PathWays: entity-focused exploration of
heterogeneous data graphs

Nelly Barret![0000-0002=3469—-4149] * Aptoine Gauquier?, Jia-Jean Law®, and
Toana Manolesci ! [0000—0002—0425—2462]

! Inria and Institut Polytechnique de Paris, France
nelly.barret@inria.fr, ioana.manolescu@inria.fr
2 Institut Mines Télécom, France antoine.gauquier@etu.imt-nord-europe.fr
3 Ecole Polytechnique, France jia-jean.law@polytechnique.edu

Abstract. Graphs, and notably RDF graphs, are a prominent way of
sharing data. As data usage democratizes, users need help figuring out
the useful content of a graph dataset. In particular, journalists with
whom we collaborate [3] are interested in identifying, in a graph, the
connections between entities, e.g., people, organizations, emails, etc.

We propose PathWays, an interactive tool for exploring data graphs
through their data paths connecting Named Entities (NFEs, in short); each
data path leads to a tabular-looking set of results. NEs are extracted
from the data through dedicated Information Extraction modules. Path-
Ways leverages the ConnectionLens platform [4J6] and follow-up work
on dataset abstraction [5]. Its novelty lies in its interactive and efficient
approach to enumerate, compute, and analyze NE paths.

Keywords: Data graphs - Graph exploration - Information Extraction

1 DMotivation and Problem Statement

Data graphs, including RDF knowledge graphs, as well as Property Graphs
(PGs), are often used to represent and share data. More generally, any struc-
tured or semistructured dataset can be viewed as a graph, having: (¢) an internal
node for each structure element of the original dataset, e.g., relational tuple,
XML element or attribute, JSON map or array, URI in an RDF graph; (ii) a
leaf node for each value in the dataset, e.g., attribute value in a relational tuple,
text node or attribute value in XML, atomic (leaf) value in a JSON document,
or literal in RDF. The connections between the data items in the original dataset
lead to edges in the graph, e.g. parent-child relationship between XML or JSON
nodes, edges connecting each relational tuple node with their attributes, etc. In
a relational database, when primary key-foreign key pairs are present, they lead
to further edges allowing one tuple, e.g., an Employee, to “point to” the Com-
pany tuple representing their employer. This graph view of a dataset has been
introduced to support unstructured (keyword-based) search on (semi)structured
data, since [2I8] and through many follow-up works [12].

2 N. Barret et al.

“THAICOM 2 is a NASA

1 : 10, 0 14 t1 17,spacecraft launched from [cs lca
‘v ‘P the Kourou Space Center ﬁ lagency#[" [agency Kjcq 6 =l G)
P " =) lc2 pacecraft [~ |pilot Pilot name iname#
, president T
P 5, “NASA \ descr# descr_|| A2
3, name B Guiana ICU .
11, narmstrong 16 NASA" c12 aunch [~ pilot
4, R. Nixon! g 19, (kolirotl president
5, RNixon @ S@-—rr->@13, N, Armstrong Center name [”|name#t
9, mcollins 12, “N. Armstrong”

Fig. 1. Sample data graph (left), and corresponding collection graph (right) on which
paths linking entities are explored (highlighted areas).

1.1 Entity-rich graphs

Building on this idea of integrating heterogeneous data into graphs, the Connec-
tionLens system [4]6] has been developed to facilitate, for users lacking IT skills,
such as data journalists, the exploration of datasets of various models, including
relational /CSV, XML, JSON, RDF, and PGs. ConnectionLens turns any (set
of) datasets into a single graph as outlined above. For instance, the data graph at
left in Fig. |1| features RDF triples about NASA spacecrafts (labeled edges), and
an XML document describing presidents who attended spacecraft launches (tree
with labeled node and unlabeled edges). ConnectionLens also includes Informa-
tion Extraction modules, which extract, from any leaf node in the data graph,
Named Entities (People, Locations and Organizations) [4], as well as other types
of entities that journalists find interesting: temporal moments (date, time); Web
site URIs; email addresses; and hashtags. We designate any of these pieces of
information as entities, and we model them as extra nodes, e.g., in the data
graph in Fig. [I} organizations appear on a pink background, people on yellow
and locations on green, respectively. Each entity is extracted from a leaf text
node, to which it is connected by a dashed edge. When an entity is extracted
from more than one text node, the edges connecting it to those nodes increase
the connectivity of the graph, e.g., “NASA” extracted from the nodes with IDs
15 and 17.

