s2s3s2)v.

Note that s2s3s2 = s1s2s3(s3s2s1s2s3s2s1s2s3)s3s2s1 = s1s2s3(s1s2s3s2s1)s3s2s1. Thus
by repeating the previous discussion, we know

u ∈ s1s2s3〈s4, s2, s1s2s3s2s1〉s3s2s1 = s1s2s3s1s2〈s4, s1, s3〉s2s1s3s2s1.

As u belongs to a parabolic subgroup which splits as a product and s4 ∈ Supp(u), we argue
as before to deduce that

u ∈ s1s2s3s1s2〈s4, s3〉s2s1s3s2s1 := P.

Thus u ∈ P ∩Ws2,s3,s4 . Note that

s1s2s3s1s2(s3)s2s1s3s2s1 = s1s2s1(s3s2s3s2s3)s1s2s1

= s2s1s2(s2s3s2)s2s1s2 = s2s1s3s1s2 = s2s3s2 ∈ P ∩Ws2,s3,s4 .

Thus P ∩Ws2,s3,s4 is a parabolic subgroup of rank ≥ 1. On the other hand,

s1s2s3s1s2(s4)s2s1s3s2s1 = s1s2s3s4s3s2s1.

As s1s2s3s4s3s2s1 is a reduced word in WS by Lemma 5.3, it can not be contained in
Ws2,s3,s4 . Thus P ∩ Ws2,s3,s4 ( P . It follows that P ∩ Ws2,s3,s4 = 〈s2s3s2〉, hence s4 /∈
Supp(u), which is a contradiction.

Corollary 5.5. Under the same setting of Lemma 5.4, the conclusion of Lemma 5.4 holds
for any u, v ∈ U such that Supp(u) and Supp(v) are irreducible.

Proof. Let v = r1r2 · · · rk with ri ∈ RU be a minimal reflection decomposition of v. Then
there exists 1 ≤ i ≤ k such that min(I) − 1 ⊂ Supp(ri). Suppose I ⊂ J is not true.
Then max(Supp(ri)) < max(Supp(J)). Hence max(Supp(ri)) + 1 ∈ Supp(J). We write a
minimal reflection decomposition of u as u = t1t2 · · · tm. Then there exists 1 ≤ j ≤ m such
that max(Supp(ri)) + 1 ⊂ Supp(tj). As u · v ∈ δ, we know r1 · · · rkt1 · · · tm is a minimal
reflection decomposition of uv. In particular r1 · · · rkt1 · · · tm ≤L δ. By [McC15, Lemma
3.7], ri · tj ≤L δ. By construction we have min(Supp(tj)) − 1 ∈ Supp(ri), and Supp(ri)
does not contain Supp(tj), which contradicts Lemma 5.4. Thus the corollary is proved.

5.2 Cyclic-type Artin groups

Let WS be a cyclic type Coxeter group (cf. Table 1). We take a cyclic order on S
coming from its Dynkin diagram, and denote elements in S as elements in Z/nZ. For each
i ∈ Z/nZ, consider the dual Garside interval Ui in PS\i with respect to the dual Garside
element δi = si+1si+2 . . . sns1 . . . si−1. Let U = ∪i∈Z/nZUi. It is clear that this set U
satisfies the assumptions of Theorem 4.3.

For each i ∈ Z/nZ, consider the set RUi
⊂ Ui of reflections in the spherical parabolic

subgroup PS\i, and let RU = ∪i∈Z/nZRUi
⊂ U .
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Proposition 5.6. The sets R and U satisfy all assumptions from Proposition 4.2. In
particular, if AΓ is of cyclic type, then AΓ × Z is a Garside group.

Proof. We verify each assumption of Proposition 4.2 as follows.

1. Any u ∈ Ui can be written as a product of elements in RUi
which is a minimal length

reflection factorization.

