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Introduction

The present day biodiversity results from a combination of 
evolutionary processes such as natural selection, especially 
at the intraspecific level, that helps expand or decrease it, 
ultimately leading to speciation and extinction events. In 
addition to natural extinction events that shape the history 
of life (Raup 1994), anthropogenic impacts are at present 
the major factors responsible for the erosion of biodiversity 
(e.g. Lande 1998). Amongst direct drivers of biodiversity 
loss, the reduction and fragmentation of habitats, overex-
ploitation, climate change and the introduction of invasive 
species are leading to a sharp decline in the numbers of nat-
ural populations (e.g. Bender et al. 1998). Then many spe-
cies are endangered along with low or declining population 
sizes that may be an indirect consequence of a species’ range 
decline or in turn may secondarily cause a range reduction 
(IUCN, 2021). These threatened populations can be stud-
ied through the prism of two complementary paradigms: 
effect of small population size on population persistence 
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Abstract
Population genetics of threatened species provides information about evolutionary pressures over those populations and 
thus may inform conservation management strategies. However, conservation genetics still has a low impact on conser-
vation practices. This study’s aim is to integrate genetics in the conservation management of the only-known population 
of an extremely narrow-range endemic Corsican snail – Tyrrhenaria ceratina –, whose distribution area is restricted to 
the Ricantu site in Corsica. Using non-invasive DNA samples of 210 individuals, we amplified 13 microsatellites loci to 
assess the population viability, genetic structure and demographic history of the population, along with the estimation of 
the historical and contemporary gene flow between identified genetic clusters. We also estimated the dispersal ability of the 
species. Our results showed a surprisingly high genetic diversity, along with a pattern of isolation by distance (IBD) and 
a strongly spatialized genetic structure. Furthermore, we underlined a low functional connectivity, along with evidence of 
a recent decline in the population size, which are both likely due to a historical fragmentation between the sampled areas, 
caused by anthropization. Overall, this study allows to provide a first insight about the functioning of the population, to 
guide future conservation actions for the species.
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and causes of the declining population to provide adaptive 
management framework (Caughley 1994).

Small and isolated populations, which furthermore have a 
restricted range, are more sensitive to demographic stochas-
ticity, environmental and genetic effects, so that they can be 
trapped in an extinction vortex (Fagan and Holmes 2006). 
Because of reduced genetic diversity in small or fragmented 
populations compared to larger and connected populations 
(Frankham 1996), genetic factors have a major influence on 
the survival of these small populations (Gaggiotti 2003). 
This loss of genetic diversity can lead to a decrease in the 
average fitness of populations (Reed and Frankham 2003) 
and a lower capacity to adapt to environmental changes 
(Lande and Shannon 1996). Furthermore, inbreeding and 
increased genetic drift exacerbate the extinction vortex, by 
reducing the fitness of inbred individuals (Crnokrak and 
Roff 1999), and by increasing the risk of fixation of weakly 
deleterious mutations (Gabriel and Bürger 1994).

Using genetic data to assess the genetic potential of 
threatened populations is therefore a key approach in con-
servation biology (Willi et al. 2022) as it can help delimit-
ing conservation and management units (Coates et al. 2018; 
Schmidt et al. 2018), ruling reintroductions (O’Brien et al., 
2017) and ex-situ conservation programs (Witzenberger and 
Hochkirch 2011), and identifying gene exchange corridors 
between threatened populations (Sharma et al. 2013).

The land snail Tyrrhenaria ceratina (Syn. Helix ceratina, 
Shuttleworth 1843; Gargominy et al. 2021) is a helicid snail 
endemic to Corsica, whose emergence may date back to the 
late Miocene (5 million years ago; Korábek et al. 2021). 
Its current range is restricted to the Ricantu site, located 
south-east of Ajaccio on a surface of habitat less than 2 ha 
(Fig. 1). Considered as extinct since 1930, the population 
of this narrow strip of land between Ajaccio airport and the 
sea was rediscovered in 1994 at Ajaccio and nowhere else 
in Corsica (Bouchet et al. 1997). Empty shells and fossil 
records found in several geographical localities distant from 
the current distribution are tangible evidence of a past much 
broader distribution. Quaternary shells have been collected 
from the north near Bastia in the Brèches of Toga (Bouchet 
et al. 1997; Caziot 1903, 1911 [in French]), to the south at 
Bunifazziu (Neolithic shells, 5600 − 5000 BC), to the west 
in fossil dunes near Piana on Arone beach (Upper Pleisto-
cene; Ferrandini , pers. comm., 2017), more than sixty kilo-
metres far from the Ricantu site.

