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HIGH ORDER ASYMPTOTIC PRESERVING SCHEME FOR
LINEAR KINETIC EQUATIONS WITH DIFFUSIVE SCALING

M. ANANDAN*, B. BOUTINT, AND N. CROUSEILLES*

Abstract. In this work, high order asymptotic preserving schemes are constructed and analysed
for kinetic equations under a diffusive scaling. The framework enables to consider different cases:
the diffusion equation, the advection-diffusion equation and the presence of inflow boundary condi-
tions. Starting from the micro-macro reformulation of the original kinetic equation, high order time
integrators are introduced. This class of numerical schemes enjoys the Asymptotic Preserving (AP)
property for arbitrary initial data and degenerates when e goes to zero into a high order scheme which
is implicit for the diffusion term, which makes it free from the usual diffusion stability condition. The
space discretization is also discussed and high order methods are also proposed based on classical
finite differences schemes. The Asymptotic Preserving property is analysed and numerical results
are presented to illustrate the properties of the proposed schemes in different regimes.

Key words. collisional kinetic equation, diffusive scaling, high order Runge-Kutta schemes,
asymptotic preserving property.

MSC codes. 82C40, 85A25, 65M06, 65104, 65L06.

1. Introduction. In this work, we are concerned with the numerical approxima-
tion of linear kinetic transport equations in a diffusive scaling. Such models are widely
used in applications such as rarefied gas dynamics, neutron transport, and radiative
transfer. Due to the presence of a small parameter € (which is the normalized mean
free path of the particles), standard schemes suffer from a severe restriction on the
numerical parameters, making the simulations very costly. In the last decades, the
so-called Asymptotic-Preserving (AP) schemes have been proposed to make possible
the numerical passage between the micro and macro scale [14, 15]. Indeed, these AP
schemes are uniformly stable and degenerate when ¢ — 0 to a scheme which is con-
sistent with the asymptotic diffusion model. This makes them very attractive to deal
with multi-scale phenomena as an alternative to domain decomposition approaches.

The goal of this work is to design high order in time AP schemes for collisional
kinetic equations in the diffusive scaling. Several works can be found in the litera-
ture on this topic [17, 14, 15, 18, 19, 20, 20, 26, 10, 21, 22, 25, 23, 28]. Our work
is based on a micro-macro decomposition as introduced in [25] where the unknown
f of the stiff kinetic equation is split into an equilibrium part p plus a remainder
g. A micro-macro model (equivalent to the original kinetic one) satisfied by p ad g
can be derived. This micro-macro strategy turns out to be the starting point of sev-
eral numerical approximations in phase space (using particles method, Discontinuous
Galerkin method or low rank approximation [6, 5, 13, 11, 12]). In addition, a suitable
first order semi-implicit time discretization of the micro-macro model is used as in
[25] for which however the asymptotic diffusion equation is solved explicitly. This
drawback is overcome following [23, 6, 5] in which the AP scheme degenerates into
an implicit treatment of the diffusion equation. This improvement enables to get a
numerical scheme which is asymptotically free from the usual parabolic condition.

The derivation of high order in time AP schemes for stiff kinetic problem has
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2 M. ANANDAN, B. BOUTIN, AND N. CROUSEILLES

been performed by several authors [7, 8, 9, 1, 13] using the so-called high order IMEX
methods [4, 2, 27]. In this work, a family of high order IMEX schemes is proposed
for linear collisional kinetic equations in the diffusive scaling, which degenerates when
€ — 0 to a high order IMEX scheme for the diffusion equation. From the first order
semi-implicit AP numerical scheme [6], the family of high order schemes proposed in
this work is obtained using globally stiffly accurate high order IMEX Runge-Kutta
methods, namely type A and type CK [8, 13].

In addition to the standard diffusion scaling, we also consider two other examples
that enter in our framework. First, we consider a modification of the collision operator
that enables to derive a transport-diffusion asymptotic model [17, 13]. Second, we
discuss half moments micro-macro decomposition which naturally incorporates the
incoming boundary conditions [24].

Lastly, we address the space discretization in order to get a fully high order solver
of the kinetic equation. High order space approximation based on finite difference
methods is considered. Staggered or non-staggered strategies are proposed to achieve
high order accuracy in space.

