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Abstract

A hyperbolic two-fluid model for high-speed, monodisperse, gas–particle flow is employed to study the interaction
of a thin, moderately dense (volume fraction αp < 0.2) particle curtain impacted by an incident shock with Mach
numberMs. Mimicking the experimental setup, the numerical setup consists of a one-dimensional shock tube with
a thin particle curtain in the driven section. This allows to validate the two-fluid model against recent experimental
campaigns exploring a wide range of particle diameters, material densities, volume fractions, curtain widths and shock
speeds. In general, the two-fluid model allows to reproduce the experimental data where the highest discrepancy is
obtained in the configurations with the smallestMs. However, the main goal of this study is to explore the closures
used in the two-fluid model. Attention is drawn to the particle-Mach-number (Mp) dependence of the drag and added-
mass coefficients, which have not yet been explored extensively in the literature. Also, the two-fluid model based on
kinetic theory includes a particle pressure accounting for particle–fluid–particle (pfp) interactions. Thus, a parametric
study is presented to evaluate the impact of several model parameters such as the drag coefficient, the added-mass
coefficient, and the magnitude of the pfp pressure. The complete drag model accounting for particle Reynolds number
Rep,Mp and αp is more accurate than previous drag models depending only on Rep and αp. Due the high particle-to-
gas density ratio, the added-mass model has only a minor impact on the results. On the other hand, the magnitude of
the pfp pressure has a real impact on the spread of the curtain due to the high slip velocity.

Keywords: gas–particle flow, kinetic theory of granular flow, added mass, pseudoturbulence, shock-particle
interactions

1. Introduction

The study of a shock interacting with particles has a long history starting from late 1980s with the pioneering
theoretical work of Forney et al. [8]. The main difficulty when dealing with compressible flows is the large range
of space and time scales. This feature of high–speed, gas–particle flows make them challenging to study for both
experimental and numerical approaches. On top of that, the high volume fraction (> 0.1) and shock Mach number
(> 0.6) also imply four-way coupling [4] between gas and particles. Indeed, when particles are close to each other,
they have an impact on the gas, but also on neighboring particles through collisions and friction. Some recent direct-
numerical simulations (DNS) have demonstrated that the flow-field fluctuations (or pseudoturbulence) [14, 22, 25] are
not negligible in random arrays of spheres interacting with planar shocks. Furthermore, the contribution of unsteady
forces such as added mass [17] and Basset history [9] can become predominant in the early moments when the shock
enters in a dense particle zone.

Numerous studies, both experimental and numerical, have been carried out to yield more insight into the physics
behind this problem. While some researchers focused on the study of the microscale where an isolated particle is
passed by a high-speed flow, the importance of four-way coupling was the motivation to develop macroscale ap-
proaches where the entire granular phase is considered. While the former provides a better understanding of the force
balance, the latter paves the way to accurate modeling of complex gas–particle systems [15]. Indeed, the numerous
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numerical studies resulted in the assessment of more complete model for drag, which also takes into account the
particle-Mach-number dependency [4, 20].

For the macroscale description, the pioneering work of Rogue et al. [30] proposed a first experimental setup to
study the interaction of a shock with a particle curtain. The investigation is also accompanied by a numerical study
making use of a two-fluid compressible model [31]. Later, a shock tube has been dedicated to the study of multiphase
flows at the Sandia National Laboratory (SNL) [37] with a focus on moderately dense granular flows interacting with
a shock wave. Finally, the ASOS shock tube has also been adapted to the study of thicker curtains in a wider range of
flow conditions from subsonic to supersonic regimes [35]. While the pioneer experiments on the subject were based
on a vertical shock tube with particles contained in a diaphragm, the ASOS and SNL experimental setups consist of
an horizontal shock tube with a gravity-fed particle curtain. This curtain generation technique allows to explore the
dense gas–solid regime with a volume fraction comprised between 1 to 50 %.

While many of the flow solvers used in the literature to simulate a high-speed gas with particles rely on Eulerian–
Lagrangian methods, our proposed framework employs an Eulerian representation of the particle phase. Euler–Euler
(EE) methods can rely either on the Baer—Nunziato equations [1] or on the kinetic theory of granular flow for the
particle phase [12]. The resulting solvers [15, 28, 30, 32] are then able to model dilute-to-dense granular multiphase
flows. In the literature, experimental studies have been mainly focused on the development of universal scaling laws
to predict the curtain spreading rate [6, 7, 35], while in numerical works, the use of the shock-curtain case was used
among other validation test cases to assess the numerical methods more than the modeling [15, 28, 32]. However,
more extensive studies have been performed to propose model improvements based on a comparison of experimental
and numerical results for monodisperse [18, 30] and bidisperse granular phase [40]. This work proposes to follow the
same path to assess and improve the modeling of high-speed, monodisperse, gas–particle flows. Our model is based
on an EE formulation derived from kinetic theory [3], which has the advantage to naturally handle hyperbolicity
issues. The model also includes pseudo-turbulent kinetic energy (PTKE) of the gas phase to account for the two-way
coupling, and internal energy of the particle phase to model heat transfer between the gas and particles.

This work starts with the presentation of the two-fluid model in section 2. In section 3, the closures for drag,
added mass and particle–fluid–particle (pfp) pressure are further discussed, especially with their dependency on the
particle Mach number. Then, the numerical setup used to replicate the experimental particle-curtain configurations is
presented in section 4. Results are presented in section 5 where twelve configurations are explored and compared to
recent experimental data with various drag, added-mass and pfp-pressure models. Finally, conclusions are drawn in
section 6.

2. Governing equations

This section focuses on the governing equations for gas–particles flows based on the two-fluid model from [3].
The added-mass contribution is naturally accounted for and the equation system does not suffer from ill-posedness
encountered by the conventional compressible two-fluid models containing two-way coupling (Archimedes forces)
[16]. The flow-field fluctuations are also modeled through the transport of PTKE of the gas kg. Finally, the model
includes the transport of internal energy of particles ep to properly predict the inter-phase heat transfer, which plays
a significant role of weakening shocks in the dense granular regime [15]. By transporting kg and ep, the complete
energy cascade is modeled. Heating of the particles due to inelastic collisions acts as a source term for ep.