2. Let r1, . . . , rm ∈ UR such that u = r1 ·r2 · · · ·rm ∈ U . Let i ∈ Z/nZ such that u ∈ Ui.
Then r1, . . . , rn ∈ PS\i by [BDSW14, Theorem 1.4], and r1 ·r2 · · · ·rm 6L δi. So both
r1 . . . rn−1 and r2 . . . rn belong to PS\i, and also they are both prefixes of δi. Hence
r1 . . . rn−1 and r2 . . . rn belong to Ui.

3. Let r, r′ ∈ UR which admit a common left upper bound u ∈ U . Let i ∈ Z/nZ such
that u ∈ Ui. By [BDSW14, Theorem 1.4], r, r′ ∈ Ui and u is a common left upper
bound for r, r′ in (Ui,≤L). In particular, r, r′ 6L δi, so r and r′ admit a unique left
join ui in (Ui,≤L). Now we show ui is also the join of r and r′ in (U,≤L). Indeed,
take an arbitrary left upper bound u′ of r, r′ in U . Suppose u′ ∈ Uj. Then as before
we know r, r′ ∈ Uj and u′ is a common left upper bound of r, r′ in (Uj ,≤L). Let
uj (resp. uij) be the left join of r, r′ in (Uj ,≤L) (resp. (Ui ∩ Uj ,≤L)). One readily
verifies that uij = ui, uij = uj and uj ≤L u′. Thus ui ≤L u′, implying ui is the left
join of r and r′ in U . The case of common right upper bound is similar.

4. Let a, u, v, w be as in Proposition 4.2 (4). Let I, J,K ⊂ Z/nZ denote Supp(a),
Supp(u) and Supp(v) respectively. We first prove I ∪ J ∪ K ( Z/nZ. Suppose by
contradiction that I ∪ J ∪K = Z/nZ. Let {Ii}

k
i=1 be the irreducible components of

I. By Lemma 2.1, a = a1 · a2 · . . . · ak such that Supp(ai) = Ii. As ai · u ≤ a · u,
we know ai · u ∈ U . Similarly, ai · v ∈ U for 1 ≤ i ≤ k. As I ∪ J ∪ K = Z/nZ,
for each ai, we know either min(Ii) − 1 ∈ J or min(Ii) − 1 ∈ K (here Ii inherits
a linear order from the cyclic order on Z/nZ, hence it make senses to take about
min(Ii) and min(Ii)−1). If min(Ij)−1 ∈ J , we consider Ii∪K, which is irreducible.
As ai · · · u ∈ U , there exists i0 such that ai · u ∈ Ui0 . Then Ii ∪ K ⊂ S \ {i0} by
[BDSW14, Theorem 1.4]. We endow S \ {i0} with the linear order induced from the
cyclic order on S, then Corollary 5.7 implies Ii ⊂ J . This shows that Ii ⊂ J ∪ K
for each i. Thus I ∪ J ∪K = J ∪K. However, as u and v has a left join w in U ,
there exists i′0 such that w ∈ Ui′

0
, hence u, v ∈ Ui′

0
by [BDSW14, Theorem 1.4]. Thus

J ∪K ( S, which is a contradiction.

Let i ∈ S such that I ∪ J ∪ K ∈ S \ {i}. As w is a left join of u and v in U ,
by the discussion in item 3, Supp(w) ∈ J ∪ K and w is the left join of u and v in
(Ui,≤L). Thus Supp(a) ∪ Supp(w) ⊂ Ui. Clearly aw ∈ Ui ⊂ U . It remains to show
|aw| = |a|+ |w|. As (Ui,≤L) is a lattice, a · u and a · v has a left join in Ui, denoted
by a′. As a ≤L a′, we know a′ = a · w′ for some w′ ∈ Ui. By cancellation property
in Ui, we know u ≤L w′ and u ≤L w′. Thus w ≤L w′. Then w′ = w ·w0 for w0 ∈ Ui.
Then |a′| = |a| + |w′| = |a| + |w| + |w0|. As a′ = aww0, |a

′| ≤ |aw| + |w0|. Thus
|aw| = |a|+ |w|.

