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Abstract

We answer in a probabilistic setting two questions raised by Stokolos
in private communication. Precisely, given a sequence of random variables
{Xk : k ≥ 1} uniformly distributed in (0, 1) and independent, we consider
the following random sets of directions

Ωrand,lin :=

{
πXk

k
: k ≥ 1

}
and

Ωrand,lac :=

{
πXk

2k
: k ≥ 1

}
.

We prove that almost surely the directional maximal operators associated
to those sets of directions are not bounded on Lp(R2) for any 1 < p <∞.

We denote by R the collection of all rectangles in the plane ; if R belongs to
R, we denote by ωR ∈ (0, π) the angle that its longest side makes with the Oy-
axis. Without loss of generality, we will always suppose that we have actually
0 ≤ ωR ≤ π

2 .

1 Introduction

Given any set of directions Ω ⊂ S1, one can define the directional family of
rectangle RΩ as

RΩ := {R ∈ R : ωR ∈ Ω}

and then consider the directional maximal operator MΩ defined for f : R2 → R
locally integrable and x ∈ R2 as

MΩf(x) := sup
x∈R∈RΩ

1

|R|

∫
R

|f | .

The boundedness property of the operator MΩ is deeply related to the geometric
structure of the set of directions Ω. For example, in the case where Ω = S1,
the following obstruction of the Euclidean plane (which is also true in higher
dimension) allows us to completely describe the boundedness property of the
operator MS1 .
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Theorem 1 (Kakeya blow with R). Given any large constant A � 1, there
exists a finite family of rectangles {Ri : i ∈ I} ⊂ R such that we have∣∣∣∣∣⋃

i∈I
TRi

∣∣∣∣∣ ≥ A
∣∣∣∣∣⋃
i∈I

Ri

∣∣∣∣∣ .
Here, we have denoted by TR the rectangle R translated along its longest side
by its own length

The reader can find a proof of this Theorem in [11]: it follows that given
any large constant A� 1, there exists a bounded set E satisfying the following
estimate ∣∣∣∣{MS11E ≥

1

2

}∣∣∣∣ ≥ A |E| .
It suffices to set E = ∪i∈IRi and to observe that we have the following inclusion⋃

i∈I
TRi ⊂

{
MS11E ≥

1

2

}
.

The previous estimate easily implies the following.

Theorem 2. The operator MS1 is not bounded on Lp for any p <∞.

Far from being exotic, Theorem 1 has deep implications in harmonic analysis:
for example, it is a central part of Fefferman’s work in [11] where he disproves the
famous Ball multiplier conjecture. A natural question is the following: given a
set of directions Ω, is it possible to make a Kakeya blow only with the directional
family RΩ ? This question have been investigated by different analyst among
which [2], [6], [8], [9] or [7] to cite a few. In [3], Bateman answered this question
as he classified the Lp(R2) behavior of those operators according to the geometry
of the set Ω. Precisely, he proved that the notion of finitely lacunary for a set
of directions were the correct one to consider.

Theorem 3 (Bateman). We have the following alternative:

• if Ω is finitely lacunary then MΩ is bounded on Lp for any p > 1.

• if Ω is not finitely lacunary then it is possible to make a Kakeya blow with
the family RΩ. In particular, the operator MΩ is not bounded on Lp for
any p <∞.

Let us define the notion of finite lacunarity following a nice presentation
made by Kroc and Pramanik [10]: we start by defining the notion of lacunary
sequence and then the notion of lacunary set of finite order. We say that a
sequence of real numbers L = {`k : k ≥ 1} is a lacunary sequence converging to
` ∈ R when there exists 0 < λ < 1 such that

|`− `k+1| ≤ λ|`− `k|

for any k. For example the sequences
{

1
2k : k ≥ 2

}
and

{
1
k! : k ≥ 4

}
are lacu-

nary. We define now by induction the notion of lacunary set of finite order.
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Definition 4 (Lacunary set of finite order). A lacunary set of order 0 in R is
a set which is either empty or a singleton. Recursively, for N ∈ N∗, we say that
a set Ω included in R is a lacunary set of order at most N + 1 — and write
Ω ∈ Λ(N + 1) — wether there exists a lacunary sequence L with the following
properties : for any a, b ∈ L such that a < b and (a, b)∩L = ∅, the set Ω∩ (a, b)
is a lacunary set of order at most N i.e. Ω ∩ (a, b) ∈ Λ(N).

For example the set

Ω :=
{ π

2k
+
π

4l
: k, l ∈ N, l ≤ k

}
is a lacunary set of order 2. In this case, observe that the set Ω cannot be
re-written as a monotone sequence, since it has several points of accumulation.
We can finally give a definition of a finitely lacunary set.