The remnant population of Ricantu is potentially the 
world’s only surviving population of T. ceratina. Since 
2011, this species has been assessed as critically endangered 
in the IUCN Red list  (Charrier et al. 2013; IUCN, 2021) 
according to:

(i) the putative poor quality of its coastal habitat submitted 
to human frequentation and moreover subject to natural 
hazards increasing the risk of extinction of the species;

(ii) a small distribution area, estimated at 0.34 km² well 
under the 100 km² threshold below which a species is 
theoretically considered critically endangered (IUCN, 
2012). The current distribution of T. ceratina is there-
fore a very pronounced example of micro-endemism. 
In addition, its distribution is discontinuous as individu-
als are observed in three areas more or less distant on 
the Ricantu site. The population, likely fragmented in 
space into three isolated sub-populations, would persist 
thanks to metapopulation function that relies on disper-
sal among subpopulations.

(iii) its small and potentially declining population size. In 
2010, Charrier et al. (2013) estimated between 3800 
and 5200 mature individuals while in 2018 and 2021 
the total number of individuals was between 830 and 
5525 respectively (data unpublished).

Despite the strong threats to non-marine mollusks (Lydeard 
et al. 2004), mollusks are often overlooked in conservation 
biology (Régnier et al. 2009). However, T. ceratina is an 
exception because it is a protected since 1992 under the 
French law and its habitat has been strongly protected since 
1997. Moreover, the Ricantu site is classified in the Natura 
2000 network and is in the domain of the Coastal Conser-
vation Authority (Conservatoire du littoral). Since 2014, 
T. ceratina is the subject of 5-year National Action Plans 
for Threatened Species (NAP, n.d.) which aims at assess-
ing the conservation status of threatened species and their 
habitats, and outlines conservation priorities. Among key 
measures implemented to achieve the “favorable” status 
of a threatened population according to IUCN criteria, one 
is to describe the genetic structure of the Ricantu popula-
tion, assess the genetic diversity, and put forward hypoth-
eses on the origin of the species’ decline. More broadly, 
genetic studies on natural populations of invertebrates with 
very pronounced micro-endemism are still extremely rare. 
Understanding the genetic mechanisms involved in the 
extinction of such small population with low colonization 
capacity may be of great interest in conservation biology. 
Beyond these more formal considerations, the results of this 
first genetic study of T. ceratina will serve as a basis for 
guideline of the conservation actions of the NAP, including 
connectivity restoration projects and in situ ex-situ breeding 
for future reintroduction and/or translocation.

The objectives of the study and underlying hypotheses, 
made possible by the recent development of microsatellite 
markers (Geneoscreen, Lille, France), are:
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(1) to assess population viability using parameters classi-
cally estimated in conservation genetics (i.e. genetic 
diversity, inbreeding, effective size) and reveal the evo-
lutionary mechanisms that shape the genetic diversity. 
Due to the small size of the population and the potential 
fragmentation into several subpopulations, we expect 
low genetic diversity as a result of increased genetic 
drift, inbreeding and reduced gene flow (H1);

(2) to define the genetic structure of the population in order 
to explore the hypothesis of fragmentation into three 
subpopulations (H2);

(3) to estimate historical and contemporary gene flow to 
interpret the current spatial pattern of genetic diversity 
through the prism of temporal changes in the land-
scape. Due to recent habitat fragmentation caused by 
human activities from the 1950s onwards (Paradis et al., 
2011[in French]), as well as the reduction in the species’ 
range, we expect a higher historical gene flow than con-
temporary one (H3);

(4) to infer an evolutionary scenario to formulate hypoth-
eses about the origin of the Ricantu population. As it is 
a relict population, we anticipated that the most likely 
scenario is that the population originated from an ances-
tral population that underwent a demographic contrac-
tion (H4).

Results obtained aims to improve recommendations for the 
various actors involved in the NAP.

