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A new kinetic macromodel based on moments of the probability distribution function
is proposed to investigate the flow of rodlike Brownian particle suspensions. The rods
concentration-orientation coupling is taken into account. A numerical study is presented
for rods through the planar channel, with and without introducing a circular obstacle which
develops a nonhomogeneous flow. To verify this macromodel, the results are compared
with the solution of the associated Fokker-Planck equation taking into consideration an
anisotropic translational diffusion tensor. This tensor depends on the local orientation of the
rod. Low (smaller than 103) Brownian translational Peclet number causes rod migrations
across the flow streamlines.
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I. INTRODUCTION

Mechanical, thermal, or electrical properties are influenced significantly by the concentration and
orientation distributions of nanoparticles in composite materials. Thus, predicting and controlling
the concentration and orientation state of particle suspensions is critical for designing a successful
manufacturing process of advanced materials [1–3].

Researchers have theoretically studied the evolution of the orientation of anisotropic particles
homogeneously suspended during flow. Jeffery [4] derived the equation of motion of one isolated,
inertialess, and axisymmetric particle in a Newtonian fluid with a uniform velocity gradient. When
a dilute fiber suspension is exposed to a constant shear flow, fiber tends to align in the flow
direction [5,6]. Folgar and Tucker [7] modified Jeffery’s equation by introducing a scalar diffusion
term to capture phenomenologically the interactions between non-Brownian particles in nondilute
regimes. According to additional research, various perturbations inherent in flowing channels can
have an impact on the reproducibility and endurance of rotations. Small deviations from a perfect
axisymmetric rod shape, for example, can result in doubly periodic and chaotic orbits, which have
been investigated both theoretically and experimentally [8–10]. Jeffery’s orbits are perturbed by
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the proximity of channel walls [11–15], inertia [10], and the viscoelasticity of the shearing fluid
[16,17]. The Fokker-Planck equation (FP) for Brownian particles is derived from the work of
Kirkwood and Auer [18] by Doi and Edwards [19]. Rheo-optical techniques have been used to
measure rod distributions [20,21], and these results were compared to theoretical expectations
and Brownian dynamics simulations [22–25]. Brownian fluctuations and their effect on orbits of
individual Brownian rods in a microchannel flow have been studied theoretically [26]. In both
the spatial and configurational spaces, some numerical strategies have been developed to solve
the Fokker-Planck equation directly [27–33]. Park and Park [34] and Férec et al. [35] provided
a thorough reviews of the fundamentals and numerical simulations for predicting fiber orientation
during the injection molding of polymer composites.

When dispersed in a Newtonian liquid, isolated particles may exhibit cross-stream migration.
Schiek and Shaqfeh [36] considered fiber migration across streamlines in a suspension under a plane
Poiseuille flow in the weak flow limit, such that Brownian motion strongly affects the fiber position
and orientation. At steady state, the center-of-mass distribution of fibers shows a net migration of
fibers away from the center of the channel and toward the channel walls. Nitsche and Hinch [37]
addressed the cross-stream migration of rigid rods undergoing diffusion and advection in a parabolic
flow between flat plates. Results are obtained from using a finite-difference scheme for the solution
of the Fokker-Planck equation. The results indicate that rods migrate toward the walls and toward
the higher shear zone. Park et al. [38] used a kinetic theory to study the cross-stream migration of a
rigid polymer undergoing rectilinear flow in the vicinity of a wall. In a simple shear flow, polymers
migrate away from the wall, while in a pressure-driven flow, the center-of-mass distribution has an
off-center maximum. This is because of the competition between the hydrodynamic interactions
with the wall and the anisotropic diffusivity induced by the inhomogeneous flow field. Sharaf et al.
[39] established that Brownian motion plays a significant role in the deposition of nanoparticles on
the channel walls at low Reynolds number.

Solving a multidimensional Fokker-Planck equation has high computational costs. Developing an
equivalent kinetic macromodel is a strategy to render the numerical solution of detailed physics over-
all more accessible. There is a large amount of published literature showing the use of macromodels
for predicting particle orientation or concentration. Advani and Tucker [40] used a set of even-order
tensors related to the coefficients of a Fourier series expansion of the probability distribution
function to describe fiber orientation in suspensions containing short rigid fibers. Phillips et al. [41]
proposed a constitutive equation for computing particle concentration and velocity fields in concen-
trated monomodal, spherical suspensions. Shapley et al. [42] compared the predictions of several
models of particle migration to laser Doppler velocimetry measurements in various concentrated
suspensions of noncolloidal spheres in a Couette flow. The models predict the observed macroscopic
shear rate and concentration profiles well at moderate bulk particle concentration but diverge from
one another at high concentrations. These models are either used to predict the orientation or the
concentration, without studying the correlation between both. Saintillan and Shelley [43] derived a
basic kinetic model for a suspension of self-propelled rodlike particles and discussed its stability and
nonlinear dynamics. Weady et al. [44] restated and coarse grained a continuum kinetic model for
an active suspension. These two models approximate the translational diffusion to a constant, while
in fact, this diffusion is anisotropic and depends on the orientation of the particle. A macromodel
that considers the coupling of concentration and orientation of Brownian rods is not yet available
in the literature. This mutual coupling is especially interesting in the context of active nematic
suspensions. Typical models of active nematic suspensions assume isotropic diffusion and therefore
uniform concentration; however many physical systems show significant fluctuations [45].

This work aims to build a new macromodel to solve the motion of suspended rodlike particles in
flows in a nonhomogeneous system taking into consideration the coupling of particle concentration
and orientation. To verify this model, a new numerical strategy is developed to solve the config-
urational and spatial Fokker-Planck equation of suspension of Brownian particles in a Newtonian
viscous fluid. Particle suspensions are studied in a planar channel and with the presence of a circular
obstacle. The structure of this article is as follows. Section II focuses on the theoretical modeling.
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FIG. 1. Representation of A2 in an elementary surface for different concentrations and orientations. (a)
Two-dimensional random rods with concentration c1. (b) Perfectly aligned rods in the x direction with
concentration c1. (c) Two-dimensional random rods with concentration c2. (d) Perfectly aligned rods in the
x direction with concentration c2.

