
HAL Id: hal-04103426
https://hal.science/hal-04103426

Submitted on 23 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CloViS : a Secured Cloud Virtualized Storage
Olivier Lafontaine, Jacques Jorda, Abdelaziz M’Zoughi

To cite this version:
Olivier Lafontaine, Jacques Jorda, Abdelaziz M’Zoughi. CloViS : a Secured Cloud Virtualized Storage.
3rd ASE International Conference on Cyber Security : WOrkshop on Cloud Security (IWOCS 2014),
ASE: Academy of Science and Engineering, CA, May 2014, Stanford, CA, United States. pp.1-8.
�hal-04103426�

https://hal.science/hal-04103426
https://hal.archives-ouvertes.fr


Open Archive TOULOUSE Archive Ouverte (OATAO) 
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible. 

This  is  an author-deposited version published in  :  http://oatao.univ-toulouse.fr/
Eprints ID : 13114

To cite this version : Lafontaine, Olivier and Jorda, Jacques and 
M'zoughi, Abdelaziz CloViS : a Secured Cloud Virtualized Storage. 
(2014) In: The Third ASE International Conference on Cyber Security : 
WOrkshop on Cloud Security - IWOCS 2014, 27 May 2014 - 31 May 
2014 (Stanford,  United States). 

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/13114/
mailto:staff-oatao@listes-diff.inp-toulouse.fr


CloViS : a Secured Cloud Virtualized Storage 

Olivier Lafontaine, Jacques Jorda and Abdelaziz M’zoughi 
Institut de Recherche en informatique de Toulouse 

Université Paul Sabatier, Toulouse 
Email: { lafontai | jorda | mzoughi }@irit.fr 

ABSTRACT 

Cloud data storage may be used in different 
cases: for backup purpose, for hosted services or 
due to the virtualization of servers. Whatever the 
reason, the data may be secured according to 
three criteria: availability, integrity and 
confidentiality. These criteria are fundamental to 
establish a trust relationship between the 
customer and the provider. However, enforcing 
some of these constraints may have a significant 
cost, and even weaken other of these 
requirements. Thus, the main difficult task is to 
balance between opposite constraints depending 
on the service paid by the client. To overcome 
this problem, we propose the use of a storage 
virtualization middleware, named CloViS. This 
software layer allows pluggable QoS libraries to 
be used to implement the required security 
mechanisms. 

I   INTRODUCTION 

Storing data in the cloud is critical due to the 
number of threats likely to affect the data. These 
threats can be classified in two categories: the 
ones that are generals, and the ones that are 
specific to cloud environment. In the first 
category, we typically find injections, cross-site 
scripting and phishing. We won't develop these 
threats, as they are classical and not specific to 
the cloud environment. Specific threats 
encompass mainly the security of virtualization 
layers, and the trust in the provider.  

Most virtualization platforms have experienced 
security flaws: rootkits (like the blue pill one), 
implementation of backdoors in modules, in 
unprivileged domains or in hypervisors spaces, 
are examples of the most commonly prevailing 
attacks. Using these flaws, a malicious user can 
access, modify or delete data, thus impacting the 
availability, the integrity and the confidentiality of 
the latter. 

The provider himself – either the company or a 
malicious administrator, can also jeopardize 
data. They may be unavailable due to an 
infrastructure problem or for economic reasons: 
infrequently accessed data may be deleted or 
moved to high latency, low bandwidth servers to 
optimize the provider costs.  

The responses to these threats depend on the 
storage implementation. Cloud data storage is 
mainly built on two architectures: the use of 
shared storage like Storage Area Network (SAN) 
or Network Attached Storage (NAS), or the 
distribution of data on clusters. The first solution 
is rather used in private clouds, but less used in 
public or hybrid clouds than the second solution. 
In fact, although an easier implementation, its 
cost and the complex underlying architecture 
remains an obstacle in large scale 
infrastructures. Moreover, it limits the concurrent 
I/O requests [1] compared to what observed on 
the second case. The latter solution is typically 
implemented using a specific filesystem for 
seamless client access, data being stored on 
nodes according to some specific placement 
policies. Thereby, our problem can be stated as: 
how to implement data availability, integrity and 
confidentiality in such a distributed storage 
system. 