Materials and methods

Study area and sampling collection

Samples of T. ceratina were collected between Novem-
ber 2018 and April 2021 from three zones of the Ricantu 
site referred to as Northwest (formerly Tahiti 1, Tahiti 2 
and Natural localities), Centre (formerly Military local-
ity), and Southeast (formerly Gravona locality) where the 
presence of the species was already established (Cucherat 
2019) (Fig. 1). These five localities have been delineated on 
the basis of the site’s management history and restoration 
actions. From each individual sampled and georeferenced, 
we used a dry sterilized cotton swab to collect epithelial cells 
present in the mucus. Swabs were then air-dried, placed in 
sterile tubes and sent as quickly as possible to Université 
Picardie Jules Verne (UPJV) for DNA extraction. A total of 
324 individuals were sampled.

Studied species

In the daylight, T. ceratina is a nocturnal psammophile liv-
ing burrowed more or less deeply in sand, under plant or 
not, and is active by night, under wet conditions, just in a 
narrow strip above the higher tide, colonized by Genista sal-
zmannii var. salzmannii and Scrophularia ramosissima. For 
a more detailed description of its macrohabitat see Bouchet 
et al. (1997) and Charrier et al. (2013) [in French]. Two 
other Helicid species co-occur with T. ceratina (Massylea 
vermiculata and Cantareus apertus), with no evidence of 
interspecific competition. To date, two seasons of growth 
and reproduction (spring and autumn) are known, alternat-
ing with two periods of inactivity (aestivation and hiberna-
tion in summer and winter respectively). Individuals reach 
sexual maturity between 1.5 and 2 years and the longevity 
of the individuals would be of 4 to 5 years (Chevalier and 
Charrier 2002).

DNA extraction and polymerase chain reaction

DNA was extracted using QIAamp® DNA Blood Mini 
(Qiagen) kit following manufacturer’s protocol (Spin Pro-
cotol). Two 50µL elutions were carried out to increase DNA 
concentration. Samples were stored at -20 °C. A set of 15 
microsatellites loci, developped by Genoscreen (Lille), 
were amplified using primers described Table S1 (Appen-
dix A). Reactions varied according to the field sampling. 
For older samples (2018–2020), simplex PCR reactions 
were carried out in a total volume of 15µL per reaction, 
containing 8µL of MyTaqMix (Bioline ®), 2 × 0.2 µL prim-
ers (5mM), 1.6µL of H2O, and 5 µL of genomic DNA. For 
recent samples (2021), multiplex PCR reactions were car-
ried out in a total volume of 15µL per reaction, containing 
8µL of MyTaqMix (Bioline ®), 2 × 0.2 µL of each primers 
(5mM), 0.8µL of H2O, and 5 µL of genomic DNA. PCR 
cycling conditions consisted of an initial denaturation step 
of 95 °C for 10 min, 40 cycles of 95 °C for 30 s, 55 °C for 
30 s, and 72 °C for 1 min, then a final extension step of 
72 °C for 10 min. Fragments analysis was performed with a 
16 capillary sequencer ABI3130 XL. GENEMAPPER v4.0 
software (APPLIED BIOSYSTEMS) was used for alleles 
identification and genotyping.

Data analysis

Genetic diversity and genetic structure

Genetic diversity was investigated by computing allelic 
richness (Ar), observed heterozygosity (Ho), expected 
heterozygosity (He), and inbreeding coefficient (Fis) with 
“hierfstat” package (Goudet 2005) in R (4.0.3). A set of 
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2005). Assignment probabilities of individuals and popu-
lations to each K were averaged between the 20 iterations 
with CLUMPP software (Jakobsson and Rosenberg 2007). 
A hierarchical clustering analysis was then performed to 
detect an eventual finer genetic structure (Vähä et al. 2007).

Genetic differentiation and isolation by distance

Genetic structure observed for species with low dispersal 
abilities can often be explained with an Isolation by Dis-
tance (IBD) model (Wright 1943) in which spatially close 
individuals will tend to be more genetically similar, result-
ing in a positive correlation between geographical and 
genetic distances. IBD model was tested between the five 
localities using the linear regression method for popula-
tion in two dimensions developed by Rousset (1997). The 
mean coordinates of all quadrats of one locality were used 

1000 bootstrap replicates were used to calculate the 95% 
confidence interval for Fis. A Hardy-Weinberg equilibrium 
test on loci was performed using “pegas” package (Paradis 
2010). For all statistical tests, the maximum type I error rate 
was set at α = 0.05.