In our EE formulation, the gas material density is denoted by ρg, and the solids material density ρp is constant.
The gas- and particle-phase velocities are ug and up, respectively. The total energies of the fluid and particle phases
are denoted as Eg and Ep, respectively. The total energy is made up of the kinetic + internal energies. We denote the
former for each phase as K f and Kp, and the latter as e f and ep, respectively. Hence, Eg = Kg + eg and Ep = Kp + ep.
The kinetic energy is further divided into mean and fluctuating components: Kg =

1
2 u2

g+kg and Kp =
1
2 u2

p+
3
2Θp. Here,

u2 = u · u and Θp is the granular temperature. PTKE represents fluid-velocity fluctuations due to finite-size particles,
and the square root of Θp represents the velocity magnitude of individual particles relative to up. In the two-fluid
model, the total energy of both phases is conserved. While the gas phase directly derives from the Euler equations,
it is convenient to solve transport equations for Eg and kg and to deduce eg. In contrast, for the particle phase, the
kinetic theory description leads naturally to transport equations for Kp and ep, and we then compute Θp from them.
The thermodynamic temperatures Tg and Tp (K) are found from the internal energies eg and ep, respectively.
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2.1. Treatment of added mass

While added mass is often modeled by an additional inter-phase force term leading to the so-called virtual-mass
force [5], our EE model directly handles added mass by assigning a fraction of the gas phase surrounding a particle
to move with the velocity of the particle phase up. The volume fraction of reference for the particle phase in the
two-fluid model is then replaced by α⋆p = αp + αa where αa is the volume fraction of the added-mass phase, while
αp is the particle-phase volume fraction. The gas counterpart is then α⋆g = αg − αa where αg is the gas-phase volume
fraction. The mass balances (constant ρp, no mass transfer from solid to gas) for the particle and added-mass phases
are, respectively,

∂tαp + ∂x · αpup = 0 (1)

and
∂tρgαa + ∂x · ρgαaup = S a (2)

where S a is a mass-transfer rate from the continuous gas phase to the added-mass phase, which is detailed in sec-
tion 3.2. This source term also leads to momentum and energy exchanges between the added-mass phase and the
continuous gas phase defined by

Sgp = max(S a, 0) ug +min(S a, 0) up (3)

and for the total energy by
S E = max(S a, 0) Eg +min(S a, 0) Ep. (4)

In words, if S a is positive, gas-phase mass, momentum and total energy are transferred from the continuous phase to
the added-mass phase, while for negative S a the transfer is in the opposite direction. Note that in the following, S E is
further divided into an internal-energy source S e and a kinetic-energy source S K defined in the same manner as eq. (3)
and eq. (4).

In summary, the inclusion of added mass requires an additional continuity equation defined by eq. (2), along with
source terms to model changes in the added-mass volume fraction, momentum and total energy. The total mass of the
particle + added-mass phase can be expressed as

ρeα
⋆
p = ρpαp + ρgαa, (5)

which defines the effective density ρe. In the next section, we present a two-fluid model for monodisperse particles
with added mass and internal energy. This model has balance equations for the particle-phase variables ρeα

⋆
p , ρeα

⋆
p up,

ρeα
⋆
p Kp, and ρeα

⋆
p ep. In addition, the conserved variable ρpαp, governed by eq. (1), is needed to determine ρg when

the fluid is compressible.
Note that given αp and the two conserved variables for the phase masses (ρgα

⋆
g , ρeα

⋆
p ), the added-mass volume

fraction αa is found from

αa =
κ

1 + κ
(1 − αp) for κ =

ρeα
⋆
p − ρpαp

ρgα
⋆
g

=
αa

α⋆g
(6)

with αg = 1 − αp, and then α⋆p = αp + αa and α⋆g = αg − αa. Thus, for constant ρp, the primitive variables (αp, ρe,
ρg, up, ug, Kp, ep, Eg, kg) are uniquely defined from the conserved variables (ρpαp, ρeα

⋆
p , ρgα

⋆
g , ρeα

⋆
p up, ρgα

⋆
g ug,

ρeα
⋆
p Kp, ρeα

⋆
p ep, ρgα

⋆
g Eg, ρgα

⋆
g kg).

2.2. Transport equations for the particle phase

The kinetic model described in [3] yields transport equations for mass, momentum, kinetic energy and internal
energy of the phase comprising particles and added mass:

∂tρeα
⋆
p + ∂x · ρeα

⋆
p up = S a (7)

∂tρeα
⋆
p up + ∂x · [ρeα

⋆
p (up ⊗ up + ΘpI + PpI) + Pp f p] = −D − α⋆p (∂x p̂g + Fpg) + Sgp (8)

∂tρeα
⋆
p Kp + ∂x · [ρeα

⋆
p up(Kp + Θp + Pp) + Pp f p · up] = Pp f p : ∂xup − DE − α

⋆
p up · (∂x p̂g + Fpg) − Hp + S K (9)

∂tρeα
⋆
p ep + ∂x · ρeα

⋆
p upep = −Hpg + Hp + S e (10)
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where Pp f p : ∂xup is the work done by the pfp pressure on the particles to reduce their volume fraction.1 The
particle-phase pressure Pp = Pc + P f consists of two contributions. A collisional component:

Pc = 2(1 + ec)αpg0Θp, g0 =
1 + αg

2α3
g

(11)

where ec is the coefficient of restitution, and a frictional component:

P f =
p fαpg0

ρeα
⋆
p

1
2

[
1 + tanh

(
αp − αmax

∆ f

)]
(12)

where αmax = 0.63 is the close-packed limit and ∆ f controls the sharpness of the pressure transition at αmax. For the
particle curtains investigated in this work (αp < 0.20), neither component of Pp has a significant influence on the
spreading rate.

The pfp pressure tensor described in [11] is modeled as

Pp f p = Cp f pρgα
⋆
p R. (13)

The slip-pressure tensor R for potential flow around spheres is derived from kinetic theory [10] as

R =
1
5

u2
pgI +

2
5

upg ⊗ upg (14)

where upg = up − ug is the slip velocity. Notice that the trace of R is equal to u2
pg such that the trace of Pp f p (used in

the 1-D model) is Cp f pρgα
⋆
p u2

pg ≥ 0. In general, the trace of R is always u2
pg, but the coefficient of the isotropic part in

eq. (14) need not be 1/5 [39]. The modeling of Cp f p is discussed in section 3.3 and investigated in section 5.
The momentum-exchange term Fpg is defined as

Fpg = R · ∂xρg −
2
3
ρgtr(Γ) upg −

4
5
ρgS · upg (15)

where the gas-phase deformation rate tensor is Γ = 1
2

[
∂xug + (∂xug)t

]
and S = Γ − 1

3 tr(Γ)I. The modeling of the
added-mass source term S a is discussed in section 3.2 while the corresponding momentum and energy source terms
were defined by eq. (3) and eq. (4).

The drag-exchange terms for momentum and total energy are defined by

D =
ρeα

⋆
p

τp
upg, DE =

ρeα
⋆
p

τp
[up · upg + 3aΘp − 2(1 − a)kg] (16)

with τp the drag time scale discussed in section 3.1. The parameter a depends on the material densities:

a =
ρp + ρgamin

ρp + ρg
(17)

where amin = 0.5 determines the steady-state ratio Θp/kg for gas bubbles in a liquid (i.e., ρp ≪ ρg). For the gas–
particle flows investigated in this work, ρp ≫ ρg so that a ⪅ 1. The Gunn correlation [13] for the Nusselt number
(Nu, see table 2) given in [15] is used to model the inter-phase heat transfer:

Hpg =
6α⋆pλgNu

d2
p

(Tp − Tg) (18)

where the phase temperatures are found from their internal energies: Tg = γgeg/Cp, f , Tp = ep/CV,p. The particle

1According to the mass balance Dtαp = ∂tαp + up · ∂xαp = −αp∂x · up, when ∂x · up > 0 the value of αp following the Lagrangian trajectory
with velocity up will decrease.