Then Sec. III describes the flow problem used to solve the rodlike particle suspensions. Finally,
before the conclusion, Sec. IV shows the numerical results in the two geometries, planar channel
with and without a circular obstacle, and the verification of the macromodel.

II. THEORETICAL MODEL

A. Hypotheses

Let us consider a suspension of Brownian rodlike particles of length L and width D. The particles
are monodisperse, neutrally buoyant, and rigid. The suspension is considered in the dilute regime of
concentration, where c � (D/L)2. Each particle is described with a position vector of the particle’s
centroid rc and an orientation unit vector p.

B. Kinetic model equation

A suspension of Brownian particles can be described via a probability distribution function
�(rc, p, t ). It represents the probability to find a particle at location rc, at the level of elementary
volume [see Fig. 1(a)], with orientation p at time t . In the dilute regime, a single-particle Smolu-
chowski equation can be obtained as follows [4,7,19,46]

∂�

∂t
= −∇x · (ṙc� ) − ∇p · (ṗ� ). (1)
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The evolution of the position of a Brownian particle with respect to time, ṙc, is

ṙc = u − Dt · ∇x log �, (2)

and the evolution of its orientation with respect to time, ṗ, can be written as

ṗ = ṗ j − Dr∇p log �, (3)

where ṗ j is the Jeffery’s equation and it is given by

ṗ j = −1

2
ω · p + λ

2
(γ̇ · p − γ̇ : ppp). (4)

Dr and Dt are the rotary diffusion coefficient and translational diffusion tensor, respectively.
The latter for nonspherical, rigid particles are defined by Dt = D‖pp + D⊥(δ − pp), where D‖ and
D⊥ are constants that characterize the diffusion parallel and perpendicular to the particle axis. The
rotary diffusion can also have a tensorial form similar to Dt . However, the scalar product of p with
∇p equals zero, which reduces the rotary diffusion to a scalar [19]. u is the external flow velocity
vector at location rc. ∇p and ∇x denote the gradient operators in configurational and spatial spaces,
respectively. ω, γ̇ , and δ are the vorticity, strain rate, and identity tensors, respectively. λ is a constant
form factor as a function of the rod aspect ratio ar = L/D. Hence, the expanded version of Eq. (1),
by taking into account the fluid incompressibility condition, is

D�

Dt
= ∇x · (Dt · ∇x� ) − ∇p · (ṗ j�) + Dr∇2

p�, (5)

where D(...)
Dt = ∂ (...)

∂t + u · ∇x(...) is the material derivative operator and ∇2
p is the Laplacian operator

in configurational domain. In what follows, we derive an equivalent evolution equation based on the
second-order moment of �.

C. Second-order moment of �

The second-order moment of �, A2, contains information on the local concentration and orien-
tation of particles and is defined as

A2 = 1

V

∫
p

∫
rc

pp�drcdp. (6)

The trace of A2 is the concentration field c, which represents the mean number density in the
suspension; it is the zeroth-order moment of �,

c = 1

V

∫
p

∫
rc

�drcdp. (7)

V represents the volume, which is large enough to contain a statistically significant number
of particles but smaller than the characteristic length scale of the macroscopic properties of the
system under consideration. Figure 1 provides two-dimensional (2D) examples on how A2 can
describe the particle concentration and orientation in an elementary volume. It represents A2 for
two concentrations c1 and c2, with c2 � c1. At the macroscopic level, A2 = A2(x, t ), where x is the
position vector of the elementry volume.

The evolution of A2 is obtained by premultiplying Eq. (5) with the tensor pp/V and integrating
it over the spatial and configurational spaces. We focus here on the first term on the right-hand side
of Eq. (5), since the material derivative of the orientational divergence part of Eq. (5) is similarly
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derived in the literature [40]. First, the divergence operator is expanded to obtain

1

V

∫
p

∫
rc

∇x · (Dt · ∇x� )ppdrcdp = 1

V
∇x · ∇x ·

∫
p

∫
rc

Dt pp�drcdp

= D⊥∇2
x A2 + (D‖ − D⊥)∇x∇x : A4, (8)

where A4 = 1
V

∫
p

∫
rc

pppp�drcdp is the fourth-order moment of �. After the full derivation, the
evolution of the tensor A2 is obtained,

DA2

Dt
= −1

2
(ω · A2 − A2 · ω) + λ

2
(γ̇ · A2 + A2 · γ̇ − 2A4 : γ̇ )

+ 2Dr (cδ − αA2) + D⊥∇2
x A2 + (D‖ − D⊥)∇x∇x : A4, (9)

where α equals 2 in 2D and 3 in 3D. The full derivation of Eq. (9) is reported in Appendix A. It can
be noticed that the time evolution of the tensor A2 depends on higher-order moments of �. Hence,
the problem requires a closure approximation. Fortunately, the standard closure approximations
[47–49] can be applied for this case, where the particles are axisymmetric, by being careful to
normalize the tensor A2 by c to maintain the condition of having a unitary trace. The Tucker and
coworkers model is recovered from Eq. (9) by setting the translational diffusion to zero (i.e., D⊥ =
D‖ = 0) and then dividing by the trace of A2 [40]. The last term in Eq. (9) is the Hessian operator
and the last two terms of Eq. (9) show implicitly the coupling between the local concentration and
the local orientation of Brownian particles. It is explained in Sec. II D. The last two terms have been
omitted in recent works but they can change drastically the obtained microstructures as we will
discuss below [41,44,50,51].

The derived macromodel enables one to solve a set of partial differential equations (PDEs) rather
than a full 6D Fokker-Planck equation [Eq. (5)], to be discussed below, drastically simplifying the
problem.