1.2 Entity paths

Journalists are interested in the paths connecting entities in a given dataset. For
instance, in Fig. |1} they may want to know “how people are connected to places”.
Similarly, an article describes French real estate bought by family members of
dictators abroad; here, journalists ask “what are the paths between people and
cities (where real estate is)?”. Importantly, we should consider paths irrespective

of the direction of the edges in the data graph. This is because, depending on

. boughtProperty locatedIn
how the data is modeled, we may encounter x Y ¢, or

hasOwner locatedIn

c; both paths are interesting.

Goal: efficient exploration of entity connections Journalist questions such
as those above ask for data paths ending in entity pairs of certain kinds. When
shown the set of corresponding labeled paths, users may pick one to further

https://www.nouvelobs.com/justice/20220707.OBS60621/immobilier-de-luxe-comment-la-france-attire-l-argent-douteux-du-monde-entier.html

Entity-focused exploration of heterogeneous data graphs 3

ezplore: how many pairs of entities are connected by each path? which entities
are most frequent, e.g., in which cities are most properties located? how do the
cities spread across countries, etc. Such analysis requires materializing the entity
pairs connected by the paths, which may be very costly, if (¢) the graph is large,
and/or (i7) there are many paths (the latter is almost always true, especially
since our paths may traverse edges in both directions. To mitigate this problem,
PathWays includes a materialized view recommender and view-based rewriting
module (Sec. , which significantly improve performance. Thus, PathWays enu-
merates paths between entities of user-selected types, (i) independently of the
edge direction, (i7) asking for user input to focus on the paths most useful to
them, and (4i4) efficiently. To our knowledge, PathWays is the first system built
for this flavor of graph exploration (see also Sec. [4).

2 Demonstration scenarios

PathWays is developed in Java 11, on top of [4J5] which build the data and,
respectively, the collection graph (see below), and store them in PostgreSQL.
User interaction with PathWays starts by making some choices: “Which types
of entities to connect?” (in Fig. |1} organizations and people); “How many paths
to enumerate?” (say, 20) and “What is the mazimum allowed length for a path?”
(say, 10). In Fig. [1} four paths connect organizations and people; two are shown
in yellow and red highlight. Computing the paths on large data graph may be
costly. Instead, PathWays leverages a collection graph [B], a (much smaller) sum-
mary of the data graph, grouping similar data nodes in a single collection node,
e.g., the spacecraft nodes 10 and 14 in the data graph are grouped in collec-
tion C1. For each collection of nodes having text children, e.g., C8 labeled name,
the collection of these text children is denoted, e.g., name#; entities (people,
locations, etc.) are extracted from such texts. Any path in the data graph also
exists in the collection graph, thus PathWays enumerates paths on the smaller
collection graph. Each path is then translated in a query over the data graph,
to obtain data paths between actual entities. PathWays displays sample en-
tity pairs connected by each path, e.g., Nixon is connected to NASA because
he attended a launch involving N. Armstrong. Users can then apply more ag-
gregation/analysis on the entity pairs, look for frequent entities, etc. We will
also show how PathWays optimizes path evaluation (see below). We will use
real-life datasets, such as PubMed, the NASA dataset, RDF benchmarks, and
GeoNames, to investigate connections between people and organizations, e.g.,
companies funding PubMed article authors, geographic repartition of papers
(PubMed) and launches (NASA), etc. A preview of our demonstration can be
found at https://team.inria.fr/cedar/projects/abstra/pathways/.

3 View materialization and view-based rewriting

When the data graph is large, paths are long, and/or many, evaluating path
queries on the graph may be inefficient, despite the graph being extensively in-

https://pubmed.ncbi.nlm.nih.gov/download/
https://team.inria.fr/cedar/projects/abstra/pathways/

4 N. Barret et al.

dexed. However, as illustrated at right in Fig.[l| paths may overlap, e.g., the edges
connecting C1, C6 and C7 are common between the two highlighted paths. Lever-
aging this observation, PathWays identifies the subpaths common to at least two
path queries. Then, with the help of a cost model, based on PostgreSQL’s es-
timations, it materializes the most profitable shared subpath s, where profit is:
the decrease in the total path evaluation cost if the subpath is materialized and
its results used to evaluate the paths enclosing it, minus the cost to materialize
the subpath. PathWays then rewrites every path query pi,...,p}"' containing sy,
using it as a materialized view. Then, we remove p},...,p}" from the path set,
and, in a greedy fashion, again look for the most profitable common subpath
so for the remaining paths, etc. We stop when no subpath is profitable (mate-
rializing it costs more than its cost savings). The complexity of the above view
selection algorithm is O(N2L + N3), for N paths of length at most L.