Bayesian clustering inference method implemented in 
STRUCTURE software (v.2.3.4) (Pritchard et al. 2000) was 
used to assess the most likely number of genetic clusters 
(K). The model selected for computation allowed admix-
ture, assumed a correlation between allele frequencies, and 
used the sampling area as prior for clustering. For each K 
from 1 to 6, 20 repetitions of 140 000 Markov Chain Monte 
Carlo (MCMC) were performed, after a burn-in of 40 000 
iterations. Structure Harvester Software (Earl and vonHoldt 
2012) was used to define the optimal number of K by com-
paring two methods : the computation of log probabilities 
of the data (ln[Pr(X|K)]) and the ΔK statistic (Evanno et al. 

Fig. 1 Maps showing the range of T. ceratina (a), sites sampling for 
this study (b) and (c) collection sites of fossil shells recorded. The 
Ricantu site, currently the only known distribution area of the spe-

cies, is adjacent to Ajaccio airport. Five localities (Tahiti 1, Tahiti 2, 
Natural, Military and Gravona) were sampled in three distinct areas 
(Northwest, Centre and Southeast respectively)
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Evolutionary scenario

To infer demographic history of Ricantu population, we 
used the Approximative Bayesian Calculation (ABC) algo-
rithm implemented in DIYABC v 2.1.0 software (Cornuet et 
al. 2008). This algorithm is particularly adapted to complex 
datasets studied in population genetics because it allows 
posterior probabilities of different models to be compared 
by means of summary statistics (Beaumont et al. 2002). 
Default parameters were kept for analysis. Chosen summary 
statistics were: mean number of alleles, mean genetic diver-
sity, mean variance of allelic size for each area, along with 
pairwise Fst, pairwise mean number of alleles, and pair-
wise mean genetic diversity. A million simulated datasets 
were obtained for each scenario, which were hierarchically 
compared to lead to the most likely one using the direct 
approach of estimation of posterior probabilities. DIYABC 
also allows an estimation of some parameter values, such 
as mutation rate. Type I and Type II errors of the final most 
likely scenario were computed with the method based on a 
priori distributions.

Results

Quality control

Individuals with more than 20% of non-amplified loci were 
excluded from the multicolocus genotype dataset. Loci 13 
and 45 were also removed due to a low success of amplifi-
cation. Consequently, 210 individuals and 13 polymorphic 
loci were kept for analysis.

Genetic diversity and genetic structure

From the 210 individuals kept for analysis, the number 
of alleles per locus ranged from 4 alleles (locus 36) to 11 
alleles (loci 4 and 5). Genetic diversity estimates per areas 
and overall areas are shown in Table 1. There was no sig-
nificant difference between sampled areas for standardized 
allelic richness (Ar) (χ2 = 2.11; p = 0.714), observed hetero-
zygosity (Ho) (χ2 = 1.58; p = 0.811), expected heterozygosity 

to assign coordinates to each area. To assess genetic differ-
entiation between areas, pairwise Fst (Weir and Cockerham 
1984) were computed.

Genetic distance (Dgen) was calculated as:

Dgen =
Fst

(1 − Fst)

Natural logarithms of geographical distances between 
localities (Dgeo) were used to build the linear regression. 
IBD significance was assessed with a Mantel test, using 
1000 permutations. Based on these results, mean population 
density (De) and mean dispersal distance per generation 
(δ) were estimated using the following formulas (Rousset 
1997):

De =
Ne

π∗
(

S
2

)2

δ = 2

√
1

4πDeb

where Ne is the mean effective populations size of each 
locality, S the smallest distance between two localities, and 
b the slope of the linear regression between genetic and 
geographical distances. Ne estimator v.2.1 (Do et al. 2014) 
was used to calculate effective population size of each local-
ity. We used the linkage disequilibrium method as recom-
mended for small population (Waples and Do 2010) and its 
potential bias are relatively well known (Araki et al. 2007). 
Rare alleles (i.e. with a frequency inferior to 0.02) were 
excluded to avoid Ne overestimation (Do et al. 2014).