In section 2, we will review the classical solutions 
for cloud storage security. We will present in 
section 3 the existing storage solutions and show 
that none of them encompasses all aspects of 
data security. In section 4 we will present the 
global architecture of our virtualization 
middleware, and explain how it can be used to 
implement the required security. The section 5 
will present our preliminary results and the future 
implementations planned.  

II   CLOUD STORAGE SECURITY 



Whatever the threat, the provider must ensure 
the availability, the integrity and the 
confidentiality of data. The availability guarantees 
that data will always be accessible, even in the 
case of an infrastructure problem. Integrity 
makes it possible to verify that data is actually 
stored, completely and with no alteration, proving 
the dependability of the storage provider. 
Confidentiality ensures that only the proprietary 
or an authorized third party may access the real 
content of data stored. However, some 
operations like data searches may not be 
affected by this criterion. 

1   DATA AVAILABILITY 

A data is said unavailable is a client request gets 
no response, due for example to the failure of the 
node on which the data is stored. To relieve the 
failure (or more generally the unavailability) of 
one node, the use of redundancy is essential [2]. 
This redundancy may be implemented by writing 
one or more replicas, or by using Reed-Solomon 
codes. The overhead on write requests induced 
by these techniques can be minimized by 
specific implementations [3]. 

Whatever the redundancy scheme chosen, the 
node selection for data placement is primordial. 
Specific policies, like using burst failures 
detection [1] to select the best node, are usually 
implemented in cloud environment. But as soon 
as numerous data replicates are used, some 
coherency and concurrency algorithms must be 
used to guarantee safe accesses to stored data. 

2   DATA INTEGRITY 

Data integrity audit may be carried on either by 
the proprietary or by a third party auditor (TPA). 
This verification process is complex for many 
reasons. First, it may be conducted without any 
copy of the data. Secondly, the verification 
overhead must be as low as possible on the 
provider’s servers (no comprehensive check on 
all blocks of all files) and for the client (connected 
by low bandwidth network links to the provider). 
Thirdly, when conducted by a TPA, the latter 
must be able to check data integrity without 
breaking the confidentiality, i.e. without any 
knowledge of the data. Fourthly, the number of 
checks must be unlimited. Lastly, the solution 

implemented must allow dynamic data updates 
without involving significant overhead. 

Two major schemes have been proposed for 
such checks. First, the Proofs of Retrievability 
[4], in which each file is divided in blocks, some 
special blocks (called sentinels) being added. 
The latter allows the integrity to be checked, 
without being differentiable from other blocks (all 
blocks being cyphered). Secondly, the Proofs of 
Data Possession [5], based on the use of 
signature computed for each block of each file. 
Integrity check is conducted by querying the 
provider the signature of some blocks randomly 
chosen. Unfortunately, no scheme currently 
supports dynamic updates with unlimited number 
of checks. 

3   DATA CONFIDENTIALITY 

Ciphering data is usually done using symmetric 
or asymmetric encryption schemes. The problem 
is complex because data can be shared by the 
proprietary (thus sharing cyphering keys [6] or 
using proxy re-encryption [7]), the storage 
provider can change the blocks lock order to 
ensure the required quality of service [8], or the 
provider may be required to implement some 
searchable services on cyphered data [9]. 

However, this ciphering is ineffective for the 
storage of virtual machines disks files [10]. In this 
context, the virtual disk file must be ciphered by 
the virtual machine itself, or some Trusted 
Platform Module must be used to ensure the 
confidentiality. 