D. Concentration field of Brownian rods

The concentration field c is represented by the trace of A2. So the evolution of concentration of
the Brownian rods in a suspending fluid can be derived from Eq. (9)

Dc

Dt
= D⊥∇2

x c + (D‖ − D⊥)∇x∇x : A2. (10)

The last term in Eq. (10) (Hessian operator) shows the coupling between the concentration and
the local orientation of the Brownian rods and it requires knowledge of A2, while A2 does not appear
in the concentration equation when diffusion is isotropic (i.e., D‖ = D⊥).

E. Dimensionless formulation of the problem

The problem identified by Eq. (5), or by Eq. (9) in its tensor form, describes the evolution of
spatial and orientational configurations of a suspension of Brownian rodlike particles in a flow field.
These systems of equations will be analyzed numerically in the following sections. Choosing the
particle length L as the characteristic length and the characteristic strain rate |γ̇ | = Uavg/L, where
Uavg is the average flow velocity, the definitions of the dimensionless variables for the problem,
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FIG. 2. FE mesh for a planar channel. BC1, laminar inflow; BC2, pressure outlet; BC3, zero-slip con-
dition; and BC4, symmetry condition. (a) Rectangular planar channel. (b) Planar channel with circular
obstacle.

denoted with an asterisk, are

t∗ = t |γ̇ |, (11)

u∗ = u
L|γ̇ | , (12)

Per = |γ̇ |
Dr

, (13)

ṗj
∗ = ṗj

|γ̇ | , (14)

and

D∗ = Dt

L2|γ̇ | = 1

Pe‖
pp + 1

Pe⊥
(δ − pp). (15)

The rotary Peclet number (Per) appears, which measures the distortion of the suspension ori-
entation state from the anisotropic equilibrium orientation configuration, i.e., changing Per tends
to affect the final orientation. It also shows the two translational Brownian Peclet numbers (Pe‖ =
L2|γ̇ |/D‖) and (Pe⊥ = L2|γ̇ |/D⊥), along and orthogonal to the long axis of the rod, respectively.
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FIG. 3. a11 and a12 versus strain for the streamline along the line y = 0.9H in a planar channel, with
|γ̇ | = 1.8/s. Method 1 is verified with the work of Férec et al. [52]. (a) Evolution of orientation component a11

as a function of strain |γ |. (b) Evolution of orientation component a12 as a function of strain |γ |.

The dimensionless form of the Fokker-Planck equation becomes after dropping the asterisk

D�

Dt
= ∇x ·

{[
1

Pe‖
pp + 1

Pe⊥
(δ − pp)

]
· ∇x�

}
− ∇p · (ṗ j�) + 1

Per
∇2

p�. (16)

For very long and thin rodlike particles, the relation Pe⊥ = 2Pe‖ applies [19], and Eq. (15)
simplifies as D = 1

Pe⊥
(pp + δ) and λ = 1. Equation (16) is written as

D�

Dt
= ∇x ·

{[
1

Pe⊥
(pp + δ)

]
· ∇x�

}
− ∇p · (ṗ j�) + 1

Per
∇2

p�. (17)
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FIG. 4. (a) A11/c and (b) A12/c components of the orientation tensor, A2, along the channel in a homoge-
neous system, where concentration equals 1 at the inlet and no rod migrations occur. (a) Distribution of the
orientation component A11/c in the xy plane of a planar channel. (b) Distribution of the orientation component
A12/c in the xy plane of a planar channel.

Using the same dimensionless variables, the evolution equation for the second-order moment of
the probability distribution function in dimensionless form is

DA2

Dt
= −1

2
(ω · A2 − A2 · ω) + 1

2
(γ̇ · A2 + A2 · γ̇ − 2γ̇ : A4) + 2

Per
(cδ − αA2) + 1

Pe⊥
∇2

x A2

+ 1

Pe⊥
∇x∇x : A4. (18)

III. FLOW PROBLEM

Under the assumptions of a Newtonian, isothermal, steady, and incompressible fluid, the govern-
ing equations for the pressure, P, and velocity fields in the dimensionless form are

∇x · u = 0, (19)

∇2
x u − ∇xP = 0. (20)

For simplicity, we do not consider here the coupling between flow and the extra stresses induced
by rods since the goal is first to verify the obtained macromodel predictions and compare them
with the full numerical solution of Eq. (16). This coupling will be explored in future works. This
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FIG. 5. Variation of local Peclet numbers with respect to the normalized channel width in a planar channel
for the global Peclet numbers Pe⊥ = 10, 103 and Per = 10, 103. (a) Evolution of the local rotary Peclet number,
Perlocal , with respect to the normalized channel width, y/H , independent on the translational Peclet number.
(b) Evolution of the local translational Peclet number, Pe⊥local , with respect to the normalized channel width
y/H independent on the rotary Peclet number.

hypothesis is acceptable here in the assumption of dilute concentration regimes. Hence the problem
is fully characterized by two Peclet numbers, Per and Pe⊥.

The work is performed in a planar channel [Fig. 2(a)] of width 2H and length W = 3H , except
for the case of the homogeneous inlet in a planar channel (Sec. IV B 1), where W = 9H . These
dimensions do not affect our conclusions. H = 1 and is considered to be very large comparable to
L (H � L). In the second part of the work, a circular obstacle of radius R = 0.5H is introduced
[Fig. 1(b)], the center of the obstacle is at x = H . Four types of boundary conditions, marked by
BC1 to BC4, are defined for this model. BC1 is the inlet velocity profile condition U/Umax = 1 −
(y/H )2 and the Dirichlet boundary conditions for �; BC2 is the no slip condition at walls (u =
0); BC3 is the outlet condition where the relative pressure is set to zero, (−Pδ + ∇xu) : nn = 0,
where n is the normal vector to the surface; and BC4 is the symmetry boundary condition (u · n =
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FIG. 6. Orientation component A11/c using method 1, across the planar channel, where homogeneous
concentration and random orientation of the rods are prescribed at the inlet for (a) Per = 10, Pe⊥ = 103;
(b) Per = 103, Pe⊥ = 103; (c) Per = 10, Pe⊥ = 10; and (d) Per = 103, Pe⊥ = 10.