4



diameter is dp and λg is the fluid-phase thermal conductivity.
Finally, the particle-phase heating rate Hp is the sum of two contributions: a collisional contribution ⟨eC⟩ and a

frictional contribution ⟨eF⟩. The collisional source term is modeled using the inelastic BGK closure [2, 27]

⟨eC⟩ = ρeα
⋆
p

(1 − e2
c)

τc
Θp. (19)

with ec the coefficient of restitution and τc the collision time that depends on αp and Θp:

τc =
dp
√
π

12αpg0Θ
1/2
p

. (20)

The frictional contribution to the particle-phase heating term is

⟨eF⟩ = ρeα
⋆
p

1
τ f
Θp. (21)

where τ f is a time scale that depends on τc and ∂x · up:

τ f =
2c f

max(|∂x · up|, 1/τc)

[
1 + tanh

(
αp − αmax

∆ f

)]−1

. (22)

Here, c f = 0.01 controls the frictional time scale above close packing. For the particle curtains investigated in this
work, Hp has a negligible effect on the spreading rate.

2.3. Continuous gas-phase balance equations

In conservative form, the gas phase (excluding the added mass) is governed by mass, momentum, total-energy,
and PTKE balances [3, 11]:

∂tρgα
⋆
g + ∂x · ρgα

⋆
g ug = − S a (23)

∂tρgα
⋆
g ug + ∂x · (ρgα

⋆
g ug ⊗ ug + p̂gI) = D + α⋆p (∂x p̂g + Fpg) − Sgp (24)

∂tρgα
⋆
g Eg + ∂x · [ρgα

⋆
g ugEg + (α⋆g ug + α

⋆
p up)p̂g] = −Pp f p : ∂xup + DE + α

⋆
p up · (∂x p̂g + Fpg) + Hpg − S E (25)

∂tρgα
⋆
g kg + ∂x · ρgα

⋆
g ugkg +

2
3
ρgα

⋆
g kg∂x · ug = DPT − ρeα

⋆
p

Cg

τp
kg (26)

where p̂g = pg +
2
3ρgkg is the modified gas pressure. The gas pressure is found from the ideal-gas law:

pg = (γg − 1) ρg

(
Eg − Kg

)
= (γg − 1) ρgeg (27)

where γg is the heat-capacity ratio. In the total energy balance, Hpg represents convective heat transfer from the
particle phase due to the temperature difference [15]. The final terms on the right-hand sides of eq. (23)–eq. (25)
represent exchanges between the continuous gas phase and the added-mass phase.

In the PTKE balance in eq. (26), DPT represents drag exchange of PTKE with the particle phase:

DPT =
ρeα

⋆
p

τp
[u2

pg + 3aΘp − 2(1 − a)kg]. (28)

The parameter Cg controls the rate of dissipation of PTKE into internal energy in the gas phase [33]. Here, we will
use the correlation from PR-DNS with frozen particles [21]:

C−1
g = αp[1 + 1.25α3

g exp(−αpα
1/2
g Re1/2

p )], (29)
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Table 1: Nine-equation, two-fluid model for 1-D shock–particle-curtain interactions. The Pp f p term is written here as a force in the momentum
balances, but could also be written as a particle-phase pressure flux. In either case, Pp f p does not act as a source term for Θp.
Mass balances:

∂tρgα
⋆
g + ∂xρgα

⋆
g ug = −S a

∂tρeα
⋆
p + ∂xρeα

⋆
p up = S a

∂tαp + ∂xαpup = 0

Momentum balances:

∂tρgα
⋆
g ug + ∂x(ρgα

⋆
g u2

g + p̂g) =
ρeα

⋆
p

τp
upg + α

⋆
p (∂x p̂g + Fpg) − S f p

∂tρeα
⋆
p up + ∂x[ρeα

⋆
p (u2

p + Θp + Pp) + Pp f p] = −
ρeα

⋆
p

τp
upg − α

⋆
p (∂x p̂g + Fpg) + S f p

Gas-phase energy balances (total + PTKE):

∂tρgα
⋆
g Eg + ∂x[ρgα

⋆
g ugEg + (α⋆g ug + α

⋆
p up) p̂g] = −Pp f p∂xup +

ρeα
⋆
p

τp
[3aΘp − 2(1 − a)kg + upgup]

+ α⋆p up(∂x p̂g + Fpg) + Hpg − S E

∂tρgα
⋆
g kg + ∂xρgα

⋆
g ugkg +

2
3
ρgα

⋆
g kg∂xug =

ρeα
⋆
p

τp
[3aΘp − 2(1 − a)kg + u2

pg −Cgkg]

Particle-phase energy balances (kinetic + internal):

∂tρeα
⋆
p Kp + ∂x[ρeα

⋆
p up(Kp + Θp + Pp) + upPp f p] = Pp f p∂xup −

ρeα
⋆
p

τp
[3aΘp − 2(1 − a)kg + upgup]

− α⋆p up(∂x p̂g + Fpg) − Hp + S K

∂tρeα
⋆
p ep + ∂xρeα

⋆
p upep = Hp − Hpg + S e

where the particle Reynolds number is

Rep =
ρgdpvpg

µg
=
α⋆g ρgdpupg

αgµg
, (30)

and µg is the gas-phase viscosity (which depends on Tg). The particle Mach number associated with the slip velocity
is

Mp =
vpg

cg
=
α⋆g upg

αgcg
(31)

with cg is the gas speed of sound. In standard two-fluid models, Rep and Mp are usually computed from the slip
velocity vpg = (vpg · vpg)1/2, which is defined in the absence of added mass. As shown in [11], the slip velocities are
related by αgvpg = α

⋆
g upg, which modifies the definitions of Rep andMp. In our formulation, the slip velocity with

added mass is larger than without because part of the fluid moves with the particle velocity up.

2.4. Final form of the 1-D nine-equation system for shock–particle-curtain interactions

Now that all the transport equations have been introduced, the 1-D two-fluid model for shock–particle-curtain
interactions is summarized in table 1 and table 2 with additional parameters described in section 3.
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Table 2: Summary of the terms appearing in the two-fluid model for 1-D shock–particle-curtain interactions in table 1. Different models for CD,
c⋆m and Cp f p are investigated in section 5.