Historical and contemporary gene flow

Historical and contemporary gene flow between pairs of 
genetic clusters (inferred with clustering approach previ-
ously described) were estimated with Bayesian inference 
methods, using respectively MIGRATE v 4.4.3 (Beerli 
2006) and BAYEASS v.3.0.4 (Wilson and Rannala 2003) 
softwares (see Appendix A1 for detailed description of both 
methods used).

Table 1 Table displaying sampled area and overall areas (Total), the number of individuals used for analysis (N), mean allelic richness (Ar), mean 
observed heterozygosity (Ho), mean expected heterozygosity (He), and inbreeding coefficient (Fis). For Ar, Ho and He standard deviation (sd) is 
displayed. For Fis, 95% confidence interval values are given
Areas Localities N Ar ± sd Ho ± sd He ± sd Fis [CI 95%]
Northwest Tahiti 1 51 4.028 ± 1.283 0.532 ± 0.167 0.622 ± 0.134 0.151 [0.0675–0.2373]

Tahiti 2 14 3.952 ± 1.394 0.497 ± 0.201 0.631 ± 0.117 0.212 [0.0876–0.3432]
Natural 57 4.063 ± 1.477 0.560 ± 0.170 0.630 ± 0.140 0.125 [0.0495–0.1736]

Centre
Southeast

Military 35 4.346 ± 1.494 0.491 ± 0.209 0.618 ± 0.180 0.226 [0.1210–0.3007]
Gravona 53 4.487 ± 1.136 0.489 ± 0.133 0.643 ± 0.135 0.242 [0.1853–0.2923]
Total 210 6.724 ± 2.191 0.510 ± 0.148 0.666 ± 0.144 0.226 [0.1655–0.2712]
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Hierarchical genetic structure analysis on Northwest 
locality did not allow to detect a finer genetic structure 
(Appendix A, Fig. A3).

Genetic differentiation and isolation by distance

We found a significant isolation by distance (IBD) pattern 
between areas (Appendix A, Fig. A4). The estimated popula-
tion density (De) was De = 0.001 individuals/m2. Estimated 
mean dispersal distance per generation was δ = 71.76 m / 
generation.

Historical and contemporary gene flow

According to credibility intervals, higher contemporary 
than historical gene flow were observed for the two gene 
flow measures towards the Northwest area, issued from 
the Centre and Southeast areas respectively (Appendix A, 
Fig. A5). All other historical and contemporary gene flow 
estimates were overlapping. No cluster pair was more con-
nected than another. All estimates of gene flow were very 
low (< 0.1). However, it must be noted that the mean overall 
historical gene flow was 0.0112, that is almost ten times less 
than mean overall contemporary gene flow (0.0011). Every 
contemporary gene flow estimate was higher than its con-
temporary analogue.

(He) (χ2 = 0.311; p = 0.989) and inbreeding coefficient (Fis) 
(χ2 = 4.82; p = 0.305). Mean allelic richness overall areas 
was 6.724 ± 2.191, and inbreeding coefficient overall areas 
was 0.226, indicating an excess of homozygotes due to 
non-random mating. Mean observed and expected hetero-
zygosity overall areas were respectively 0.510 ± 0.148 and 
0.666 ± 0.144. Loci showing deviation from Hardy Wein-
berg equilibrium varied depending on the areas (Appendix 
A, Fig. A1).

The optimal number of clusters (K) to describe the 
genetic structure of Ricantu population was K = 3 (Appendix 
A, Fig. A2). A spatial genetic differentiation on a Northwest 
/ South-East axis was observed (Fig. 2a). Thus, individu-
als sampled in the Northwest area were mostly assigned to 
cluster 1 with most of the assignment probabilities reaching 
more than 90% (Fig. 2b). It must be noted, however, that 
a few individuals sampled in Centre area also have strong 
assignment probabilities to cluster 1 (reaching up to 70%). 
Individuals originating from the Centre were predominantly 
assigned to cluster 2. Finally, individuals of Southeast local-
ity mainly had strong assignment probabilities to cluster 3 
even though this area was less genetically homogeneous 
than the two areas previously described, with several indi-
viduals having assignment probabilities to cluster 2 superior 
to 50%.