The paper is organized as follows. First in Section 2, the kinetic and asymptotic
diffusion models are introduced. Then in Section 3, high order time integrators (using
globally stiffly accurate IMEX Runge-Kutta temporal discretization) are proposed,
and their AP property in the diffusive limit is addressed in Section 4. Section 5 is
devoted to the space approximation. In Section 6, we discuss some extensions to other
collision operators and to half moments. In Section 7, numerical results are presented,
illustrating high order accuracy and the main properties of the schemes.

2. Kinetic equation, diffusion limit and micro-macro decomposition.
In this section, we introduce the kinetic model in the diffusive scaling, and recall the
asymptotic limit. Then, the micro-macro decomposition is performed to derive the
micro-macro model which serves as a basis for the numerical developments.

2.1. Linear kinetic equation with diffusive scaling. Let Q C R be the
position space and V' C R? be the velocity space with measure du(v). We consider
the linear kinetic equation with diffusive scaling,

1 1
(2.1) Of +—v-Vof = SLf, (t,z,0) eRY xQxV
€ €

where f(t,z,v) € R is the distribution function (depending on time ¢t € R, space
r € Q C R? and velocity v € V C R?) and € > 0 measures the dimensionless mean free
path of particles or the inverse of relaxation time. We consider the initial condition,

(2.2) f(0,2,0) = f"(z,v), (z,0) €QxV

and boundary conditions are imposed in space. In this work, we will consider periodic
boundary conditions or inflow boundary conditions. The linear collision operator L
in (2.1) acts only on the velocity dependence of f, and it relaxes the particles to an
equilibrium M (v) which is positive and even. We denote for all velocity dependent
distribution functions h,

J v h(v) dp
2. h),, = F———.
In particular, we obtain (M), = 1 and (vM),, = 0. Further, the operator L is non-
positive and self-adjoint in L? (V, M _1du), with the following null space and range:

(24)  N(L)={f:f€Span(M)}, R(L) = (N(L)" ={f:(f)y =0}
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HIGH ORDER AP SCHEME FOR KINETIC EQUATIONS IN DIFFUSIVE SCALING 3

Therefore, L is invertible on R(L) and we denote its pseudo-inverse by L~1. We also
assume that L is invariant under orthogonal transformations of R

2.2. Diffusion limit. In the limit ¢ — 0, it is seen from (2.1) that f — fy
where fo belongs to N'(L). Thus, fo = p(t,z)M where fy solves Lfy = 0 and where
the limiting density p is the solution of the asymptotic diffusion equation. To derive
the diffusion equation, a Chapman-Enskog expansion has to be performed to get
f=fot+eL Y (vM) - V.p+ O(?). Integrating with respect to the velocity variable
enables to get the diffusion limit

(2.5) 8ip — Vo (KV,p) = 0 with = — (v® L~ (vM)),, > 0.

2.3. Micro-macro decomposition. In this part, we derive a micro-macro
model which is equivalent to (2.1), and this is the model that will be discretized
in the next sections. First, we consider the standard micro-macro decomposition of
the unknown f [25, 23],

(2.6) f=pM+g, with p(t,z)=(f), and (g); =0.

We introduce the orthogonal projector Il in L? (V, M ~'dp) onto N'(L): IIh = (h),, M,
which will be useful to derive the micro-macro model. Substituting (2.6) into (2.1)
and applying successively II and (I —II) enables to get the micro-macro model satisfied

by (p, g)

1
(2.7) Ocp+ Vs - (vg)y =0,
1 1 1
(2.8) 0:g + - (I —TI) (v-Vag)+ —oM - Vop = 5 Lg.
Initial conditions for macro and micro equations become
(29) p(O, CC) = pinit(x) = <finit(m7 )>V y
(2.10) 9(0,z,0) = g"(z,v) = f™(z,v) — p"*(x) M (v),

whereas the boundary conditions for p and g become periodic if f is periodic. From
the micro part (2.8), a Chapman-Enskog expansion of g can be performed to get

g=—c (0, — L)_1 ((I —10I) (v-Vyg) + oM - pr) =eL N (vM) - V,p+ O(?),

under some suitable smoothness assumptions. Inserting this expression in (2.7) leads
to (2.5) in the limit € — 0.

3. Time integrators. In this part, we present the family of high order time
integrators for the micro-macro model (2.7)-(2.8). We will keep the phase space
variables continuous to ease the reading. We first recall the first order temporal
scheme which leads to the implicit treatment of the asymptotic diffusion model before
introducing the high order version.