κ =
ρeα

⋆
p − ρpαp

ρgα
⋆
g

αg = 1 − αp αa =
κ

1 + κ
αg α⋆p = αp + αa α⋆g = αg − αa upg = up − u f

S a =
ρg

τa
(c⋆mαgαp − αa) S f p = max(S a, 0) ug +min(S a, 0) up S E = max(S a, 0) Eg +min(S a, 0) Ep

S K = max(S a, 0) Kg +min(S a, 0) Kp S e = max(S a, 0) eg +min(S a, 0) ep

Rep =
α⋆g

αg

dpupg

νg
Mp =

α⋆g

αg

upg

cg
τa = Caτp τp =

4
3
ρe

ρg

d2
p

νgCDRep
Hpg =

6α⋆pλgNu

d2
p

(Tp − Tg)

Prg =
ρgCp, f νg

λg
Nu = (7 − 10αg + 5α2

g)(1 + 0.7Re0.2
p Pr1/3

g ) + (1.33 − 2.4αg + 1.2α2
g)Re0.7

p Pr1/3
g

pg = (γg − 1) ρgeg eg = Eg −
1
2

u2
g − kg p̂g = pg +

2
3
ρgkg Tg =

γgeg

Cp,g
Tp =

ep

CV,p

τc =
dp
√
π

12αpg0Θ
1/2
p

τ f =
2c f

max(|∂xup|, 1/τc)

[
1 + tanh

(
αp − αmax

∆ f

)]−1

Hp = ρeα
⋆
p

[
1
τc

(1 − e2
c) +

1
τ f

]
Θp

Θp =
2
3

Kp −
1
3

u2
p Pp = Pc + Pg Pc = 2(1 + ec)αpg0Θp P f =

p fαpg0

2ρeα
⋆
p

[
1 + tanh

(
αp − αmax

∆ f

)]
C−1

g = αp[1 + 1.25α3
g exp(−αpα

1/2
g Re1/2

p )] a =
ρp + ρgamin

ρp + ρg
g0 =

1 + αg

2α3
g

Pp f p = Cp f pρgα
⋆
p u2

pg Fpg = u2
pg∂xρg − (γg − 1)ρg(∂xug)upg

7



3. Closures for inter-phase exchanges

In the nine-equation system described in section 2, the closures for drag, added mass and pfp pressure have yet to
be described. The aim of this section is to present different models from the literature with several levels of complexity.
These closures will then be compared in section 5 to study the effect of these choices on the dynamics of a shock wave
interacting with a thin particle curtain.

3.1. Drag model

In the absence of added mass, the drag time scale is found from

1
τp
=

3
4

1
ρp

CDRep
µg

d2
p

(32)

where dp is the particle diameter and CD is a drag coefficient. In the Stokes limit where CDRep = 24, eq. (32) yields
the Stokes drag law. In order to account for added mass, we replace ρp with ρe in eq. (32):

1
τp
=

3
4

1
ρe

CDRep
µg

d2
p
, (33)

and use the particle Reynolds number defined in eq. (30) to find CD as described next. The momentum exchange term
for fluid drag is thus

D = −
ρeα

⋆
p

τp
upg = −α

⋆
p

3
4

CDRep
µg

d2
p

upg. (34)

As shown in [11], this result is consistent with the standard two-fluid momentum exchange term that depends on vpg.
The purpose of the drag law is to close CD, which depends on Rep and other dimensionless parameters such as

Mp and αp. While drag laws accounting for Rep are well-known due to extensive experimental and numerical data
on an isolated particle [23], the extension to clustering effects (αp) and compressibility of the carrier phase (Mp)
are still ongoing research topics. The drag coefficient CD(Rep) can be obtained from the standard Schiller–Naumann
expression:

CD(Rep) =

 24
Rep

(
1 + 0.15Re0.687

p

)
, if Rep < Re∞

0.44, otherwise
(35)

where the maximum Reynolds is often taken as Re∞ = 1000. Clustering effects are often introduced by a correction
factor, which depends on αg in the fashion of the Richardson–Zaki empirical relation [29] in the form αn

g. However,
this correlation was initially developed for incompressible flows. On the other hand, recent works provide a review of
experimental data sets to model compressibility effects on the drag coefficient [20, 34]. Unfortunately, the resulting
drag models do not account for the particle concentration. It is only recently that a drag model has been proposed to
simultaneously account for Rep, Map and αp [24]. These correlations are obtained from DNS of a shock interacting
with a random array of fixed spheres and other data sets from previous simulations.

Drag model 1: Schiller–Naumann with Richardson–Zaki correction. The first model considered for drag is taken
from [12]:

CD(Rep, αp) = CD(Rep)α−2.65
g . (36)

This model consists of the Schiller–Naumann model with the Richardson–Zaki correction to account for volume-
fraction effects.

Drag model 2: correlation from DNS. The second model considered for drag is taken from [24] and accounts for the
compressibility of the carrier flow:

CD(Rep, αp,Mp) = CD(Rep,Mp)α−1
g +

24
Rep
αg (b1 + b2) + b3 (37)

8



(a) Drag coefficient with αp = 0 and variable particle Mach number. (b) Drag coefficient withMp = 0 and variable volume fraction.

Figure 1: Drag coefficient with respect to Rep for different particle Mach numbers and volume fractions

with CD(Rep,Mp) a drag coefficient derived in [20] where different data sets have been compiled to provide a correla-
tion for an isolated sphere experiencing flows in different regimes. This drag coefficient and the additional coefficients
b1, b2 and b3 are provided in Appendix A. The ranges of validity of this model are Rep ∈ [0.25, 300], αp ∈ [0, 0.4],
Mp ∈ [0, 1.2], which match with the configurations explored in this work.

The particle-Mach-number and particle-concentration dependencies are illustrated in figs. 1a and 1b, respectively.
The particle Mach number tends to increase the drag coefficient with a simple shifting of the drag coefficient for the
range met in this configurations (from 0 to 0.9). It is important to recall that the particle Mach number is based on
the slip velocity, which is subsonic even with a high-speed gas because of the motion of the particles. Regarding the
particle concentration, the two models scale differently with volume fraction and particle Reynolds number. While
model 2 leads to a higher increase of the drag coefficient at low particle Reynolds number, the curves intersect with
model 1 to provide a smaller drag coefficient for high particle Reynolds numbers.

3.2. Added-mass model

If we rewrite the added-mass volume fraction as αa = cmαgαp where 0 < cm < 1 is the added-mass coefficient
with equilibrium value c⋆m, then S a can be modeled using

S a =
1
τa
ρgαgαp(c⋆m − cm). (38)

The time scale for relaxation towards equilibrium τa is assumed to be proportional to the time scale for particle drag
τp. It is then interesting to explore different possibilities for the definition of c⋆m, which dictates the value that cm needs
to relax to at steady state. Added mass is an inviscid contribution and should not depend on the particle Reynolds
number; however, it can depend on the particle Mach number because of its unsteady nature [17]. More specifically,
it is expected to be predominant in the early times when the shock hits the curtain, the time scale for relaxation is then
the acoustic time scale.

Added-mass model 1: Zuber. The first approach is taken from [41] where the value of c⋆m(αp) for a sphere in an
incompressible inviscid flow is derived:

c⋆m(αp) = 0.5 min(1 + 2αp, 2). (39)

Added-mass model 2: Parmar Mach correction. In [26], a numerical study is presented on the unsteady terms where
the flow around a cylinder is compressible. In this case, the inviscid forces should tend to the same as for incompress-
ible flows, but on a longer time scale. In the case of compressible flows, a correction is included to the model of Zuber

9



Table 3: Model constants used in the numerical study.

amin = 0.5 Ca = 1 c f = 0.01 αmax = 0.63 ∆ f = 0.01 p f = 533, 333 kg/m/s2

νg = 1.36 × 10−5 m2/s γg = 1.4 λg = 0.0256 kg m/s3/K Cp,g = 1300 m2/s2/K

to account for the particle-Mach-number dependency:

c⋆m(αp,Mp) = 0.5 min
(
(1 + 2αp)(1 + 1.8M2

p + 7.6M4
p), 2

)
. (40)

Note that this model is only valid forMp < 0.6, which is the case in the supersonic configurations considered in this
paper. For hypersonic cases, the particle Mach number used to compute the above model is limited to 0.6.