Definition 5 (Finitely lacunary set). A set Ω in [0, π) is said to be finitely
lacunary if there exists a finite number of set Ω1, . . . ,ΩM which are lacunary of
finite order such that

Ω ⊂
⋃
k≤M

Ωk.

2 Can we apply Bateman’s Theorem ?

A classic example of set which is known to be not finitely lacunary is the set

Ωlin =
{π
n

: n ∈ N∗
}
.

Indeed, the classic construction of Perron trees shows that it is possible to
make a Kakeya blow with the family RΩlin

: hence an application of Bateman’s
Theorem implies that Ωlin is not finitely lacunary. The second classic example
of set which is known to be finitely lacunary is the set

Ωlac =
{ π

2n
: n ∈ N∗

}
.

One can see that the set Ωlac is finitely lacunary by definition and it was in
[9] that Nagel, Stein and Waigner proved that the maximal operator MΩlac

is
bounded on Lp(R2) for any 1 < p < ∞ ; their proof relies on Fourier analysis.
Also, let us say that the comprehension of the sets Ωlin and Ωlac is important
because they are the most simple (and smallest) cases of infinite sets which yield
maximal operator having different boundedness properties.

However, even if Bateman’s Theorem is extremely satisfying, it appears to
be difficult to decide if a given set Ω is finitely lacunary or not. The most
striking example was raised by Stokolos : at the present time, it is not known
if the set

Ωsin,lac :=

{
π sin(n)

2n
: n ∈ N∗

}
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is finitely lacunary or not. The main problem of this set of directions is that
we have a very poor control on the deterministic sequence {sin(n) : n ≥ 1} and
that initially, the set Ωlac is finitely lacunary: hence, the perturbations are quite
difficult to handle. In [1], with D’Aniello and Moonens, we were able to show
that the following set

Ωsin,lin :=

{
π sin(n)

n
: n ∈ N∗

}
is not finitely lacunary (this was also a set considered by Stokolos). More pre-
cisely, we studied the maximal operator MΩsin,lin

associated and, improving on
concrete techniques, we proved that this operator is not bounded on Lp(R2)
for any 1 < p < ∞: the heart of the method relied on the introduction of the
Perron’s capacity of a set of directions. We need some notations to recall our
results: given an infinite set of directions Ω ⊂ S1 whose only point of accumula-
tion is 0 and we denote, for notational convenience, by Ω−1 the set

{
π
u : u ∈ Ω

}
,

that is
Ω−1 :=

π

Ω

and we order Ω−1asastrictlyincreasingsequence{uk : k ∈ N∗}. With those no-
tations, we define the Perron’s factor of Ω as

G(Ω) := sup
k≥1
l≤k

(
uk+2l − uk+l

uk+l − uk
+

uk+l − uk
uk+2l − uk+l

)
.

In [7], Hare and Ronning proved the following Theorem.

Theorem 6 (Hare and Ronning). If we have G(Ω) < ∞ then it is possible to
make a Kakeya blow with the family RΩ.

It turns out that it is difficult to compute the Perron factor of the set

Ωsin,lin =

{
π sin(n)

n
: n ≥ 1

}
since the oscillation of the cosinus prevent us to obtain a good description of
the increasing sequence {uk : k ∈ N∗} associated to Ωsin,lin. Based on a careful
read of the proof of Theorem 6, for an arbitrary set of directions Ω included in
S1, we define its Perron’s capacity as

P (Ω) := lim inf
N→∞

inf
U⊂Ω−1

#U=2N

G(Ω) ∈ [2,∞]

where as before

G(Ω) = sup
k,l≥1

k+2l≤2N

(
uk+2l − uk+l

uk+l − uk
+

uk+l − uk
uk+2l − uk+l

)

if U = {u1 < · · · < u2N }. In [1], we proved the following (in contrast with Hare
and Ronning Theorem, we do not assume that the set Ω is ordered):

4



Theorem 7 (D’Aniello, G. and Moonens). For any set of directions Ω, if we
have

P (Ω) <∞

then it is possible to make a Kakeya blow with the family RΩ. In particular, for
any p <∞, one has ‖MΩ‖p =∞.

Loosely speaking, if P (Ω) < ∞ then the set Ω contains arbitrary large
set which are (more or less) uniformly distributed and this geometric pattern
prevents the set Ω to be finitely lacunary. The advantage of Theorem 7 is that
it allows us to make effective computation. However, as mentioned earlier, the
following case is still unsettled.

Question 1. Is the following set of direction

Ωsin,lac :=

{
π sin(n)

2n
: n ∈ N∗

}
finitely lacunary or not ?