0 and γ̇ − (γ̇ · n)n = 0). Due to BC4, half of the domain is considered in simulations to reduce
computational efforts (see Fig. 2). The homogeneous Neumann boundary conditions (zero flux)
is applied for the probability density function � in method 1 (n · ∇x� = 0 for spatial BCs (BC2,
BC3, and BC4) and n · ∇p� = 0 for configurational BCs [all the surfaces in Fig. 21(b) except
BC5)]. It is also used for A2 and c in method 2 (n · ∇xAi j = 0, where Ai j are the components of A2

and n · ∇xc = 0).

IV. NUMERICAL RESULTS

The steady-state form of Eq. (17) is

u · ∇x� = ∇x ·
{[

1

Pe⊥
(pp + δ)

]
· ∇x�

}
− ∇p · (ṗ j�) + 1

Per
∇2

p�, (21)

FIG. 7. Orientation component A12/c using method 1, across the planar channel, where homogeneous
concentration and random orientation of the rods are prescribed at the inlet for (a) Per = 10, Pe⊥ = 103;
(b) Per = 103, Pe⊥ = 103; (c) Per = 10, Pe⊥ = 10; and (d) Per = 103, Pe⊥ = 10.
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FIG. 8. Concentration distribution c using method 1, across the planar channel, where homogeneous
concentration and random orientation of the rods are prescribed at the inlet for (a) Per = 10, Pe⊥ = 103;
(b) Per = 103, Pe⊥ = 103; (c) Per = 10, Pe⊥ = 10; and (d) Per = 103, Pe⊥ = 10.

and of Eq. (18) is

u · ∇xA2 = −1

2
(ω · A2 − A2 · ω) + 1

2
(γ̇ · A2 + A2 · γ̇ − 2γ̇ : A4)

+ 2

Per
(cδ − αA2) + 1

Pe⊥
∇2

x A2 + 1

Pe⊥
∇x∇x : A4. (22)

Equations (19), (20), and (21) and Eqs. (19), (20), and (22) are solved numerically using method
1 and method 2, respectively (see Appendix B). Both methods use the finite-element method (FEM).
The numerical solutions are tested at steady state and for 2D flows to reduce computational time.
Method 1 is based on the linear extrusion of 2D flow channel, represents the spatial distribution in

FIG. 9. Relative change in concentration with respect to the normalized channel width, y/H , at the outlet,
for Per = 103 and Pe⊥ = 10, for the four concentration gradients c1, c2, c3, and c4.
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FIG. 10. Orientation component A11/c with respect to the normalized channel width, y/H , at the inlet.

xy plane, to a third dimension, which stands for the probability of finding a rod of orientation angle
with the x axis φ. Method 2 is based on solving the set of equations of evolution of A11, A12, and
A22 in the flow.

A. Method 1 verification

1. Homogeneous systems

To verify the numerical solution of the model, we compare the model with published data in the
case of an homogeneous system [33,52]. The flow field is assumed to be at steady state. In this case,
the streamlines are parallel to each other and parallel to the wall. No Brownian translational diffusion
is taken into consideration. The flow inside the channel is described as a planar Poiseuille flow in the
direction of x. These assumptions allow us to study the rod orientations in the flow channel, since
the shear rate in the Poiseuille flow is constant along each streamline. Rods are assumed to have
a random-planar distribution of homogeneous concentration at the inlet, which means a Dirichlet
boundary condition of � = 1/2π .

To verify the results of the FEM in a homogeneous system, rod orientations at a chosen streamline
is compared with the results found in the literature (see Fig. 3). Equation (21) is solved using a
homogenous numerical diffusion to stabilize the numerical scheme, which gives

u · ∇x� = 1

Penum
∇2

x� − ∇p · (ṗ j�) + 1

Per
∇2

p�. (23)

Penum is an artificial diffusion Peclet number, set to value 109, which has no physical effect
except for stabilizing the numerical scheme. The study is done for values of rotary Peclet number
Per= 1, 10, 100, and 1000. The orientation state of the rods is represented by the components of the
second-order orientation tensor a2 (a2 = ∫

p ppψdp, where ψ is the probability distribution function
of finding a rod of orientation p at time t in a homogeneous systems [40]) (see Fig. 3). In addition,
these quantities are traced spatially along the channel for Per = 100 and compared with the results
in the literature (Fig. 4).

The a11 and a12 components are directly computed from the FP equation for planar orientations
and compared with the results obtained by Férec et al. [52] solving the configurational part of Eq. (5)
with a finite-volume method approach. Figure 3 shows the very good agreement between the two
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FIG. 11. Concentration distribution c using method 1, across the planar channel, where homogeneous
concentration and aligned rods at the inlet for (a) Per = 10, Pe⊥ = 103; (b) Per = 103, Pe⊥ = 103; (c) Per =
10, Pe⊥ = 10; and (d) Per = 103, Pe⊥ = 10.

methods. Figure 4 shows that rods along the fixed wall become highly oriented and reach its final
orientation almost instantly, whereas rods further downstream must travel quite a distance to reach
the steady state. These results (Fig. 4) show agreement with the work done by Mezi et al. [33],
where we get A2/c = a2.