3.3. Particle-fluid-particle pressure
A consequence of the kinetic theory model used in this work is the presence of an additional pressure tensor Pp f p,

which depends on the slip velocity. Usually, tr(Pp f p) is very small compared to the gas pressure pg, and therefore has
essentially no effect on the fluid-phase speed of sound. Nonetheless, it is important for the particle phase, particularly
for shock–particle-curtain interactions where the slip velocity is high. It is then expected that the coefficient Cp f p will
have an impact on the curtain dynamics. In bubbly flows, Cp f p = c⋆m ensures hyperbolicity when ρp ≪ ρg. However,
it can take lower values in the case of gas–particle flows and three values of Cp f p = 0, 0.2, 0.4 are used in section 5 to
showcase the effect of the pfp pressure on the curtain dynamics.

3.4. Summary of the model constants
Now that all the closures have been described, a complete summary is given in table 2. These models introduce

a large number of physical constants needed for the simulations, some of which are provided in table 3. Note that
the constants depending on the particle material (ρp, CV,p, ec and dp) are provided later in the numerical setup as they
vary with the configuration. However, because particle–particle collisions are relatively unimportant for thin particle
curtains with αp < 0.2, the value of the restitution coefficient ec plays no role in the curtain dynamics. This would not
be the case for a thick curtain where compression leads to large regions with high αp and strong collisions [3, 15].

4. Numerical setup

4.1. Solver description
The governing equations presented in section 2 are solved using a standard finite-volume method implemented in

MATLAB. The solver was designed to accurately capture sharp particle fronts, preserve contact discontinuities, and
ensure stability in all flow regimes. Following the pioneer work of [15], a combination of AUSM+up scheme [19] for
the particle phase, and HLLC scheme [36] for the fluid phase is employed to solve the hyperbolic part of the system.
The source terms detailed in section 3 are treated analytically with operator splitting [3] to avoid stability issues due
to temporal stiffness. The solver have been assessed on numerous verification test cases (see [3] for details).

4.2. Problem setup
The experimental setup of reference is the SNL multiphase shock tube, which has been used for a decade [37]

to study shock–particle-curtain interactions in the dense regime. It has the advantage to provide the most recent
measurements over a wide range of material density, high-speed flow regimes (from supersonic [6] to hypersonic
[38]) and gas–solid regimes. In the experiment, the shock tube is filled with a high-pressure gas (driver gas) and a gas
at ambient conditions (driven gas). The driver and driven sections are separated by a diaphragm, which is released to
produce the shock. (See Appendix B for details.) An illustration of the experimental setup is provided in fig. 2a.

The shock Mach numberMs, can be controlled by the pressure in the driver section p4. The relation is given in
eq. (B.1) where the subscript 1 corresponds to the driven state at ambient conditions and 4 the driver state at high
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Driver chamber Driven sections Test section

(a) Illustration of the experimental setup (not to scale).

(b) 1-D numerical setup corresponding to the experiment.

Figure 2: Experimental (top) and numerical (bottom) setups corresponding to the SNL multiphase shock tube. x0 is the location of the initial
pressure discontinuity, while x1 and x2 correspond to the upstream and downstream pressure transducers used in the experiments. Finally, us
corresponds to the shock speed and δ0 is the initial curtain width (grey region).

Table 4: Summary of the physical and computational parameters used in the numerical setup.

p1 (kPa) T1 (K) p2, T2 and u2 L x0 (mm) x1 (mm) x2 (mm)
84.1 297 eq. (B.2) 100δ0 −δ0/2 −31 31

pressure. Usually, hydrogen is used for the driver gas because it is easier to control its pressure, while ambient air is
used in the driven section. To reproduce this experiment, the development of the shock is not of interest and requires
a long upstream section to avoid the contact wave reaching the space and time frame of interest. This specific point is
showcased in Appendix B where the contact wave produced by the pressure discontinuity interacts with the reflected
shock wave and reaches the curtain before the end of the simulation. Instead, the zone upstream of the curtain is
initialized with p2, T2 and u2 corresponding to the post-shock quantities obtained by the exact shock relations of
eq. (B.2) at a given Ms. This results in starting the simulation at the very moment when the shock hits the curtain
tshock.

Note that this initialization methodology was also used in previous numerical studies [15, 18]. The driver gas
is not expected to be relevant for the interaction with the curtain, both driver and driven gas are taken as air with
γ1 = γ2 = γ4 = 1.4. Then, the pre-shock quantities are taken as the ambient conditions T1 = 297 K and p1 = 84.1 kPa.
This setup is quasi-1-D even if some 3-D effects due to the mechanical design limitations detailed in [37] are present.
Hence, the computational domain is reduced to a 1-D shock tube. The shock tube is truncated to keep a minimal
version where the driver and driven sections are reduced compared to the experiments. The length of the computational
domain L = 100δ0 is taken such that the shock can develop without boundary effects. The number of cells in the
curtain width Nc is prescribed, which imposes a minimum mesh size ∆xmin = δ0/Nc in the zone of interest. The
curtain resolution Nc = 40 has been chosen such that the results are mesh independent after a mesh convergence study
provided in Appendix C. The numerical setup is illustrated in fig. 2b with the parameters defined in table 4. The
domain is defined as [−L/2, L/2].
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Table 5: Physical properties of the fluid and particle phases for shock–particle-curtain cases used in simulations.

Configuration Material ρp (kg/m3) CV,p (m2/s2/K) ec dp (µm) δ0 (mm) αp Ms

1 316 stainless steel 8170 500 0.75 115 1.7 0.17 1.4
2 316 stainless steel 8170 500 0.75 115 1.7 0.17 1.55
3 316 stainless steel 8170 500 0.75 115 1.7 0.17 1.7
4 Tungsten 17070 134 0.37 115 2.3 0.18 1.4
5 Tungsten 17070 134 0.37 115 2.3 0.18 1.55
6 Tungsten 17070 134 0.37 115 2.3 0.18 1.7
7 Cast stainless steel 7390 500 0.75 328 4.0 0.09 1.4
8 Cast stainless steel 7390 500 0.75 328 4.0 0.09 1.55
9 Cast stainless steel 7390 500 0.75 328 4.0 0.09 1.7
10 Soda lime glass 2520 840 0.97 115 1.6 0.19 1.4
11 Soda lime glass 2420 840 0.97 115 2.0 0.19 2.97
12 Soda lime glass 2420 840 0.97 115 2.0 0.19 4.24

Algorithm 1 Search of curtain edges from the αp field.