4   IMPLEMENTATION 

Data security in cloud computing involves many 
aspects. Currently, some solutions encompass 
two criteria [13] but not all three criteria detailed 
previously, and it is reasonable to think that it is 
not necessary in most cases. In fact, depending 
on the use case, some security constraints will 
be weak or inexistent. For example, storing data 
on the cloud for backup purpose requires the 
implementation of integrity checks; however the 
availability is of lower importance. In contrast, 
when using SaaS solutions, the integrity checks 
are useless but the availability may be a strong 
requirement. However, the same software 



infrastructure should offer all of these security 
solutions and let the end-user select the ones he 
needs. 

III EXISTING SOLUTIONS FOR CLOUD 

STORAGE 

Implementation of cloud storage is mainly done 
using either SAN or dedicated storage servers. 
The first solution is the most simple to use but 
also the most costly, and thus is not used when a 
large amount of data should be stored at a 
reasonable cost. 

The second solution is mainly used to provide 
data storage for backup purpose as well as for 
SaaS, PaaS and IaaS. In order to be efficient, 
special servers are used with low-power 
processors, limited RAM but high disk integration 
(up to 24 disks in a 2U server). The problem is 
then to provide an abstraction of the physical 
resources to the software layer – or to be able to 
manage this huge number of disks through a 
dedicated set of tools. 

The two main storage management tools are 
Ceph and GlusterFS. They both offer an efficient 
way to manage storage, but they have their own 
limits on security implementation. 

1   CEPH 

Storage implementation in Ceph / RADOS uses 
CRUSH algorithm [14]. CRUSH is a pseudo-
random data distribution function based on maps 
to distribute data among available storage 
resources. Dynamic data placement is handled 
even when adding or removing low-level storage 
resources thus ensuring a balanced distribution 
of data among nodes and disks. The number of 
replicas and their placement are managed using 
a configurable map. Thus high-availability 
schemes may be implemented to ensure data 
access even on node / rack failure. 

However, Ceph / RADOS aims to provide an 
efficient, robust and scalable distributed storage 
system, but neither confidentiality nor data 
integrity are implemented. Messages are not 
ciphered over the network and no encryption 
algorithm is used on object stores. Last, by 

focusing only on data availability and scalability, 
Ceph / RADOS misses the energy optimization 
goal. 

2   GLUSTERFS 

GlusterFS is a client/server structured filesystem 
where server components act as storage bricks 
while client components handle virtual volumes 
using stackable translators and a few more 
functionalities (distribute, replicate, stripe). Thus 
GlusterFS may implement some kind of 
confidentiality using translators (even if it does 
not offer a fully secure storage, some translators 
extensions of HekaFS are being ported), does 
basic replication and stripping. It helps balance 
load over bricks, and using a metadata hash 
function (just like Ceph) it avoids the problem of 
single point of failures on metadata server. 

However, some limitations should be noted. First, 
the authentication of clients is done on IP 
address basis, leaving the door open for 
malicious users. Moreover, replication is not 
tunable: either you replicate data on all bricks – 
or not. You cannot add multiple level 
redundancies. Last, the energy-awareness is not 
considered and cannot be implemented simply 
using this filesystem. 

IV   STORAGE VIRTUALIZATION 

Storage virtualization aims to provide an 
abstraction layer for a seamless access to 
physical storage resources. Using such a 
middleware, the storage space available on 
physical disks is aggregated on a virtual space. 
This virtual space is then divided on logical 
volumes, on which some quality of service may 
be defined. 

1   STORAGE VIRTUALIZATION 
MIDDLEWARE 

Based on our expertise on grid storage 
virtualization [11], we are implementing a storage 
virtualization layer dedicated to cloud computing, 
named CloViS (Cloud Virtualized Storage).  



CloViS aims to aggregate physically distributed 
storage resources into logical volumes 
seamlessly accessible. These storage resources 
may be different, either regarding their size, their 
bandwidth or their latency. They may be attached 
to different servers running different OS releases 
on different hardware architectures. Whatever 
the components on the infrastructure, the CloViS 
middleware offers a unified view to the storage 
space. 