5. This is similar to the previous item.

6. Let a, b, u, v, x be as in Proposition 4.2 (6). Let Ia = Supp(a). Similarly we define
Ib, Iu and Iv. We claim either Ia ∪ Ib ( S or Iu ∪ Iv ( S. Assume by contradiction
that Ia ∪ Ib = S and Iu ∪ Iv = S. As a · x · u ∈ U , there there exists i ∈ S
such that a · x · u ≤L δi. By [McC15, Lemma 3.7], a · u ≤L a · x · u ≤L δi, thus
a · u ∈ Ui ⊂ U . Similarly, a · v, b · u, b · v ∈ U . As Ia ∪ Ib = S, either min(Iu)− 1 ⊂ Ia
or min(Iu) − 1 ⊂ Ib. If min(Iu) − 1 ⊂ Ia, as a · u ∈ Ui, we know from Lemma 5.4
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that Iu ⊂ Ia. As Iu ∪ Iv = S, Ia ∪ Iv = S, which contradicts a · v ∈ U . The case of
min(Iu)− 1 ⊂ Ib is similar.

If Ia ∪ Ib ( S, then there is i ∈ S such that a, b ∈ Ui. As (Ui,≤R) is lattice, a
and b have a right join in (Ui,≤R), which is also a right join of a and b in U by the
argument in item 3. The case Iu ∪ Iv ( S is similar.

Corollary 5.7. Under the same setting of Lemma 5.4, the conclusion of Lemma 5.4 holds
for any u, v ∈ U such that Supp(u) and Supp(v) are irreducible.

Proof. Let v = r1r2 · · · rk with ri ∈ RU be a minimal reflection decomposition of v. Then
there exists 1 ≤ i ≤ k such that min(I) − 1 ⊂ Supp(ri). Suppose I ⊂ J is not true.
Then max(Supp(ri)) < max(Supp(J)). Hence max(Supp(ri)) + 1 ∈ Supp(J). We write a
minimal reflection decomposition of u as u = t1t2 · · · tm. Then there exists 1 ≤ j ≤ m such
that max(Supp(ri)) + 1 ⊂ Supp(tj). As u · v ∈ δ, we know r1 · · · rkt1 · · · tm is a minimal
reflection decomposition of uv. In particular r1 · · · rkt1 · · · tm ≤L δ. By [McC15, Lemma
3.7], ri · tj ≤L δ. By construction we have min(Supp(tj)) − 1 ∈ Supp(ri), and Supp(ri)
does not contain Supp(tj), which contradicts Lemma 5.4. Thus the corollary is proved.

Now the following is a consequence of Proposition 5.6 and Corollary 4.4.

Corollary 5.8. Assume that AΓ is of hyperbolic cyclic type. Then AΓ satisfies the K(π, 1)
conjecture and has trivial center.

6 Combination of cyclic type and spherical type Artin groups

An edge of a Coxeter presentation graph is large if it its label is ≥ 3. For each induced
subgraph Λ ⊂ Γ, we define Λ⊥ to be the induced subgraph spanned by vertices of Γ which
commute with every vertex in Λ.

We will be considering orientation of each large edges of Γ. For the moment suppose
Γ is spherical and we orient each large edge. We say a Coxeter element of Γ is compatible
with such orientation if whenever there is an oriented edge from s1 ∈ S to s2 ∈ S, then s1
appears before s2 in the expression of the Coxeter element.

Lemma 6.1. Given a spherical Coxeter presentation graph Γ with orientation on its large
edges, any two Coxeter elements that are compatible with the orientation are equal.

Proof. We will prove it by induction on the rank of Γ.
Let us assume that w = s1 . . . sn and w′ = s′1 . . . s

′
n are two Coxeter elements that

are compatible with the orientation. Let i ∈ {1, . . . , n} such that s′i = s1. Assume that,
among all possible reduced expressions of w′ that are compatible with the orientation, the
position i of s1 is minimal. We will prove that i = 1.