Sample performance saving On the NASA RDF dataset| (100.000 triples), we
enumerated 100 paths, of length 2 to 8, between locations and people. Evaluating
them all took 419 seconds, including 12 that timed-out at 30 seconds. PathWays
found 89 common subpaths; 16 were selected by our algorithm, which rewrote
98 path queries using them as materialized views. Materializing the 16 paths
took 0.1 second, and the total path query evaluation shrank to 6.93 seconds, a
speedup of 60x.

4 Related work and conclusion

Many graph exploration methods exist, see, e.g., [II]. Modern graph query lan-
guages such as GPML [7] (no implementation so far) or the JEDI [I] SPARQL
extension allow asking for paths between nodes matching some query variables.
Other systems interact with users to incrementally build SPARQL queries inter-
esting for them, e.g., [10] for queries with aggregation. In keyword-based search
(KBS, in short) [2/4I6U8IT2], one asks, e.g., for connections between “Sivel Aliev”
(related to the Azeirbadjan president) and “Nice” (where she owns villas). KBS
is handy when users know keywords (entities) to search for. Complementing
the above, PathWays is focused on identifying and computing all paths between
certain extracted entities, to give a first global look at the dataset content, for
graphs obtained from multiple data models. For performance, PathWays lever-
ages a compact graph summary and efficiently materializes views; our view ma-
terialization problem, focusing only on paths, is a restriction of that considered,
e.g., in [9], enabling a low complexity while being very effective. We are currently
adapting our algorithm to other graph data management systems.

Acknowledgments This work has been funded by the DIM RFSI PHD 2020-01
project and the AI Chair SourcesSay (ANR-20-CHIA-0015-01) chair.

https://old.datahub.io/dataset/data-incubator-nasa

Entity-focused exploration of heterogeneous data graphs 5

References

10.

11.

12.

. Aebeloe, C., Setty, V., Montoya, G., Hose, K.: Top-K Diversification for Path

Queries in Knowledge Graphs. In: ISWC Workshops (2018)

Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: A system for keyword-based
search over relational databases. In: ICDE (2002)

Anadiotis, A., Balalau, O., Bouganim, T., et al.: Empowering investigative jour-
nalism with graph-based heterogeneous data management. IEEE DEBull. (2021)
Anadiotis, A., Balalau, O., Conceicao, C., et al.: Graph integration of structured,
semistructured and unstructured data for data journalism. Inf. Systems 104 (2022)
Barret, N., Manolescu, 1., Upadhyay, P.: Abstra: toward generic abstractions for
data of any model (demonstration). In: CIKM (2022)

Chanial, C., Dziri, R., Galhardas, H., et al.: ConnectionLens: Finding connections
across heterogeneous data sources (demonstration). PVLDB 11(12) (2018)
Deutsch, A., Francis, N., Green, A., Hare, K., Li, B., Libkin, L., et al.: Graph
pattern matching in GQL and SQL/PGQ. In: SIGMOD (2022)

Hristidis, V., Papakonstantinou, Y., Balmin, A.: Keyword proximity search on
XML graphs. In: ICDE (2003)

Le, W., Kementsietsidis, A., Duan, S., et al.: Scalable multi-query optimization for
SPARQL. In: ICDE (2012)

Lissandrini, M., Hose, K., Pedersen, T.B.: Example-driven exploratory analytics
over knowledge graphs. In: EDBT (2023)

Lissandrini, M., Mottin, D., Hose, K., Pedersen, T.B.: Knowledge graph exploration
systems: are we lost? In: CIDR. www.cidrdb.org (2022)

Yang, J., Yao, W., Zhang, W.: Keyword search on large graphs: A survey. Data
Sci. Eng. 6(2) (2021)

	PathWays: entity-focused exploration of heterogeneous data graphs