Targeting the cloud, we must ensure isolation 
between clients of the provider. The storage 
space is then organized in Virtual Organizations 
(VO). A VO is dedicated to a specific client and 
everything managed on one VO must be 
accessible only to that client.  

Moreover, a single client may have numerous 
departments and should be allowed to ensure 
isolation between its storage spaces. The global 
storage space dedicated to a client may then be 
divided into numerous Logical Volumes (LV). 

The Cloud Service Provider (CSP) will allow 
some storage space on numerous low-level 
storage resources regarding the requirements of 
the client – and will bill him for it. For example, 
one may need a very fast storage system for 
running disk bandwidth consume services on one 
hand, and a slower but highly reliable storage 
system for archiving the results produced by its 
services. The CSP may then allocate some 
space on SSD for the first storage space, and 
some space on numerous classical disks for 
archiving tasks. Based on the requirements of 
the client, the CSP will dedicate some storage 
resources for him at the VO level. 

It then appears that different clients may have 
different needs, and even a single client may 
need numerous storage space characteristics. 
Thus, every single logical volume may use 
numerous quality of service for data storage. 
These qualities of services are implemented 
using containers (CAN). Indeed, logical volumes 
are made of containers, each implementing a 
specific QoS. Every time a file is created, it 
inherits the QoS of its parent. When this QoS is 
modified, CloViS looks for a container 
implementing this QoS on this logical volume. If 
such container cannot be found, a new one is 
created using the available storage resources 
declared at the virtual organization level. The file 

is then moved from the original container to 
target one. 

2   CLOVIS SOFTWARE ARCHITECTURE 

CloViS is made of several components: a 
communication library, a coherency and 
consistency library, administration and 
monitoring tools, a virtualizer (with QoS libraries) 
and a client access component. 

All these components (except QoS libraries that 
have a specific behavior and thus a specific 
architecture) are based on the same software 
model. 

2.1   CLOVIS COMPONENTS 

CloViS being daemonizable, it is implemented as 
a single-process multiple-threads software. All 
the components have the same architecture: a 
server part listen for messages received using 
the communication library and manages them, 
while a client part interacts with the other 
components (using their respective server parts). 
Message handling is done using a pool of 
threads in order to keep a non-blocking 
architecture. Let first review the main five 
components of CloViS. 

a) Storage organization in CloViS



CCOM: the communication component 

CCOM implements the communication protocol 
used in CloViS. The communication can either 
be at node level (between components of a 
single node), local (between nodes on the same 
network) or distant using a proxy node in charge 
of managing message routing over Internet. 

CCCC: a coherency and consistency 
component 

Using a distributed filesystem leads to the need 
for a coherency mechanism (required to handle 
locks on objects) and a consistency protocol (to 
manage an adequate versioning for replicas). 
Note that CloViS exposing a block-like interface 
through the virtualizer, this component should 
have been of less importance (except when 
using a distributed filesystem as client access). 
However, CloViS metadata being replicated over 
the nodes, such component is required to ensure 
a consistent state. 

CCCC implements an efficient, highly 
dependable, fully distributed locking mechanism 
and a basic coherency protocol, with no 
bottlenecks [12]. 

CAM: Administration and Monitoring 
component 

This component is made of a local agent 
distributed over all nodes, and some command-

line tools. The local agent receives through its 
server part all actions to achieve locally. These 
actions are related to both administrative and 
monitoring tasks: create VO / LV / CAN, add 
storage resources, retrieve disks SMART info, 
etc.  

VRT: the CloViS virtualizer 

The virtualizer is a central component in CloViS 
architecture. It aims to handle the aggregation of 
physical storage resources and offers a 
seamless block access to the virtualized storage 
space. Thus, client access layer can easily 
interact with CloViS as if the virtualized storage 
was a local physical storage resource on the 
node. 