Assume by contradiction that i > 1. Since i is minimal, we deduce that the edge
between s′i−1 and s′i has label ≥ 3. As w′ is compatible with the orientation, we deduce
that the edge between s′i−1 and s′i is oriented from s′i−1 to s′i. As w is also compatible with
the orientation and s′i = s1, we deduce that this edge is oriented from s′i to s′i−1. This is a
contradiction.

So s′1 = s1. By induction, we deduce that s2 . . . sn = s′2 . . . s
′
n, hence w = w′.

Lemma 6.2. Given a spherical Coxeter presentation graph Γ with orientation on its large
edges and let δ be the Coxeter element which is compatible with the orientation. Let [1, δ]
be the collection of elements in WΓ that are prefixes of δ with respect to the reflection length
on WΓ.
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Give two reflections r1, r2 ∈ [1, δ] such that r1r2 ∈ [1, δ]. Take s1 ∈ Supp(r1)\Supp(r2)
and s2 ∈ Supp(r2) \ Supp(r1). Then either s1 and s2 commute, or there is an oriented
edge from s1 to s2.

Proof. We argue by contradiction and assume there is an oriented edge from s2 to s1.
Let Λ be the Dynkin diagram, which is a tree. Then we cut Λ along the midpoint of the
edge s2s1 into two subtrees with si ∈ Λi for i = 1, 2. By Lemma 2.1, Supp(si) ⊂ Λi for
i = 1, 2. The edge orientation on Λ induces edge orientation on Λi for i = 1, 2. Let δi
be the Coxeter element in AΛi

which is compactible with the edge orientation on Λi. As
vertices in Λ1 \ {s1} commute with vertices in Λ2 \ {s2}, Lemma 6.1 implies that δ = δ2δ1.
As ri is a reflection in AΛi

, we know r1 6L δ1 and r2 6R δ2 by [Bes03, Lemma 1.3.3]. In
particular δ1 has a minimal reflection decomposition of form δ1 = r1 · r

′
1 · r

′
2 · · · r

′
k, and δ2

has a minimal reflection decomposition of form δ2 = r′′1 · · · r
′′
m · r2. Thus

r′′1 · · · r
′′
m · r2 · r1 · r

′
1 · r

′
2 · · · r

′
k = δ.

By [McC15, Lemma 3.7], r2 · r1 6L δ. Thus r2 · r1, r2 · r2 ∈ [1, δ], and these two elements
are both common upper bound for r1 and r2 with respect to ≤L. Then r2r1 = r1r2 as
([1, δ],≤L) is a lattice. We write ri as an reducible word wi in WS. Then wi only uses from
letters from Λi, and w1w2, w2w1 are reduced words. Then by Tits’s solution to the word
problem of Coxeter group, we know that it is possible to apply the relators finitely many
times to transform w1w2 into w2w1. However, as s2 is on the right side of s1 in w1w2 and
m(s1, s2) ≥ 3, and the property of having at least one s2 on the right side of s1 is preserved
under applying the relations, this leads to a contradiction.

Given a 4-cycle ω ⊂ Γ with consecutive vertices {xi}
4
i=1, a pair of antipodal vertices in

ω means either the pair {x1, x3}, or the pair {x2, x4}. A 4-cycle in Γ has diagonal means
it has a pair of antipodal vertices of ω which are connected by an edge in Γ.

Theorem 6.3. Let Γ be a Coxeter presentation graph such that

• each complete subgraph of Γ is a join of a cyclic type graph and a spherical type graph
(we allow one of the join factors to be empty);

• for any cyclic type induced subgraph Λ ⊂ Γ, Λ⊥ is spherical.

We assume in addition that there exists an orientation of all large edges of Γ such that

• the orientation restricted to each cyclic type subgraph of Γ gives a consistent orien-
tation on the associated circle;

• if ω is a 4-cycle in Γ with a pair of antipodal points x1 and x2 such that each edge of
ω containing xi ∈ {x1, x2} is either not large or oriented towards xi, then the cycle
has a diagonal.