U ← f alse ▷ Upstream edge is undetermined
D ← f alse ▷ Downstream edge is undetermined
for i in 1 to Np do ▷ Loop over computational cells

if αp,i ≥ 0.95αM
p andU = f alse then

U ← true ▷ Upstream edge has been found
xups ← xi

end if
if αp,i ≤ 0.95αM

p andU = true andD = f alse then
xdws ← xi

break ▷ Downstream edge has been found. Exit loop
end if

end for

The data used in this work [6, 38] have the advantage of compiling a wide range of material densities, curtain
widths, particle concentrations and gas-flow regimes. Indeed, the most recent configurations have supersonic shocks,
which have not yet been studied extensively. The configuration list is given in table 5 where the particle diameters dp

are taken as the mean between the minimum and maximum diameter provided in the experiment. In Appendix D, a
study is provided to test the sensitivity of the results to this parameter. Usually, it is admitted that the relevant length
scale should be δ0 instead of dp for this particular application [4].

4.3. Post-processing

The determination of curtain edges can be ambiguous because it depends on some ad-hoc considerations. This
has already been discussed in [15] where several αp isocontours are displayed, which correspond to very different
curtain-edge evolution with time. In the two references used here [6, 38], the curtain edges were taken as 95% of
the maximum pixel intensity. Here, the same metric is used where the pixel intensity corresponds to the maximum
volume fraction in the domain at a given time. In practice, the curtain edges, i.e., the upstream edge xups and the
downstream edge xdws are determined for an instantaneous αp field by following the steps of algorithm 1. Then, the
curtain width is simply computed as δ = xdws − xups. Apart from that, the gas pressures at x1 and x2 are also saved in
time to compare with the pressure measurements obtained in the experiments.

4.4. Reduction of computational time

The numerical setup needs to allow for a large number of simulations in a reasonable computational time. In order
to optimize the numerical setup, several adjustments were made on the domain size, the mesh refinement and the
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Incident shock

Transmitted shock

Reflected shock

Zone of interest

Figure 3: Schematic x–t diagram of the shock interacting with the curtain. When the diaphragm is released, an incident shock and a contact surface
propagate towards the curtain. A part of the incident shock is reflected by the curtain and the remaining part is transmitted across the curtain. The
mesh is also represented to illustrate the refinement strategy in the zone of interest.

numerical method. Even with the optimal domain size, the zone of interest is restrained to a small part of the shock
tube where the curtain is moving during the measurement time frame. The choice here is to use a tree-based mesh
coarsening outside of the curtain zone as depicted in fig. 3.

In an intermediate zone where the incident shock develops, the mesh size is 2∆xmin. Finally, the coarsening is
even more important in the zone before x0 with a mesh size of 4∆xmin. This treatment leads to a significant speedup
of simulations without loss of accuracy. Finally, the high-order scheme used in the original version of the code [3] is
replaced by a simple first-order scheme in space and time to decrease computational time without significant loss of
accuracy.

5. Results

This section provides more details on the effect of modeling choices for the inter-phase exchange terms. While in
[18], the parametric study was focused on the physical parameters such as shock Mach number, particle diameter and
curtain thickness, the studies in this work explore the sensitivity of the results regarding the models for drag, added
mass and pfp pressure. For convenience, the results are made dimensionless, using the characteristic length of the
problem δ0 and a scaling time t∗, which was proposed in [18]:

t∗ = α−0.25
p
δ0
u2

√
ρ2

ρp
(41)

with ρ2 and u2 the density and velocity in the post-shock region obtained from the relations in eq. (B.2).

5.1. Physical description

This first study aims to provide a detailed description of the physics of shock–particle-curtain interactions by
focusing on configuration 1 of table 5. This case is also detailed in the results section of [6] where a temporal pressure
evolution is given at the two locations x1 and x2 represented in fig. 2b. The x–t diagram of density is given in fig. 4a,
which shows the expected behavior illustrated in fig. 3. Indeed, a part of the incident shock is reflected and the
transmitted shock is weakened. This behavior can also been described by the two pressure probes located at x1 and
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(a) x–t diagram of density for configuration 1. (b) Temporal evolution of pressure for configuration 1.

Figure 4: In (a), the x–t diagram of density is represented with the isocontour of αp taken as 5% of the maximum αp value. In (b), the two curves
correspond to the locations of the two pressure probes.

x2, which measure the intensity of the shock upstream and downstream of the curtain, respectively. Also, a contact
discontinuity is transmitted across the curtain, which was also observed in the literature [18].

In fig. 4b, it can be seen that the post-shock pressure captured by the sensor of the experiment does not equal the
exact pressure p2 corresponding toMs = 1.4. This could be explained by 3-D effects or experimental inaccuracy in the
definition of the shock Mach numberMs. In [6], a scaling law was proposed based on the measured pressures at x1 and
x2, instead of the post-shock velocity u2. This scaling law was able to better collapse the different curves, especially
for configurations with relatively lowMs. This concurs with the idea that theMs provided in the experimental setup
might be underestimated or that 3-D geometry effects might produce a faster effective shock in the shock tube. By
computing an effective Mach numberMe f f

s ≃ 1.45 based on the post-shock pressure experimentally measured at x1,
the same case has been simulated and corresponds to the curve Me f f

s in fig. 4b. The correct pressure at x1 is then
retrieved, even if the reflected shock speed seems to be slower than what was measured in the experiments.

Now that the first configuration has been presented, several modeling choices are explored for the full parameter
space and the curtain spreading rate is compared to the experimental data. Note that in the following study, some
results differ from the experimental data for the reasons explained above and due to the particle size distribution
discussed in Appendix D. However, this does not prevent us from studying the effect of modeling choices on the
curtain dynamics. In the following, we use the value ofMs reported in the experiments instead ofMe f f

s , although the
latter would better match the experimental results for the spreading rate.

5.2. Drag-model study

As detailed in section 3.1, drag models can have different levels of complexity to account for particle clustering
and high-speed effects. Nonetheless, for shock–particle interactions the drag model represents the principal force
accelerating the particles. Hence, our first study focuses on the drag models for high-speed flows and dense granular
phases. In this study, the entire batch of configurations given in table 5 are simulated to analyze the impact of the drag
model over a wide parameter space. We should note that the particle Mach numberMp, which depends on the slip
velocity, will be smaller than the shock Mach numberMs. Thus, for example,Ms must be sufficiently large before
Mp has a significant effect on the drag coefficient.

For the four materials in figs. 5 to 8, we observe that the temporal evolution of the curtain width is fairly well
reproduced regarding the observations of section 5.1 and Appendix D. The difference between the drag model with
and without Mp dependency is most visible for high-speed flows, high concentration and small material density.
Indeed, in fig. 6, the drag model has only minor impact on the curtain spreading rate, while in fig. 7 drag model 2
allows to approach better the experimental data. Also, it is interesting to observe that drag model 1 predicts higher
spreading rates for low-speed flows, while the opposite happens for larger Mach numbers in figs. 5, 6 and 8. This
observation shows the complexity of compressibility effects on the drag experienced by particles. Overall, the use of
a DNS-based model accounting for theMp dependency allows to better predict the physical behavior.
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Figure 5: Effect of drag model on width evolution in time of a curtain composed of 316 stainless steel particles forMs = 1.4 (a),Ms = 1.55 (b)
andMs = 1.7 (c). δ0 is the initial curtain width and t∗ is the characteristic time given by eq. (41).