3 Results

Our result concerns random sets of directions which are meant to give a generic
comprehension of the two classic examples Ωlin and Ωlac when they are randomly
perturbated. Precisely we consider the following random sets of slopes

Ωrand,lin :=

{
πXk

k
: k ≥ 1

}
and

Ωrand,lac :=

{
πXk

2k
: k ≥ 1

}
where {Xk : k ≥ 1} are random variables uniformly distributed in (0, 1) and
independent. To begin with, we prove the following Theorem.

Theorem 8. The Perron’s capacities of Ωrand,lin is finite almost surely i.e. we
have almoste surely

P (Ωrand,lin) <∞.

In some sense, Theorem 8 means that if a set Ω presents structured patterns
- like large uniformly distributed sequence - then a small perturbation of Ω will
still exhibit those patterns. The second result reads as follow.

Theorem 9. The Perron’s capacities of Ωrand,lac is finite almost surely i.e. we
have almoste surely

P (Ωrand,lac) <∞.

The proof of Theorems 8 and 9 relies on the possibility to compute effectively
the Perron’s capacity of the random sets Ωrand,lin and Ωrand,lac.
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4 Proof of Theorem 8

We wish to prove that the Perron’s capacity of Ωrand,lin is finite almost surely.
We are simply going to prove that the set Ω−1

rand,lin contains small perturbation
of arbitrarily long homogeneous sets. We say that a set H of the form

H := Ha,N = {ka : 1 ≤ k ≤ 2N}

for some integer a ∈ N∗ is an homogeneous set. The following claim is easy.

Claim 1. For any a,N ∈ N, one has G(Ha,N ) = 2.

We wish to perturb a little an homogeneous set H into a set H ′ such that
the Perron’s factor of H ′ is still controlled. Precisely, fix any a,N ∈ N∗ and let
ε be an arbitrary function

ε : Ha,N → (0,∞).

Define then the set Ha,N (ε) as

H ′ := Ha,N (ε) := {(1 + ε(l))l : l ∈ Ha,N} .

If the perturbation ε is small enough compared to the integer N , one can control
uniformly G(H ′).

Proposition 1. With the previous notations, if we have

2N‖ε‖∞ ≤
1

2

then we have G(Ha,N (ε)) < 6.

We are now ready to prove Theorem 8. We fix a large integer N ∈ N and
consider the following set of indices

EN :=
{
k ∈ N : |Xk − 1| ≤ 2−N

}
.

In other words, an integer k belongs to EN when Xk is close to 1 with precision
2−N . We claim that this random set EN contains almost surely large (with at
least 2N points) homogeneous sequences.

Claim 2. For any N ≥ 1, the set EN contains an homogeneous set of cardinal
2N almost surely.

Proof. Observe that for any a ∈ N∗, the following probability P(Ha,N ⊂ EN ) is
independent of a: indeed since the random variables {Xk : k ≥ 1} are indepen-
dent and uniformly distributed, we have

P(Ha,N ⊂ EN ) =
∏

k∈Ha,N

P
(
|Xk − 1| ≤ 2−N

)
=

1

2N2N .
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Hai,N

Haj ,N

aj

ai

Figure 1: We choose the sequence {ai : i ≥ 1} such that Hai,N ∩Haj ,N = ∅ for
any i 6= j.

Hence we fix a sequence {ai}i≥1 satisfying for any i 6= j

Hai,N ∩Haj ,N = ∅.

For example, setting ai = 22N(i+1) works since we have ai2
N < ai+1 for any

i ≥ 1. In particular this means that the events

{(Hai,N ⊂ EN ) : i ≥ 1}

are independent and since we have∑
i≥1

P(Hai,N ⊂ EN ) =∞

an application of Borel-Cantelli lemma yields the conclusion.

We can now conclude the proof : we define a perturbation ε for any n ≥ 1
as

1 + ε(n) = X−1
n .

We fix a large integer N � 1 and we know that almost surely there exists an
integer a ∈ N∗ such that Ha,N ⊂ EN . Observe now that by definition one has
the following inclusion

Ha,N (ε) ⊂ Ω−1
rand,lin.

However since Ha,N ⊂ EN and that it is not difficult to see that we have

‖ε|Ha,N
‖∞ . 2−N .

Indeed, for k ∈ Ha,N ⊂ EN , we have

|1 + ε(k)| =
∣∣∣∣ 1

1 + (Xk − 1)

∣∣∣∣ . 1 + 2 |Xk − 1| . 1 + 2−N .

It follows that we have P (Ωrand,lin) < 6 almost surely applying Proposition 1.
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5 Proof of Theorem 9

We wish to prove that the Perron’s capacity of Ωrand,lac is finite almost surely.
Observe that if U is a set in R who is well distributed then one can control its
Perron’s capacity.

Claim 3. If we have δ > 0 and a set

U = {u1 < · · · < u2N }

such that for any 1 ≤ i ≤ 2N − 1 we have

δ ≤ ui+1 − ui ≤ 3δ

then one has G(U) . 1.