Then AΓ × Z is a Garside group.

Proof. Let S be the vertex set of Γ. Let I ⊂ S be a spherical subset. We define δI be a
product of all elements in I in an order which is compatible with the orientation of Γ in
sense explained before the lemma. Then δI is well-defined by Lemma 6.1.

We also view δI as an element in the Coxeter group WΓ. Let S be the collection of all
spherical subset of S. Define U = ∪I∈S [1, δI ], where [1, δI ] denotes the interval in WΓ with
respect to the reflection length. It is clear that U satisfies the assumptions of Theorem 4.3.

We now verify that U satisfies all the requirements in Proposition 4.2.
By [BDSW14, Theorem 1.4], any minimal length reflection decomposition of an element

a ∈ [1, δI ] only involves reflections in WI . On the other hand, by [Bes03, Lemma 1.3.3], for
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any reflection r ∈ WI , there exists a minimal length reflection decomposition of δI starting
with r, thus r ∈ U . Now Assumptions 1 and 2 of Proposition 4.2 follows.

For Assumption 3 of Proposition 4.2, if r1, r2 ∈ RU has an left common upper bound
a ∈ U , then there exists a spherical subset I ∈ S such that a ∈ [1, δI ]. By [BDSW14,
Theorem 1.4], r1, r2 ∈ WI . As in the previous paragraph, we know r1, r2 ∈ [1, δI ]. As
([1, δI ],6L) is a lattice, we know r1 and r2 has left join a in ([1, δI ],6L). By the same
argument as in the verification of Assumption 3 in Proposition 5.2, we know a is also the
left join of r1 and r2 in (U,6L).

Now we verify Assumption 4 of Proposition 4.2.
For any w ∈ WΓ, let Iw = Supp(w). We claim that if a, b ∈ U and a · b ∈ U (recall that

a · b means |ab| = |a|+ |b| with | · | denotes the reflection length), then Iab = Ia ∪ Ib. Note
that Iab ⊂ Ia ∪ Ib is clear. Now let a = r1r2 · · · rn and b = r′1r

′
2 · · · r

′
m be minimal length

reflection decomposition of a and b. By [BDSW14, Theorem 1.4], Supp(ri) ⊂ Supp(a) for
each i, thus Supp(a) = ∪n

i=1 Supp(ri). Similarly Supp(b) = ∪m
i=1 Supp(r

′
i). As a · b ∈ U ,

r1 · · · rnr
′
1 · · · r

′
m is a minimal length reflection decomposition of a and b. As ab ∈ AIab ,

we know from [BDSW14, Theorem 1.4] that ri, r
′
i ∈ AIab . Similarly as before Supp(ab) =

(∪n
i=1 Supp(ri)) ∪ (∪m

i=1 Supp(r
′
i)). Thus Ia ⊂ Iab and Ib ⊂ Iab. Now the claim follows.

Let a, b, u, w be as in Assumption 4 of Proposition 4.2. Then Ia ∪ Iu = Iau, which
spans a complete subgraph of Γ. Similarly, Ia ∪ Iv spans a complete subgraph of Γ. By
the previous paragraph, if u ≤L w and v ≤L w, then Iu ⊂ Iw and Iv ⊂ Iw. Hence Iv ∪ Iw
spans a complete subgraph of Γ. Thus I = Iv ∪ Iu ∪ Ia spans a complete subgraph of Γ.
Then I = I1∪ I2 where I1 is a cyclic type irreducible component of I and I2 is the union of
all irreducible spherical components of I. By Lemma 2.1, a = a1 · a2 for ai ∈ WIi ∩ U for
i = 1, 2, u belongs to either WI1 or WI2 , and v belongs to either WI1 or WI2 . If u, v ∈ WI1 ,
then Proposition 5.2 implies that a1 ·w ∈ U ∩WI1 , hence a ·w = a2 · a2 ·w ∈ U . If exactly
one of {u, v}, say u, is in WI1 , then w = u · v, hence a · w = (a · u) · v ∈ U . If each of u, v
is in WI2 , then a2 · w ∈ [1, δI2 ] as ([1, δI2 ],6L) is a lattice. Thus a · w = a1 · (a2 · w) ∈ U .