Figure 6: Effect of drag model on width evolution in time of a curtain composed of tungsten particles for Ms = 1.4 (a), Ms = 1.55 (b) and
Ms = 1.7 (c). δ0 is the initial curtain width and t∗ is the characteristic time given by eq. (41).
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Figure 7: Effect of drag model on width evolution in time of a curtain composed of cast stainless steel particles forMs = 1.4 (a),Ms = 1.55 (b)
andMs = 1.7 (c). δ0 is the initial curtain width and t∗ is the characteristic time given by eq. (41).

Figure 8: Effect of drag model on width evolution in time of a curtain composed of soda lime glass particles forMs = 1.4 (a),Ms = 2.97 (b) and
Ms = 4.24 (c). δ0 is the initial curtain width and t∗ is the characteristic time given by eq. (41).
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Figure 9: Effect of added-mass model on width evolution in time for configurations 1, 9 and 12. δ0 is the initial curtain width and t∗ is the
characteristic time given by eq. (41).

5.3. Added-mass-model study

The effect of the added-mass model has been explored in the context of Lagrangian particles in [18], and is studied
here where the inclusion of the added mass in the two-fluid model is novel. The two models presented in section 3.2
are then compared on three configurations in fig. 9. As it can be observed, the added-mass model does not impact the
curtain dynamics even at early stages. The same conclusion can be drawn for the other configurations not displayed
here. This result can be explained by the large density ratio between the particles and the gas. Indeed, the unsteady-
force effects on the particle velocity (curtain spreading rate) have been demonstrated to be inversely proportional to
the particle-to-fluid density ratio in [17]. The modeling of this term is more crucial for sedimentation problems or
bubbly flows where this density ratio is much lower [3].

5.4. pfp-pressure-model study

While Pp f p has an important role in the hyperbolicity of the two-fluid model, it can also impact the particle
dynamics in the presence of important volume fraction gradients or high slip velocity. When the shock hits the
curtain, the upstream edge experiences a huge rise in slip velocity in a zone of rapid variation of volume fraction. It is
then expected that the modeling of Cp f p modifies the evolution in time of the upstream curtain edge specifically. After
the shock has passed through the particle curtain, the slip velocity can still be quite large, causing the particles to be
pushed apart due to the pfp pressure. In this study, the trajectories of the edges are plotted in figs. 10 to 13 instead of
the curtain width to better showcase the separate evolution of the upstream and downstream curtain positions.

As expected, the pfp pressure has the effect of spreading the curtain in all the configurations. When the magnitude
of Cp f p is increased, the spreading rate is even more important. It is also interesting to notice that the upstream edge
is more affected than the downstream edge. More specifically, the curtain goes backward in the intermediate stages
of the motion when Cp f p = 0.4. This effect is more visible for the stainless steel particles in fig. 12, which can be
explained by the larger particle size leading to a larger slip velocity.

6. Conclusions

This work has been dedicated to the modeling of high-speed flow interacting with thin particle curtains. The EE
two-fluid model includes four-way coupling (Archimedes’ forces, collisions and friction), added mass, inter-phase
heat exchange and pseudo-turbulence of the fluid induced by the particle motion. The well-established experimental
setup for shock–particle interactions developed at SNL is used as a reference to explore the modeling of drag, added
mass and pfp pressure. A cross-sample of two experimental campaigns from [6] and [38] is used to explore a large
range of shock Mach numbers, particle concentrations and material densities.
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Figure 10: Effect of pfp pressure on trajectories of upstream and downstream edges of a curtain composed of 316 stainless steel particles for
Ms = 1.4 (a),Ms = 1.55 (b) andMs = 1.7 (c). δ0 is the initial curtain width and t∗ is the characteristic time given by eq. (41)).

Figure 11: Effect of pfp pressure on trajectories of upstream and downstream edges of a curtain composed of tungsten particles forMs = 1.4 (a),
Ms = 1.55 (b) andMs = 1.7 (c). δ0 is the initial curtain width and t∗ is the characteristic time given by eq. (41). Each colored curve represent a
drag model.
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Figure 12: Effect of pfp pressure on trajectories of upstream and downstream edges of a curtain composed of cast stainless steel particles for
Ms = 1.4 (a),Ms = 1.55 (b) andMs = 1.7 (c). δ0 is the initial curtain width and t∗ is the characteristic time given by eq. (41).

Figure 13: Effect of pfp pressure on trajectories of upstream and downstream edges of a curtain composed of soda lime glass particles forMs = 1.4
(a),Ms = 2.97 (b) andMs = 4.24 (c). δ0 is the initial curtain width and t∗ is the characteristic time given by eq. (41).
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Overall, the curtain spreading rate is reproduced with reasonable accuracy by the two-fluid model. Some discrep-
ancies are found for the configurations with the smallest Mach numbers, even if these differences could be due to 3-D
effects or the particle size distribution. Indeed, it has been shown from the most detailed case that the gas pressure
was over-estimated at the upstream probe (or the shock Mach number was under-estimated). This finding does not in-
validate the subsequent study about the models for inter-phase exchanges. The impact of several modeling parameters
such as the drag coefficient, the added-mass coefficient, and the magnitude of the pfp pressure is also investigated.

For thin particle curtains, it was found that the complete drag model accounting for Rep, Mp and αp is more
accurate compared to previous drag models depending on Rep and αp only. While the complete drag model leads to an
increased spreading rate for most of the configurations, this is not the case for the low-speed configurations. Overall,
the difference between the drag models is more predominant for high-speed flows, high particle concentrations and
small material density. On the other hand, the added-mass model has no impact on the results. This is in agreement
with the analysis in [17] stating that this force is inversely proportional to the particle-to-fluid density ratio. In the case
of gas–particle systems, this ratio is usually very large and added mass is not expected to greatly affect the particle
acceleration.

In contrast, the magnitude of the pfp pressure has a real impact on the spreading rate of the curtain. Indeed, for
moderately dense curtains with large slip velocity, the pfp pressure can be much larger than the collisional pressure,
especially for ec ≪ 1. In any case, all contributions to the particle pressure lead to increased spreading as they work
to push particles towards regions of lower particle-phase pressure. This shows an interesting feature of the two-fluid
model: the pfp pressure from kinetic theory not only cures the historical issue of hyperbolicity, but also captures a
physical effect with visible impact on the dynamics of the granular phase in high-speed flows.