Fig. 2 (a) Map of relative importance of each genetic cluster per sam-
pled areas, inferred with STRUCTURE software (b) Assignment prob-
abilities of individuals to each genetic cluster, computed with STRUC-

TURE software, and plotted with strataG package in R (Archer et al., 
2017). Individuals are gathered according to their sampling areas, and 
the number of individuals for each area (n) is displayed
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genetic stochasticity (Palstra and Ruzzante 2008). Neverthe-
less, Ne value estimated using linkage disequilibrium (LD) 
across pairs of loci corresponds to the lowest size through 
which the population has passed over time following a con-
traction, although a rapid demographic recovery may have 
occurred afterwards (Slatkin 2008). This hypothesis seems 
sound due to the high genetic diversity of the population and 
the size reduction of the ancestral population inferred by 
our evolutionary scenario. Similar estimates of Ne carried 
out with the same method on bottlenecked populations of 
Helicidae support this hypothesis (Qiu et al. 2019). A pos-
sible cause of this seventy years long demographic crash is 
the heavy anthropization of the Ricantu site since the 1950s 
(Paradis et al. 2011 [in French]). The habitat restoration 
of two main areas of Ricantu in 2000 and 2014 (Fig. A8) 
(Galleras and Freytet 2014) could have contributed to an 
increase in population size, although this was not reflected 
in Ne estimates. In addition, there is an overlap of genera-
tions, as T. ceratina produces two generations of individuals 
per year, and an adult lives between three and four years 
after its first reproduction. Given genotypes from several 
generations were used (Waples et al. 2014) and the concept 
of effective population size (Ne) was developed under a 
discrete-generation mode, the linkage disequilibrium (LD) 
method used may have also led to an underestimation of Ne.

At first sight, the genetic health of T. ceratina would 
therefore not be of too much concern. However, we must be 
aware that the neutral genetic diversity estimated here may 
not reveal adaptive genetic diversity (Hall et al. 2012), and 
therefore does not predict population persistence. The use of 
neutral markers to determine the genetic diversity of a popu-
lation and to assess its extinction risk is being questioned 
(Teixeira and Huber 2021; Väla et al., 2008). Thanks to 
the recent development of genomic techniques, functional 
genetic diversity can now be quantified and compared to 
potentially neutral diversity, which may be of great interest 
in conservation genetics (Allendorf et al. 2010; Kohn et al. 
2006).

High genetic structuring linked to low connectivity

Our results show that the entire population is spatially orga-
nized with a genetic pattern that appears to be driven by 
isolation by distance (IBD). Moreover, the population is 
subdivided into three spatially distinct genetic groups, sup-
porting the hypothesis of fragmentation into sub-populations 
(H2). As shown for other land snail species (e.g. Arnaud et 
al. 2003), such IBD pattern resulting is consistent with the 
species’ low dispersal ability and fragmented habitat. Given 
that high level of genetic diversity is maintained in samples 
studied, we assume that local gene exchanges including 
indirect gene flow over several generations (van Strien et al. 

Evolutionary scenarios

Ricantu population origin’s scenarios were elaborated 
based on the results of genetic differentiation, indicating 
three genetic clusters. All effective population size in tested 
scenarios were equal to avoid an unnecessary complexifica-
tion of models. Hierarchical progression leading to the final 
most likely scenario can be find in Fig. A7 (Appendix A). 
For every tested scenario, mutation rate estimate was 10− 4.

The final most likely scenario is shown in Fig. A6 and 
had a relative probability of 0.4920 compared to the two 
other scenarios it was tested against. Type I error estimate 
was 0.423 and type 2 error estimate was 0.127.

This scenario described that an ancestral population 
with an effective population size N0 (with a median over 
all simulated data set of 7.44 × 10³ individuals) would have 
gone through a population shrinkage and thus reached an 
effective population size of N0-ret (with a median over all 
simulated data set of 2.45 × 10³ individuals). The reduced 
ancestral population would then have been divided into two 
subpopulations, accounting for two hypothetical entities 
that subsequently contributed to the emergence of the three 
genetically distinct clusters identified from the 5 sampled 
localities.