Assumption 5 of Proposition 4.2 can be verified similarly.
Now we verify Assumption 6 of Proposition 4.2. Let a, b, u, v, x be as in Assumption

6. As a · x · u ∈ U , by previous discussion we know that Ia ∪ Ix ∪ Iu = Iaxu. Thus Ia ∪ Iu
span a complete subgraph. Similarly, Ia ∪ Iv, Ib ∪ Iu, Ib ∪ Iv span complete graphs of Γ.

First we consider the case when Ia∪Ib spans a complete subgraph. If Ia∪Ib is spherical,
then a and b have a right join in ([1, δIa∪Ib ],6L), hence in (U,6L). Now suppose Ia ∪ Ib
spans a cyclic type subgraph of Γ. Note that Ia ∪ Ib ∪ Iu spans a complete subgraph of
Γ. As Iu is irreducible by Lemma 2.1, thus either Iu ⊂ Ia ∪ Ib, or Iu ⊂ (Ia ∪ Ib)

⊥ by our
assumption on complete subgraphs of Γ. Similarly, either Iv ⊂ Ia ∪ Ib, or Iv ⊂ (Ia ∪ Ib)

⊥.
If both Iu ⊂ Ia ∪ Ib and Iv ⊂ Ia ∪ Ib hold, then a · u, b · u, a · v, b · v ∈ U ∩ WIa∪Ib by
[BDSW14, Theorem 1.4] and we are reduced to Theorem 5.2. If at least one of the two
statements Iu ⊂ Ia ∪ Ib and Iv ⊂ Ia ∪ Ib is false, then Iu ∪ Iv is spherical, which implies
that u and v have a left join in U .

The case when Iu ∪ Iv spans a complete subgraph is similar. It remains to consider
the case that Iu ∪ Iv does not span a complete subgraph of Γ, and Ia ∪ Ib does not span
a complete subgraph of Γ. Now we will show this remaining case actually does not exist,
hence finishes the proof.

Suppose Iu ∪ Iv is not complete. Take su ∈ Iu and sv ∈ Iv such that they are not
adjacent in Γ. We hope to show Ia ∪ Ib spans a complete subgraph of Γ. Take s ∈ Ia and
t ∈ Ib. If s ∈ Iu, then s and t are adjacent as Iu ∪ Ib spans a complete subgraph. Now we
assume s /∈ Iu. Note that su /∈ Ia, otherwise su and sv are adjacent in Γ. As a · x · u ∈ U ,
we know a ·u ∈ U by [McC15, Lemma 3.7]. Now by Lemma 6.2, either s and su commute,
or there is an oriented edge from s to su. Similarly, we know this sentence is still true if we
replace the ordered pair (s, su) in the statement by (t, su), (s, sv) and (t, sv). Thus by our
assumption, the 4-cycle s, su, t, sv in Γ must have a diagonal. The diagonal must connect
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s and t, as su and sv are not adjacent. Thus Ia ∪ Ib spans a complete subgraph of Γ.

The following is a consequence of Theorem 6.3 and Corollary 4.5.

Corollary 6.4. Let Γ be a Coxeter presentation graph with vertex set S satisfying all the
assumptions in Theorem 6.3. For each spherical T ⊂ S, we choose a Coxeter element
wT ∈ WT compatible with the orientation of Γ. Let

U =
⋃

T⊂S spherical

[e, wT ].

Let Û be the lift of U from WS to AS via the isomorphism between the dual Artin group
associated with AT for each T ⊂ S spherical and AT ([Bes03, Theorem 2.2.5]).

Let XS be the flag complex of the Cayley graph of AS with generating set Û . Then
XS admits an AS-equivariant CUB metric such that each simplex of XS is equipped with
a polyhedral norm as in [Hae22].
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