Proof. For any i, j such that i+ j ≤ 2N − 1, one has ui+j − ui ' jδ. Hence i, j
such that i+ 2j ≤ 2N−1, we have

ui+2j − ui+j
ui+j − ui

+
ui+j − ui

ui+2j − ui+j
' 2jδ

jδ
+

jδ

2jδ
' 1.

Hence we obtain G(U) . 1 as claimed

We are going to prove the following proposition.

Proposition 2. For any N ≥ 1, there exists almost surely a scale δ > 0 and a
set U ⊂ Ω−1

rand,lac such that

U := {u1 < · · · < u2N−1}

and for any i ≤ 2N−1 one has

δ < ui+1 − ui < 3δ.

Theorem 9 is a consequence of Claim 3 and Proposition 2: for any N , we
can exhibit almost surely a set U ⊂ Ω−1

rand,lac of cardinal 2N such that G(U) . 1
and so we obtain

P (Ωrand,lac) <∞
as expected. The rest of the section is devoted to the proof of Proposition 2.

Proof of Proposition 2

We consider the following dyadic intervals for d ∈ N

Id :=
[
2d, 2d+1

]
.

We wish to obtain information on the distribution of the points of the set
Ωrand,lac that may be in the interval Id. We fix a large integer N � 1 and
we divide each dyadic interval Id into 2N intervals of same length i.e. for any
1 ≤ l ≤ 2N we set

Id,l =

[
2d
(

1 +
l − 1

2N

)
, 2d
(

1 +
l

2N

)]
.
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Id

Id,1 Id,2 Id,3 Id,4

Figure 2: For N = 2, each intervals Id is divided in 2N = 4 equal parts.

Claim 4. For any d ≥ 2N + 1 and any 1 ≤ l ≤ 2N , the probability

P

(
2d−l

Xd−l
∈ Id,l

)
:= pN,l

is independent of d.

Proof. One has 2d−l

Xd−l
∈ Id,l if and only if

2l
(

1 +
l − 1

2N

)
≤ 1

Xd−l
≤ 2l

(
1 +

l

2N

)
.

Since the random variableXd−l is uniformly in (0, 1), the probability P
(

2d−l

Xd−l
∈ Id,l

)
is independent of d as claimed.

We fix an extraction {ds : s ≥ 1} satisfying the following property

ds+1 − ds > 2N + 1

for any s ≥ 1 ; this growth condition will assure that the events we will consider
are independent and we will be able to apply Borel-Cantelli lemma when needed.
Thanks to Claim 4 and independence, one can see that for any s ≥ 1, the
following probability is independent of s

P

 ⋂
l≤2N

(
2ds−l

Xds−l
∈ Ids,l

) =
∏
l≤2N

pN,l := ηN

Now for any d ≥ 1, we consider the following event Ad,N defined as

Ad,N :=
⋂
l≤2N

{
Ω−1

rand,lac ∩ Id,l 6= ∅
}
.

In other words, the event Ad,N occurs when the random set Ω−1
rand,lac fills each

sub-intervals
{
Id,l : 1 ≤ l ≤ 2N

}
with at least one point. In particular, observe

that we have ⋂
l≤2N

(
2d−l

Xd−l
∈ Id,l

)
⊂ Ad,N .
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We claim that the union of those events

BN :=
⋃
d≥1

Ad,N

occurs almost surely.

Claim 5. One has P (BN ) = 1.

Proof. Indeed we have

∑
s

P

 ⋂
l≤2N

(
2ds−l

Xds−l
∈ Ids,l

) =
∑
s

ηN =∞.

Using Borel-Cantelli lemma, one obtains

P

⋃
s≥1

AN,ds

 = 1.

In particular, one has P(BN ) = 1.

Ωr2 ∩ Id

Figure 3: The random set Ωrand,lac := Ωr2 contains almost surely uniformly
distributed subset of arbitrarily large cardinal.

We can now prove Proposition 2 since we have

P

 ⋂
N≥1

BN

 = 1.

Precisely, for any N ≥ 1, the event BN occurs almost surely and this means
that there exists a (for each N , we just need one) dyadic interval Id such that

Ω−1
rand,lac ∩ Id,l 6= ∅

for any 1 ≤ l ≤ 2N . We let ul be one point in Ω−1
rand,lac ∩ Id,l and we claim that

the set
U :=

{
u2l : 1 ≤ l ≤ 2N−1

}
satisfy the condition of Proposition 2 with δ ' 2d−N . In particular, we have
G(U) . 1 for U ⊂ Ω−1

rand,lac with arbitrary large cardinal. This yields almost
surely

P (Ωrand,lac) . 1

which concludes the proof.
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