Discussion

Genetic health of the ricantu population

Surprisingly, our results do not support the H1 hypothesis 
of low genetic diversity. The relict population of T. cera-
tina showed a quite high genetic diversity, with values of 
allelic richness and expected heterozygosity similar to 
those observed -with also microsatellite markers- in non-
threatened Helicidae species (e.g. Arnaud et al. 2001). 
Mechanisms already observed in Helicidae, such as mul-
tiple paternity (Evanno et al. 2005), or inbreeding avoid-
ance (Dahirel et al. 2013) could explain this high neutral 
genetic diversity. This rather high genetic variability does 
not prevent high inbreeding at some loci, a result that is 
rather consistent with a fragmented and small population. 
Although the population may likely suffer from inbreeding, 
homozygotes excess, common in gastropods (e.g. Wiehn 
et al. 2002), may only be the result of sampling bias, due 
to unsampled heterozygote genotypes. The high values of 
both allelic richness and observed heterozygosity support 
this hypothesis.

As expected for a threatened species, the effective popu-
lation size (Ne) estimated is extremely low, and far below 
the population size (N) recently estimated (Cucherat, unpub-
lished), which indicates a strong effect of demographic and 
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high level of estimated genetic diversity. Non-deterministic 
factors such as physical barriers to dispersal would have 
further accentuated these spatial and temporal genetic dis-
continuities. This is evidenced by the very low values of 
functional connectivity (gene flow) estimated between the 
three genetic clusters. The Ricantu site has been strongly 
disturbed after the World War II. Figure 3 summarises main 
disturbances of the site on the basis of analysis of aerial 
photography of the French National Institute of Geography 
(pictures available since 1950). Various landscape barriers 
over time would have prevented functional connectivity 
between areas of T. ceratina occurence. Firstly, the North-
west stretch of the Gravona River has been disconnected 
from the Southeast one for the construction of the Ajaccio 
airport in 1950’ years. At this period, the landing runway 
was longer, separating the Southeast site from the others. 
Up to 2000, the development of the airport was followed 
by construction of a car park, a military summer camp and 
plantations of non-indigenous plant species, between the 
present-day Northwest and the Central areas. In the same 
lap time, remnant habitats were disturbed by diverse car 
traffic and sand withdrawal. A sea high tide protection of the 

2015) would be sufficient to counteract the stochastic effects 
of genetic drift. The low average dispersal distance of 71m 
per generation supports this hypothesis. With a generation 
time of T. ceratina of 1.5 years, an adult would travel an 
average distance of 47 m/year. This value is consistent with 
those estimated for other terrestrial gastropod species (Kra-
marenko 2014). Therefore, in the Northwest area, snails 
can possibly cross in one generation the 3m and 6m wide 
sand paths with no vegetation between Tahiti 1 and Tahiti 2, 
and Tahiti 2 and Natural localities respectively. This would 
explain the genetic homogeneity of these areas. By contrast, 
at the metapopulation level, the linear distances of 935m 
and 580m separating respectively the Northwest area and 
Centre one, and the Centre and Southeast areas, would not 
be easily crossed by individuals, explaining the clustering of 
the metapopulation into three distinct genetic clusters. Such 
short-range gene flow would contribute to the persistence 
of subpopulations through the movement of alleles trapped 
within the three identified clusters, corresponding glob-
ally to Northwest, Centre and Southeast areas. This reten-
tion of “ancestral” alleles could therefore explain both the 
sharp spatial genetic structure observed and the relatively 

Fig. 3 Mapping of putative 
landscape barriers that may 
have limited the dispersal of 
T. ceratina on the Ricantu site 
adjacent to Ajaccio airport, based 
on aerial photographs from the 
Institut National de l’Information 
Géographique et Forestière 
(IGN), dating respectively from 
1951, 1966, 2002 and 2007
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the joint impact of genetic drift, inbreeding, and gene flow 
on populations. Indeed, several studies (e.g. Landguth et 
al., 2010) suggest that the duration of fragmentation would 
then be too short to detect any genetic effect in the popu-
lation. The high level of genetic diversity estimated in the 
unique population of T. ceratina would therefore only be an 
apparent biodiversity surplus (Halley et al. 2017), an exam-
ple of the well-known phenomenon of the extinction debt 
(Hylander and Ehrlen 2013). Such allelic excess would be 
the signature of alleles conserved from pre-fragmentation 
times and currently trapped in the fragmented population.

Towards a restoration of connectivity?