The two-fluid model used in this work is able to reproduce the curtain dynamics fairly accurately in a small amount
of computational time (about one hour of CPU time for each 1-D configuration). It is thus a useful tool to expend the
parametric space to higher-speed flows and denser curtains, which are more difficult to capture experimentally. Future
works could focus on exploring configurations that have not yet been measured experimentally and on improving
the scaling models. Also, 3-D simulations could be envisioned to account for hidden contributions, which could
explain the discrepancies between the 1-D simulations and the experiments. The particle size distribution in the
experiments is not completely monodisperse and it would be interesting to employ the kinetic-based framework to
develop a polydisperse model to include such size-dependent physics. Finally, the two-fluid model could be applied
to other dispersed two-phase systems where buoyancy terms and added mass are expected to be predominant such as
sedimentation or bubbly flows [3, 11].
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Appendix A. Coefficients for drag models

In eq. (37), several coefficients are used to compute the drag models. In [20], the drag coefficient for an isolated
sphere is given by

CD(Rep, αp,Mp) = CD(Rep)l1 +
0.42l2

1 + 42, 500Re−1.16l2
p + l3Re−0.5

p

(A.1)

with

l1 =

0.0239M3
p + 0.212M2

p − 0.074M1
p, ifMp < 1

0.93 + 1
3.5+M5

p
, otherwise

l2 =

1.65 + 0.65 tanh(4Mp − 3.4), ifMp < 1.5
2.18 − 0.13 tanh(0.9Mp − 2.7), otherwise

l3 =

1.66M3
p + 3.29M2

p − 10.9Mp + 20, ifMp < 0.8
5 + 40M−3

p , otherwise

(A.2)

The coefficients defined in [24] are

b1 = 5.81αpα
−2
g + 0.48α1/3

p α
−3
g

b2 = α
2
gα

3
pRep

(
0.95 + 0.61α−2

g α
3
p

)
b3 = min

(√
20Mp, 1

) (
5.65αp − 22α2

p + 23.4α3
p

) [
1 + tanh

(
Mp − (0.65 − 0.24αp)

0.35αp

)] (A.3)

Appendix B. Shock relations and impact of initialization

This appendix aims to showcase the impact of initialization on the shock–curtain interaction. The first approach
is to start the simulation with the pressure discontinuity of the experiment and let the shock develop until it reaches
the curtain. Then, the pressure p4 is obtained with the relation:

p4

p1
=

1 + 2γ1
γ1+1 (M2

s − 1)(
1 − γ4−1

γ1+1
c1
c4

M2
s−1
Ms

) 2γ4
γ4−1

(B.1)

where c is the speed of sound while γ is the heat capacity ratio of the gas. Note that the relation considers different γ
for the driver and driven gases because they are often different in experiments. In the simulation, both gases are taken
as air with γ4 = γ1 = 1.4.

The other option is to directly initiate the simulation with the post-shock conditions. In this case, the shock does
not need to develop and can be located just upstream of the curtain. The shock relations for a shock propagating in a
quiescent gas are

p2

p1
=

2γ1M
2
s − γ1 + 1
γ1 + 1

,

T2

T1
=

(2γ1M
2
s − γ1 + 1)(M2

s (γ1 − 1) + 2)
M2

s(γ1 + 1)2 ,

M2
2′ =

2 + (γ1 − 1)M2
s

2γ1M
2
s − γ1 + 1

,

u2 = c1Ms − c2M2′ .

(B.2)

In this appendix, three ways of initializing the simulations are explored:

1. Use the pressure ratio given by eq. (B.1) with the discontinuity located at x0 = −3L/4.
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Figure B.14: Diagram x–t of density and volume fraction isocontour for shock-tube relations (a) and exact shock relations (b) used as initialization
for configuration 1. A contact wave is produced for initialization 1 while this is not the case in initialization 2.

2. Use the exact shock relations from eq. (B.2) with the discontinuity located at x0 = −3L/4.
3. Use the exact shock relations from eq. (B.2) with the discontinuity located at x0 = −5δ0/2.

First, the x–t diagram of density is presented in fig. B.14 for initializations 1 and 2 applied to configuration 1. When
the shock-tube relations are used, a contact wave is also created at the initialization and interacts with the wave pattern
before the end of the time frame of interest. This should not occur in the experimental setup as the shock tube is long
enough to isolate the shock wave from the contact wave during the measurement time frame. This is why here, the
exact shock relations are used instead to avoid this issue. If one would like to use the shock-tube relations, it would
require a long numerical domain to reproduce the experimental setup, which is too expensive and unnecessary.

Then, the temporal evolution of the curtain width and edge positions are given in fig. B.15 for configuration 1.
The initialization strategy impacts the spreading rate of the curtain. Even though initialization 1 is closer to the
experimental results, it is not retained here because of the contact wave. Also the position of the shock from the
exact shock relations does not modify the spreading rate. Indeed, the curves for initializations 2 and 3 superimpose in
fig. B.15. From this observation, initialization 3 is preferred over initialization 2 as the physical time required for the
shock to reach the curtain can be saved.

Appendix C. Mesh sensitivity

One of the most important parameters to assess the numerical setup is the mesh size. The mesh is built such that
the number of cells in the curtain Nc is prescribed. Here, a mesh-independence study is performed with Nc ranging
from 10 to 40. The curtain width, upstream edge and downstream edge evolution with time are plotted in fig. C.16.
The curves for the highest refinement are close enough to consider that the results are independent of the mesh size
with Nc = 40.

Appendix D. Particle diameter distribution

The particle diameter is expected to have some impact on the curtain width. Larger particles are expected to
be slower as it has been shown in [18], and it is important to show to which extent this can impact the results. In
reality, the diameter of the particles is in a range which can be quite large (above 10%), and it could be expected that
a polydisperse particle curtain will show a larger width than monodisperse particles. This effect is detailed here by
considering three diameters for configuration 2 of table 5: the minimum size dp = 106 µm, maximum size dp = 115
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Figure B.15: Effect of initialization strategy on width (a), upstream edge (b) and downstream edge (c) evolution in time of the curtain for configu-
ration 1. δ0 is the initial curtain width and t∗ is the characteristic time given by eq. (41). The blue and green curves are superimposed.

Figure C.16: Effect of mesh resolution on width (a), upstream edge (b) and downstream edge (c) evolution in time of the curtain. δ0 is the initial
curtain width and t∗ is the characteristic time given by eq. (41).
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Figure D.17: Effect of particle diameter distribution on width (a), upstream edge (b) and downstream edge (c) evolution in time of the curtain. δ0
is the initial curtain width and t∗ is the characteristic time given by eq. (41). The “min-max” curve corresponds to the width computed from the
upstream location of dp,max and the downstream location of dp,min.

µm and mean size dp = 125 µm. The curtain width, upstream edge and downstream edge evolution with time are
plotted in fig. D.17 for the three diameters. As expected, large particles are stuck at the upstream edge and smaller
particles are faster at the downstream edge. It is then expected that the resulting measured width in the experiment is
larger than what can be simulated with a monodisperse model. To illustrate this, an additional curtain rate curve has
been plotted by computing the width from the upstream location of dp,max and the downstream location of dp,min. This
last curve shows a larger spreading rate but still does not fit with the experimental data.
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