2. Nonhomogeneous systems

A concentration gradient is imposed at the inlet along the y axis. The Dirichlet boundary
condition is set to be � = c0

2π
, where c0 = 1 − 0.6(y/H )2 is the concentration at the inlet. This

parabolic concentration gradient is chosen to have a nonzero concentration in the domain (c0 = 0.4
at the walls and c0 = 1 at the center). Rod orientations are planar random at the inlet and no
Brownian translational diffusion is considered. BC1, BC2, BC3, and BC4 are taken into account.
In these conditions, the rods are affected by pure translational convection of the flow, and no rod
migration across the streamlines is expected. The effect of concentration gradients on rod orientation
distribution is a major concern. A11/c and A12/c components are directly computed from the FP
equation in the channel for Per = 1, 10, 100, and 1000. The results are similar to the previous part
when homogeneous concentration along the channel is examined (see Figs. 3 and 4).
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FIG. 12. Variation of local Peclet numbers with respect to the normalized channel width at the streamline
y = 0.7H in a planar channel with the presence of circular obstacle. (a) Evolution of the local rotary Peclet
number, Perlocal , with respect to the normalized channel length, x/H , independent on the translational Peclet
number. (b) Evolution of the local translational Peclet number, Pe⊥local , with respect to the normalized channel
length x/H independent on the rotary Peclet number.

B. Effect of translational diffusion

We aim now to study the effect of the anisotropic translational diffusion on rod suspensions in
a planar channel. Equations (19), (20), and (21) are solved based on method 1. Three regimes of
translational and orientational diffusions are studied. The first regime, Pe⊥ � Per , explores the case
when the timescale for translational diffusion is longer than the rotational diffusion one. The second
regime, Pe⊥ = Per , considers the case where both timescales are equal, and the third regime, Pe⊥ �
Per , investigates the case where the rotary diffusion is faster than the translational diffusion. A local
rotary, perpendicular, and parallel Peclet numbers are introduced depending on the local strain rate,
γ̇l =

√
1
2 (γ̇ : γ̇ ), Perlocal = |γ̇l |/Dr , Pe⊥local = (|γ̇l |H2)/D⊥, and 2Pe‖local = Pe⊥local , respectively. In a

planar channel, the local Peclet numbers are constant along the flow direction (x axis). The variation
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FIG. 13. Variation of local Peclet numbers with respect to the normalized channel length at x = H in
a planar channel with the presence of circular obstacle. (a) Evolution of the local rotary Peclet number,
Perlocal , with respect to the normalized channel width, y/H , independent on the translational Peclet number.
(b) Evolution of the local translational Peclet number, Pe⊥local , with respect to the normalized channel width,
y/H , independent on the rotary Peclet number.

of local rotational and perpendicular Peclet numbers along the y axis are shown in Figs. 5(a) and
5(b). The rod suspensions are affected by the global and local Peclet numbers.

1. Homogeneous concentration and planar random orientation at the inlet

The rod concentration and orientation predictions are examined for a Dirichlet boundary con-
dition � = 1/2π . Figures 6 and 7 show that Brownian rods exhibit an inhomogeneous orientation
through the channel. This is because of the competition between shear flow, which tends to align
the rods in the flow direction, and Brownian motion, which tends to randomize their orientations

033302-15



ISSA, NATALE, AUSIAS, AND FÉREC

FIG. 14. Concentration distribution c using method 1, across the planar channel with the presence
of circular obstacle, where homogeneous concentration and random orientation of the rods are pre-
scribed at the inlet for (a) Per = 10, Pe⊥ = 103; (b) Per = 103, Pe⊥ = 103; (c) Per = 10, Pe⊥ = 10; and
(d) Per = 103, Pe⊥ = 10.

[6,23,53]. The overshoot in the rod orientations before reaching the final orientation (see Fig. 3) is
noticed in the channel. Depending on the rotary Peclet number, rods near the wall reaches their final
orientation faster than the rods at the center due to the higher value of Perlocal near the wall. For all
the studied cases, A12/c range between 0 and 0.25, which means that the angle between the rod and
x axis ranges from 0 to π

2 . Figure 8 shows that rods tend to migrate toward the walls, where Pe⊥local

is high.
This phenomenon was also predicted by Schiek and Shaqfeh [36] and by Nitsche and Hinch

[37]. In Fig. 8(a) (where the high translational Peclet number, Pe⊥ = 103, and low rotary Peclet
number, Per = 10, are considered), rods migrate toward the wall. While in Fig. 8(b) (where the high
translational Peclet number, Pe⊥ = 103, and high rotary Peclet number, Per = 103, are considered)
a high concentration is observed at the wall after the inlet. After a distance, rods accumulate
between the center and the wall (0.3 � y/H � 0.8). This accumulation is due to the overshoot
in rod orientations. Rods higher alignment leads to low migrations across the streamlines. At lower
Pe⊥, rod migration is more evident. In Fig. 8(c), rod migration occurs and a concentration gradient
is observed at the outlet. In this case, rods are less aligned, mainly in the center, which enhances rod
migration toward the wall (higher local Peclet numbers). For the case of low translational Peclet
number and high rotational Peclet number (Pe⊥ = 10 and Per = 103), rods are highly aligned
at the outlet and almost homogeneous [Fig. 6(d)]. Since the rod orientations tend to equilibrate
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FIG. 15. Orientation component A11/c using method 1, across the planar channel with the presence of
circular obstacle, where homogeneous concentration and random orientation of the rods are prescribed at
the inlet for (a) Per = 10, Pe⊥ = 103; (b) Per = 103, Pe⊥ = 103; (c) Per = 10, Pe⊥ = 10; and (d) Per =
103, Pe⊥ = 10.

significantly at lower strain than their center of mass translate in the flow direction. While the values
of A11/c is low near the wall [comparing with Fig. 6(b)] due to the migration of less aligned rods
toward the wall.