Although possibly misestimated, especially if the popu-
lation has experienced a recent decrease in connectivity 
(Samarasin et al. 2017), the very low and similar gene flow 
values measured at two different time scales between the 
three genetic clusters identified does not allow to under-
line a significant effect of the site restoration on functional 
connectivity. However, higher contemporary gene flows 
estimates than historical ones may be the expression of a 
restoration of landscape connectivity, linked to the ecologi-
cal restoration of certain areas. This hypothesis is consis-
tent with the individual assignment tests, which show a high 
probability that some individuals belong to non-dominant 
genetic clusters in their sample areas. Moreover, individuals 
were observed moving near the airport runway, which has 
gradually recovered a low vegetation after the 1950s. Gene 
migration via the dispersal of individuals is therefore both 
possible and probable between Centre and Southeast areas. 
Thus, the historically fragmented population of T. ceratina 
in Ricantu would function as a metapopulation due to the 
restoration of connectivity between previously isolated 
habitats. Still, this hypothesis is not statistically supported, 
given the overlap of historical and contemporary gene 
flows, and must be verified through time by the genetic and 
demographic follow-up of the study population.

Population history of the Ricantu

The most likely history scenario inferred from DIYABC 
software is consistent with the hypothesis of a demographic 
contraction of an ancestral population that gave rise to the 
current metapopulation (H4). The estimated decrease to 
about one third of the effective size of the original ances-
tral population is substantial. As mentioned previously, 
this sharp decline did not result in a total erosion of neutral 
genetic diversity, yet this is often observed in species with 
low dispersal ability and pronounced micro-endemism (e.g. 
Johnson 2005). Unfortunately, data on the current and past 
occurrence of the species are so limited and poor that it is 

landing runway has been built against sea storms. Since the 
rediscovery of the species, all remnant habitats where the 
snail was found have been protected, the car park and mili-
tary summer camp have been destroyed and natural habitats 
of the fluvio-marine terrace have been restored, respectively 
in 2000 and 2014. Currently, there is no anthropogenic 
habitats between the Northwest area and the Central one, 
but only a few pioneer individuals has been detected so far. 
Based on credibility intervals, most historical and contem-
porary gene flow cannot be differentiated. Therefore, these 
results suggest that the low functional connectivity has not 
significantly changed through time. However, even if con-
fidence intervals are large and mostly non-significant, we 
suggest a beneficial effect of protection and restoration on 
functional connectivity, given that all contemporary gene 
flow estimates are higher than the historical ones. Unlike 
our hypothesis H3 which states a stronger past than recent 
gene flow, such finding may suggest that recent habitat 
changes over time could have promoted the movement of 
individuals. However, this conclusion is supported by frag-
ile results because the historical migration rates, performed 
with MIGRATE, vary depending on the mutation rate used. 
Here, the mutation rate of 10− 4 seems justified as this is the 
value inferred in all scenarios tested with DIYABC. Nev-
ertheless, higher mutation rates of 10− 3 or even 10− 2 have 
been used in other gastropod species (e.g. Jarne and Theron, 
2001).

All these temporal and spatial shifts between unfavorable 
(fragmentation) and favorable (protection and restoration) 
habitats would explain why such subdivided population 
exhibit a surprisingly high level of genetic diversity. Just 
as quaternary refugia can contribute to preserve the genetic 
diversity of a species, remnant habitats may have served 
as reservoirs of diversity from which secondary contact 
between alleles when the habitat became favorable promoted 
genetic innovations. Rather than causing gradual population 
genetic erosion, anthropogenic disturbances that impacted 
T. ceratina habitat may have yielded complex and unex-
pected genetic patterns due to possible local recolonizations 
(Millette et al. 2020). Although this hypothesis requires that 
disturbances do not affect the viability of the population, it 
is supported by other studies specifically highlighting the 
resilience of land snail species in fragmented habitats (Tri-
antis et al. 2009), which can be explained because many 
mollusk species only need very small areas to persist for 
long periods.

A non-exclusive hypothesis is the one of a delayed habitat 
fragmentation effect on the population response. Such asyn-
chronous response appears as a kind of apparent reprieve to 
populations that will inexorably disappear. This time delay 
in extinction, called “relaxation time” (Diamond 1972), 
may affect the dynamics of diversity estimates in delaying 
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