QoS libraries ensure data distribution among the 
underlying physical storage resources making up 
the virtual space. These QoS libraries implement 
each a specific quality of service (data integrity, 
confidentiality, etc.), and their interface being 
both simple to understand and made of a very 
few functions, anyone can implement its own 
specific algorithm. For example, a CRUSH 
algorithm could be implemented in such a library 
to ensure a balanced distribution of data over 
physical storage resources. 

In fact, QoS libraries use a low-level virtualizer 
API (read, write or delete physical blocks, 
retrieve the list of storage resources involved in a 
container) and in turn provide a storage API to 
the upper layer of the virtualizer (read, write or 
delete virtual blocks). The choice of the correct 
library is done at runtime: stored in extended 
attributes, the QoS of each file or directory is 
retrieved by the virtualizer. The latter then parses 
the list of existing QoS dynamic libraries in the 
suitable CloViS executable folder to select the 
appropriate one (the only one able to deal with 
that QoS) and invoke the corresponding API 
function. 

Client access components 

In fact, numerous access components may be 
developed. So far, we have implemented a 
distributed POSIX-like filesystem access based 
on fuse, called CloViSFS. We aim to implement 
also a block-mode access for Qemu and a 
RESTful API to show that every access type may 
be implemented with both efficiency and a full 
choice of storage QoS. However although being 

b) CloViS middleware architecture



a critical point in such a middleware, we are still 
at a proof-of-concept stage and we do not have 
all of these access types available to date. 

2.2   DESIGN CHOICES 

The main components of CloViS having been 
introduced, some design options deserve to be 
explained. 

First, the use of a user-space middleware instead 
of kernel-space modules. Despite the numerous 
context changes it implies and the resulting 
performance decrease, the easier development 
and support has lead to this decision. 

Secondly, the choice of a block-like access to the 
virtualized storage space instead of an object-
based storage like in Ceph or GlusterFS. In fact, 
Ceph and GlusterFS have used the latter 
solution to overcome the problem of metadata 
coherency and consistency on such a distributed 
environment: they both use a deterministic hash 
function to map objects over storage resources. 
It also helps in implementing copy-on-write 
storage by storing side-by-side various releases 
of a single object. However, the CCCC 
component made both easier and efficient the 
implementation of such coherency and 
concurrency mechanisms. Thus, a block mode 
access was as easier as object storage to 
implement in this context. The future load tests 
will show the relevance of our choice. 

Thirdly, the use of pluggable QoS libraries. 
Actually, this is the core of our system and the 
main difference between CloViS and the others 
cloud-aware storage systems. Indeed, 
implementing a new data placement policy in 
Ceph is very complex or even impossible. In 
GlusterFS, the stackable translators make it 

somewhat simpler, but using different 
components (replicator, distributor, translator) to 
control data placement does not lead to a 
smooth and efficient implementation. In CloViS, 
developing a new data placement just requires 
the implementation of a simple dynamic library, 
with a “scalable” VRT API to learn: simple 
policies just need the basic VRT API while very 
complex policy may use the full CloViS API 
(especially the CCOM one). 

V   USE CASES 

As previously mentioned, the aim of CloViS is to 
provide a framework for QoS-based storage 
virtualization. We have, as of now, implemented 
a first proof-of-concept use case. We are going 
to multiply use case implementations to show the 
advantages of such implementation and evaluate 
its performance against existing solutions. 

1   A BASIC USE CASE 

The first release of the virtualizer implements 
both synchronous and asynchronous low-level 
operations (read, write and delete on storage 
resources). We also have developed a basic 
QoS library dedicated to full replication over 
nodes in a synchronized way. In order to access 
data, we have used a preliminary release of our 
parallel filesystem CloViSFS.  