2. Effect of concentration gradient at the inlet

A concentration gradient is introduced with a planar random orientation at the inlet � = ci/(2π )
to study its effect on the final rod suspension microstructures. Four different parabolic concen-
tration profiles at the inlet are tested according to ci = − 10−2i

10 (y/H )2 + 1 for i = 1, 2, 3, and 4.
Same effect of translational and rotational Peclet numbers is figured qualitatively as the previous
section (Sec. IV B 1). No notable effect of concentration gradient on the orientation is shown. Rods
are oriented similar to the case where homogeneous concentration is applied at the inlet (same
plots for A11/c and A12/c in Figs. 6 and 7). This agrees with the results in Sec. IV A 2. However,
concentration gradient at the inlet has a significant effect on rod migration rates. The relative changes
in concentration ( |c−ci|

average(ci )
) are plotted at the outlet for Pe⊥ = 10 and Per = 103 in Fig. 9. Figure 9

shows that rod migrations are higher near the wall, where the concentration is the lowest for the four
cases explored, and the gradient of local translational Peclet number is the highest. As concentration
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FIG. 16. Orientation component A12/c orientation component using method 1, across the planar channel
with the presence of circular obstacle, where homogeneous concentration and random orientation of the rods
are prescribed at the inlet for (a) Per = 10, Pe⊥ = 103; (b) Per = 103, Pe⊥ = 103; (c) Per = 10, Pe⊥ = 10; and
(d) Per = 103, Pe⊥ = 10.

gradient increases, rods migrate at higher rates due to rod migration from low to high translational
Pe⊥local regions.

C. Effect of rod orientations gradient at the inlet

To study the effect of rod orientations on its migration across streamlines, an orientation gra-
dient is introduced at the inlet, where the Dirichlet boundary condition is � = [ 1

2π
(eβ sin2φ +

e−βcos2φ)−1]/2, and β = 5y
2H , where rods are planar random at the center of the channel and

highly aligned in the direction of the flow near the walls (see Fig. 10 for A11, and A12 = 0). The
concentration is homogeneous and equals one at the inlet. Figure 11 shows that rods migrate toward
the wall, where higher Pe⊥local . Comparing with the case of homogeneous concentration and planar
random orientation at the inlet (Sec. IV B), the concentration at the center is almost the same, while
near the wall, rods are more accumulated in the case of planar random at the inlet (comparing
the case Per = 103, Pe⊥ = 103 directly after the inlet). c = 1.02 where rods are perfectly aligned
[Fig. 11(b)] and c = 1.06 where rods are planar random [Fig. 8(b)]. For lower translational Peclet
number, Pe⊥ = 10, rods are accumulated at the upper part [Figs. 11(c) and 11(d)]. In this zone,
the migration of aligned particles is difficult. Qualitatively, the effect of orientation gradient at
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FIG. 17. Concentration distribution c results using a quadratic closure approximation, across the planar
channel, where homogeneous concentration and random orientation of the rods are prescribed at the inlet for
(a) Per = 10, Pe⊥ = 103; (b) Per = 103, Pe⊥ = 103; (c) Per = 10, Pe⊥ = 10; and (d) Per = 103, Pe⊥ = 10.

the inlet with the presence of the circular obstacle is similar to its effect in the absence of the
obstacle.

D. Results of flow in a channel with a circular obstacle

Modeling the interaction between suspended rods and obstacles encountered in their flow
is critical for understanding particulate suspension transport in various engineering applications
[54,55]. A complex flow field is also interesting to explore here because of the expected variation
of both local Peclet numbers along and perpendicular to the flow direction. Figure 12 depicts the
variation of local Peclet numbers along a horizontal line at y = 0.7H . It shows that the local Peclet
numbers have minima above the center (x = H) of the obstacle and maxima around the level of the
extremities of the obstacle (x = 0.5H and x = 1.5H). Figure 13 shows the variation of local Peclet
numbers along a vertical line x = H . It shows that the local Peclet numbers have maxima near the
wall and the obstacle, where the highest shear rate is found. Simulations are performed to study the
effect of circular obstacles in the channel on the concentration and orientation.

In the presence of circular obstacle, rods are highly concentrated at the back of the obstacles and
depleted in the front [56] as seen in Fig. 14. Even in the presence of the obstacle, rods have higher
tendency to migrate toward the wall. Rods are more aligned at the back of the obstacle, as in Fig. 15
than at the front. This was also found by Phan-Thien and Graham [57], who used a single falling
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FIG. 18. Orientation component A11/c results using a quadratic closure approximation, across the planar
channel, where homogeneous concentration and random orientation of the rods are prescribed at the inlet for
(a) Per = 10, Pe⊥ = 103; (b) Per = 103, Pe⊥ = 103; (c) Per = 10, Pe⊥ = 10; and (d) Per = 103, Pe⊥ = 10.

sphere in semiconcentrated systems, and by Kumar and Natale [58], who studied at low Reynolds
values, two settling non-Brownian rigid spheres in a dilute suspension of Brownian rods. At the
front of the obstacle, we find that the local orientation of the rods are aligned in the y direction
(A11/c � 0.5, and A12/c � 0), as in Figs. 15 and 16. This is caused by the high shear rate zone,
located above the obstacle. There, rods are less concentrated and less aligned because lower local
Peclet numbers (see Fig. 13). Also, we see that rods have high alignment near the wall, even in the
presence of circular obstacle due to the high local rotational Peclet numbers.