Based on this first implementation, the read / 
write / delete operations in CloViS can be 
detailed. When a query is performed on 
CloViSFS, the latter transmit the request to the 
local virtualizer (using Read_Block, Write_Block 
and Delete_Block). The virtualizer thus receives 
a buffer, a buffer size and a block identifier made 
of a virtual organization ID, a logical volume ID, a 
container ID, an inode ID and a block ID. Using 
the first three ID (VO, LV and CAN), the 
virtualizer retrieves the QoS ID of the data. It 
then retrieves the adequate QoS library 
(Get_QoS_ID on the list of libraries in the QoS 
libs folder) and calls its corresponding function. 
The QoS library function receives the buffer, the 
buffer size, an internal QoS ID (if appropriate) 
and the whole block identifier (VO, LV, CAN, 
inode and block ID). It retrieves the list of storage 
resources involved in the container structure 

c) QoS libraries and Virtualizer interactions



using VO, LV and CAN ID by querying the 
virtualizer (Get_CAN_Info). Based on the internal 
QoS ID (if appropriate) and the list of storage 
resources, it decides how to access data and on 
which nodes. The QoS library relies on the 
virtualizer to realize these accesses (the sync 
versions of SR_Read, SR_Write and 
SR_Delete). In our case, full replication writes 
are implemented by storing the block received on 
all storage resources of the container. Full 
replication reads uses the local storage resource 
if any, distant SR otherwise. 

Note that as shown on this example, the QoS ID 
is made of two parts: a component level ID (the 
one used by the virtualizer to access the correct 
QoS library), and a component-specific QoS ID 
(used by the library to decide how data 
management should be implemented for this 
QoS). The latter may be seen as a parameter 
given to the QoS library to refine its strategy. For 
example, when dealing with data availability, the 
component-specific Qos ID could specify the 
minimum number of replicas needed to retrieve 
the original data. Thus, using a container with 
four storage resources, the library-specific QoS 
ID could allow the choice between a full 
replication on all nodes strategy (if QoS ID is 1), 
stripped storage (if QoS ID is 4) or any 
intermediate replication level (provided it is 
supported by the library). 

2   A MORE SOPHISTICATED LIB 

As previously mentioned, using the component-
specific QoS ID is usefull to implement more 
powerfull QoS libraries. In order to show a simple 
(but real) use of this ID, we have modified our 
first QoS library to make it supports two QoS: the 
previously discussed synchronous full replication 
(Write_Block returns when data is written on all 
nodes) or an asynchrous full replication. In this 
case Write_Block returns as soon as data is 
written on local storage resources (if any) and 
transmitted to other nodes, without waiting for the 
latters to receive and write it. The node initiating 
the original Write_Block will be notified by the 
other nodes as soon as data is written on disk in 
order to detect any failure. This solution may be 
used when data is frequently written, thus 
penalizing synchronous operations. 

Switching the QoS for a file or a folder is simple: 
we just need to change the extended attribute 
relative to the QoS of this filesystem object. The 
next Block_Write will then use the adequate new 
version of the low-level storage resources 
operations. 

3   THE BEST IS YET TO COME 

Many challenges that need to be addressed 
regarding cloud storage may find a smart 
solution using CloViS. This extensible software 
layer is dedicated to offer a simple and unified 
view of underlying storage resources with ready-
to-use or user-defined quality of service. 

For example, QoS libraries dedicated to 
availability, integrity or confidentiality may be 
used to achieve data security, depending on the 
storage requirements. More complex data policy 
may use a stack of QoS libraries to mix specific 
data management. Moreover, the cloud user 
could choose between highly efficient, highly 
reliable or green-aware storage systems just by 
selecting the appropriate QoS for its data without 
any knowledge of the underlying infrastructure. 
And resources provisioning and billing could be 
highly simplified using such a middleware. 

VI   CONCLUSION 

Storage security is one of the hard-to-achieve 
goals of cloud computing, and it is just a first step 
to a really flexible and efficient storage service. 
Current solutions focus on specific aspects of 
distributed storage (e.g. load balancing) without 
offering an enough flexible frame to encompass 
all cloud storage requirements.  