E. Macromodel

Although solving the Fokker-Planck equation is precise and general, it requires high com-
putational effort. The second-moment tensor evolution [Eq. (22)] provides a concise description
requiring less computational power. It is necessary to utilize a closure approximation to relate
the fourth-order moment tensor with the second-order moment tensor to solve Eq. (22). Closure
approximations found in the literature can be applied for this model. The numerical method 2
mentioned in Appendix B is used to solve Eq. (22), using quadratic [47] and IBOF [49] closures. We
applied the quadratic closure for its simplicity, while the IBOF for its precision. This macromodel
is tested for homogeneous concentration, and planar random rod orientations at the inlet (Dirichlet
BC6 A11/c = A22/c = 0.5 and A12/c = 0). Figures 17 and 19 show the concentration results of rods
in the channel for quadratic and IBOF closures, respectively. Figures 18 and 20 show the orientation
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FIG. 19. Concentration distribution c results using the IBOF closure approximation, across the planar
channel, where homogeneous concentration and random orientation of the rods are prescribed at the inlet for
(a) Per = 10, Pe⊥ = 103; (b) Per = 103, Pe⊥ = 103; (c) Per = 10, Pe⊥ = 10; and (d) Per = 103, Pe⊥ = 10.

component A11/c using the mentioned closures. These figures show a quantitative agreement
between the full solution of the FP equation and the macromodel; nevertheless, the use of the closure
approximations. Tables I and II show the maximum and mean absolute error percentage values along
the channel for concentration c and orientation component A11/c, respectively. The IBOF closure
provides an excellent agreement for the concentration and orientation, better than the quadratic.
For IBOF, the errors with respect to the solutions obtained solving the FP equation [Eq. (16)]
across the channel does not exceed 5% for both concentration and orientation component A11/c
for the tested cases (Tables I and II), while the mean absolute errors are much lower than the error
values obtained using the quadratic closure. These results further demonstrate the validity of the
derived macromodel also for nonhomogeneous systems. The mean absolute error is affected by
Per and Pe⊥. The tested cases using the quadratic closure show that the mean absolute errors for
both orientation and concentration increase with decreasing the rotary and the perpendicular Peclet
numbers. While for IBOF, the relation between the Peclet numbers and the mean absolute errors is
unclear.
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FIG. 20. Orientation component A11/c results using the IBOF closure approximation, across the planar
channel, where homogeneous concentration and random orientation of the rods are prescribed at the inlet for
(a) Per = 10, Pe⊥ = 103; (b) Per = 103, Pe⊥ = 103; (c) Per = 10, Pe⊥ = 10; and (d) Per = 103, Pe⊥ = 10.

TABLE I. Values of the maximum percentage error and the mean absolute percentage error for concen-
tration c, CEmax and CEmean, respectively, using the IBOF and quadratic closures with respect to the results in
method 1.

Percentage error of concentration c (CE)

IBOF closure Quadratic closure

CEmax CEmean CEmax CEmean

Per = 10
Pe⊥ = 103

4.89% 2.45% 7.08% 3.94%
Per = 103

Pe⊥ = 103

4.62% 0.42% 5.88% 0.46%
Per = 10
Pe⊥ = 10

4.14% 1.39% 6.38% 2.46%
Per = 103

Pe⊥ = 10
4.24% 0.28% 5.27% 0.44%
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TABLE II. Values of the maximum percentage error and the mean absolute percentage error for orientation
component A11/c, OEmax and OEmean, respectively, using the IBOF and quadratic closures with respect to the
results in method 1.

Percentage error of orientation A11/c (OE)

IBOF closure Quadratic closure

OEmax OEmean OEmax OEmean

Per = 10
Pe⊥ = 103

3.07% 1.31% 16.01% 6.62%
Per = 103

Pe⊥ = 103

3.17% 0.29% 14.92% 5.3%
Per = 10
Pe⊥ = 10

1.7% 0.78% 14.45% 7.32%
Per = 103

Pe⊥ = 10
2.21% 0.84% 13.51% 6.56%

V. CONCLUSION

The major contribution of this work is the derivation of a macromodel to investigate the flow
of Brownian particle suspensions taking into account the coupling between the concentration and
the orientation of particles. Such macromodel reduces drastically (by a factor 13) the computational
time required to numerically solve a full FP equation for the 2D case explored here. The effect of
anisotropic translational diffusion, depending on the orientation, is studied in a planar channel with
and without the presence of a circular obstacle. The Brownian translational diffusion favors the rod
migrations toward the walls. The concentration gradient does not affect the orientation of rods, but
it favors their migration. Aligned rods are slower to migrate than planar random ones. These results
are in qualitative agreement with the results in the literature. A circular obstacle in a planar channel
causes complexity in the flow field which affects the rod suspensions. The macromodel is verified
based on the solution of the Fokker-Planck equation. Future works will focus in exploring the effect
between particle and Brownian stresses, the stress terms will be developed and added to Stokes
equation as in the work of Saintillan and Shelley [43]. On the other hand, the effect of anisotropic
translational diffusion in the case of active particles will be investigated.

ACKNOWLEDGMENTS

H.I. particularly wishes to acknowledge the Brittany Region and ISblue for their financial
supports. G.N. acknowledges financial support from the Natural Sciences and Engineering Research
Council of Canada (NSERC) (RGPIN-2017-03783).

APPENDIX A: DERIVATION FOR THE EQUATION OF CHANGE OF A2

This part focuses on the derivation of Eq. (9). First, Eq. (5) is multiplying with the tensor pp/V
and integrating over all orientations and the spatial domain to give

1

V

∫
p

∫
rc

D�

Dt
ppdrcdp = 1

V

∫
p

∫
rc

∇x · (Dt · ∇x� )ppdrcdp

− 1

V

∫
p

∫
rc

∇p · (ṗ j�)ppdrcdp + Dr

V

∫
p

∫
rc

∇2
p�ppdrcdp. (A1)

033302-23



ISSA, NATALE, AUSIAS, AND FÉREC

The left-hand side of the above equation is simply the material derivative of A2, i.e., DA2/Dt .
The first term on the right-hand side of Eq. (A1) has already been addressed in Eq. (8). As for the
second term on the right-hand side of Eq. (A1), application of the integration by parts formula leads
to [40]

− 1

V

∫
p

∫
rc

∇p · (ṗ j�)ppdrcdp = −1

2
(ω · A2 − A2 · ω) + λ

2
(γ̇ · A2 + A2 · γ̇ − 2A4 : γ̇ ). (A2)

In obtaining the above equation, the Jeffery’s equation [Eq. (4)] has been used. Finally, the
integration by parts formula is applied two times in the last term of Eq. (A1) to yield [40]

Dr

V

∫
p

∫
rc

∇2
p�ppdrcdp = 2Dr (cδ − αA2), (A3)

where α equals 2 in 2D and 3 in 3D. Gathering these results together, we obtain the expression for
the material derivative of A2 given in Eq. (9).

APPENDIX B: NUMERICAL METHOD

For this work, two different numerical methods have been used. The first problem is to solve
the FP equation [Eq. (5)] in a direct numerical computation. This numerical model is referred by
method 1 in this article. While the other method is demonstrated to compute the macromodel (A2)
by solving the partial differential equation of evolution of A2 [Eq. (9)]. This numerical model is
referred by method 2 in this article. For both problems, the finite-element method is applied. Utilized
software is COMSOL Multiphysics 5.5 to solve the problems including the fluid flow field, and the
partial differential equations.

1. Method 1

In order to solve the FP equation for � [Eq. (16)] for particle orientation and concentration in 2D,
a numerical model is composed of two components (a model component in COMSOL Multiphysics
is a fundamental section of the model that includes a geometry, physics interface, mesh, variables,
and other definitions that are specific to that component), a 2D component and a 3D component.
Benefiting from the COMSOL advantage of linear extrusion coupling operator which maps an
expression defined on a source to an expression that can be evaluated in the destination (mapping
two different components), and general projection operator, which integrates along curves defined
via expressions that can be Cartesian coordinates. Component 1 is a 2D rectangular geometry, the
creeping flow is defined by solving Eqs. (19) and (20) and with the given boundary conditions, the
spatial discretization of the pressure and velocity fields are done on P1 + P2 element. Component 2
is a 3D rectangular block, the base rectangle has the dimensions as component 1, and the horizontal
coordinates are defined as spatial coordinates, where component 1 is extruded, while the vertical
coordinate are defined as the discretization of φ, considering φ is the angle of orientation of the
particle. φ = 0 means the rod is aligned in the direction of flow since the rods are symmetry, so the
head of the rod is identical to its tail. φ is discretized from 0 to π , respecting the periodic conditions
of symmetric particles

�(rc, φ, t ) = �(rc, φ + π, t ). (B1)

Equation (16) is then projected in the φ direction to yield for

D�

Dt
= ∇x · (Dt · ∇x�) − ∇φ · (p j�) + 1

Per
∇2

φ�, (B2)

knowing that ∇φ is the gradient operator in the direction of φ. Elements with Lagrangian shape
functions of order quadratic are used for �.
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FIG. 21. FE mesh for components 1 and 2 in method 1. BC1, creeping inflow; BC2, No slip condition;
BC3, pressure outlet; BC4, symmetry condition; and BC5, Dirichlet condition for �. (a) Component 1.
(b) Component 2.

All the computations were carried out on a workstation Dell PowerEdge R930 with Intel Xeon
E7-8860 v4 @ 2.20 GHz CPU with 72 threads and 1TB RAM. The computation was around 3 h and
36 minutes in each case for the three Peclet regimes. The used mesh for component 1 is COMSOL’s
predefined free triangular mesh of fine resolution of 3852 elements. While for component 2, it is
free tetrahedral of coarser size, with scale geometry of 9 in the x, y, and φ directions of 552 663 and
17 064 tetrahedral and triangular elements, respectively.

2. Method 2

The second model is composed of a 2D rectangular channel, with the given boundary conditions
BC2, BC3, and BC4, while BC6 is the inlet flow velocity in addition to the Dirichlet boundary
conditions for A2 (see Fig. 22). The model is composed of two physics, one for solving the creeping
flow, and the other is a coefficient partial differential equations, for solving the evolution of A2 (A11,
A12, and A22). In this model, Eqs. (18), (19), and (20) are solved using quadratic and IBOF closures
[47,49]. All the computations were carried out on a laptop HP EliteBook 8570p with Intel core i7
and 8 GB RAM. The computation was around 16 min in each case for the three Peclet regimes. The
used mesh is the COMSOL’s predefined free triangular mesh of fine resolution of 3852 elements.
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FIG. 22. FE mesh for model 2 BC2: No slip condition, BC3: pressure outlet, BC4: symmetry condition,
BC6: creeping inflow + Dirichlet BC for A2.

3. Numerical precision

The dimensionless Fokker-Planck equation can be written as

Pe⊥u · ∇x� − Pe⊥∇x · (Dt · ∇x�) + Pe⊥∇p · (ṗ j�) − Pe⊥
Per

∇2
p� = 0. (B3)

It is important to study the precision of a new numerical simulation. After each computation,
the normalization of the probability distribution function and the bulk concentration at the outlet
is obtained, and the error is calculated. Figure 23 shows the error calculated from the numerical
normalization of � with the exact one. It is found that at high and low translational diffusions,
the error is between 1% and 2%, which is acceptable. The highest error is at Pe⊥ = 1. Numerical
instabilities in COMSOL Multiphysics occur when the element Peclet number exceeds 1. Element
Peclet number relates the convective term, element mesh size, and the diffusion term. An element
Peclet number greater than one is caused by either large convective or small diffusive activity for an
acceptable mesh element size. In this work, two element Peclet numbers are found, spatial (relating

FIG. 23. Percentage of the numerical errors calculated from the normalization of �, for the case of planar
channel with homogeneous concentration and planar random orientation at the inlet as a function of Peclet
numbers.
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the spatial diffusion with spatial convection) [59] and configurational (relating the rotary diffusion
with rotary convection).

For low Pe⊥, diffusion is dominant in this case, the model is stable, and element Peclet numbers
are less than 1. For high Pe⊥, spatial convection is dominant, in this case, stabilization in the spatial
domain is considered by COMSOL (streamline and crosswind diffusion). For Pe⊥ = 1, the spatial
element Peclet number is less than 1, while the configurational one equals the rotary Peclet number,
which is greater than 1. In this case, the COMSOL’s stabilization is not implemented.
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