In this paper we have presented CloViS, the 
storage virtualization middleware dedicated to 
cloud computing we have developed. We have 
shown how quality of service needed for various 
storage usages can be implemented, and how 
new data policy requirements may be added on 
the fly. We have shown that its general 
architecture makes it possible to consider it as a 
good candidate for various usages, from data 
backup purpose to virtual machines backend 
storage systems. 

References 



[1]  Ford, D., Labelle, F., Popovici, F. I., Stokely, 
M., Truong, V.-A., Barroso, L., Grimes, C. and 
Quinlan S. 2010. Availability in Globally 
Distributed Storage Systems. 9th USENIX 
Symposium on Operating Systems Designs 
and Implementation, 61-74. 

[2]  Sobe, P. and Peter K. 2006. Comparison of 
Redundancy Schemes for Distributed Stoarge 
systems. 5th IEEE International Symposium 
on Network Computing and Applications, 196-

203. 

[3]  Narayan, S. and Chandy J. A. 2007. Parity 
Redundancy in a Clustered Storage System. 
SNAPI '07 Proceedings of the Fourth 
International Workshop on Storage Network 
Architecture and Parallel I/Os, 17-24.  

[4]  Juels, A. and Kaliski, B. S. Jr 2007. PORs: 
Proofs of Retrievability for Large Files. 14th 
ACM Conference on Computer and 
Communication Security, 584-597 

[5]  Ateniese, G., Burns, R., Curtmola, R., Herring, 
J., Kissner, L., Peterson, Z. and  Song, D., 
2007. Provable Data Possession at Untrusted 
Stores. 14th ACM Conference on Computer 
and Communication Security, 598-609. 

[6]  Kallahalla, M., Riedel, E., Swaminathan, R., 
Wang, Q. and Fu K. 2003. Plutus: Scalable 
Secure File Sharing on Untrusted Storage. 
Proceedings of the 2nd USENIX Conference 
on File and Storage Technologies, 29-42. 

[7]  Ateniese, G., Fu, K., Green, M. and 
Hohenberger S. 2006. Improved Proxy Re-
encryption Schemes with Applications to 
Secure Distributed Storage. ACM Transactions 
on Information and System Security, 9(1), 1–

30. 

[8]  Tan, C., Liu, Q. and Wu, J. 2011. Secure 
Locking For Untrusted Clouds. 4th IEEE 
International Conference on Cloud Computing. 

[9]  Ciriani, V., De Capitani, S., Foresti, S., Jajodia, 
S., Paraboschi, S. and Samarati, P., 2011. 
Combining Fragmentation and Encryption to 
Protect Privacy in Data Storage. ACM 
Transactions on Information and System 
Security, 13(3), 1-33. 

[10]  Kher, V. and Kim, Y., 2005. Securing 
distributed storage: challenges, techniques, 

and systems. 2005 ACM workshop on Storage 
security and survivability, 9-25. 

[11] Ortiz, A., Jorda, J.,  and Mzoughi, A.  Toward a 
New Direction on Data Management in Grids.  
15th IEEE International Conference on High 
Performance Distributed Computing, 377-378. 

[12] Ortiz, A., Thiébolt, F., Jorda, J. and M'zoughi, 
A. 2009. How to Use Multicast in Distributed 
Mutual Exclusion Algorithms for Grid File 
Systems. Conference on High Performance 
Computing and Simulation (HPCS 2009), 122-

130. 

[13] Bowers K., Juels A. and Oprea A. 2009. HAIL: 
A High-Availability and Integrity Layer for 
Cloud Storage. ACM Conference on Computer 
and Communications Security (CCS 2009), 

187-197. 

[14] Weil S. A., Brandt S. A., Miller E. L. Maltzahn 
C., 2006.CRUSH: Controlled, scalable, 
decentralized placement of replicated data. 
Procedings of the 2006 ACM/IEEE Conference 
on Supercomputing (SC ’06). 