3.1. First order accurate time integrator. Given p™, ¢g" that approximate
p,g at time ¢t = nAt, we obtain the solution p"*!, ¢g"*! from the following time
integration of (2.7) and (2.8) respectively. We use the following first order implicit-
explicit (IMEX) strategy to attain the asymptotic preserving property

At
n+1 n n
(3.1) P =0t = = Ve (g™
At At At
(3.2) gt =g" = — (I 1) (v-Vog") = —0oM - Vo p" "+ S L™t
€ € €
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4 M. ANANDAN, B. BOUTIN, AND N. CROUSEILLES

Let us observe that this scheme is different from the IMEX strategies employed in
[25, 13], due to our implicit treatment of density gradient in micro equation (3.2) and
fully implicit treatment of the macro equation. This strategy enables us to get an
implicit scheme for diffusion equation in the limit ¢ — 0.

Although the macro equation is treated in a fully implicit manner, p"*! and g"*! can
be updated using (3.1) and (3.2) in an explicit manner. From (3.2), we get

(3.3) g"tt = (- AtL)_1 (g™ —eAt (I —1I) (v Vug") — eAtvM -V p"th) .

Inserting this in (3.1), we obtain the following implicit scheme for the macro unknown

P =p" — AtV, - (v (2 — AtL)_l(eg”—At (I =) (v Vag™) = AtvM-Vp" 1))y,

or, expressing p"*! as quantities at iteration n
pn+1 = (I — AtQVI . (DE’AtVI))il (pn

- AtVz~<v (21 — AtL) ™" (eg™ — At (I —T0) (U'Vzg”))> )

1%
with De ar = (v ® (21 — AtL)_1 (vM))y. Thanks to this time integrator, p"*! can
be updated by inverting a diffusion type operator. Following this, g"*! can be found
explicitly from the knowledge of p"*!. This first order scheme introduced in [23, 6] is
the basis of the high order scheme presented below.

3.2. High order accurate time integrators. Following previous works [8, 13,
3], we will consider globally stiffly accurate (GSA) IMEX Runge-Kutta (RK) schemes
to construct high order time integrators for the micro-macro model (2.7) and (2.8).
An IMEX RK scheme is represented using the double Butcher tableau [4, 2]
¢ A c| A
\ b" \ bT

(3.4)

where A = (a;;) and A = (a;;) are sxs matrices which correspond to the explicit and
implicit parts of the scheme (A and A respectively are lower triangular and strictly

. . . ~ . ~ 7—1 ~
lower triangular matrices). The coefficients ¢ and ¢ are given by ¢; = ijl Qi

¢ = 23:1 aij, and the vectors b = (b;) and b = (b;) give quadrature weights that
combine the stages. For GSA IMEX RK scheme, we have

(3.5) cs = ¢ =1 and azj = bj, a5, = bj, Vj € {1,2..,s}.

An IMEX RK method is type A if the matrix A is invertible, and it is type CK if the
first row of matrix A has zero entries and the square sub-matrix formed by excluding
the first column and row of A is invertible. In the special case where the first column
of A has zero entries, the scheme is said to be of type CK-ARS. The reader is referred
to [8] for more details. In this work, we employ both type A and CK-ARS schemes.
The first order GSA IMEX RK scheme employed in (3.1) and (3.2) follows the type
CK-ARS double Butcher tableau (known as ARS(1,1,1)),

0lo0 o 0lo o
(3.6) 11 0 10 1
10 [0 1
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HIGH ORDER AP SCHEME FOR KINETIC EQUATIONS IN DIFFUSIVE SCALING 5

We now use the general IMEX RK scheme from (3.4) with GSA property (3.5) for
obtaining high order accurate time integration of macro and micro (2.7) and (2.8)
respectively. We introduce the following notations in the presentation of our scheme.

(3.7) Th®) = (I —10) (v - th““)) ,
(3.8) DIL, = (v (1 - ajatL) ™ (’UM)>V :
(3.9) 79}, = (A1 —aj;AtL) "

We will construct high order IMEX RK schemes following the first order guidelines
(fully implicit treatment of macro equation, implicit treatment of density gradient and
relaxation terms and explicit treatment of transport term in micro equation). Given
P, g™ that approximate p, g at time ¢ = nAt, we obtain the internal RK stage values
pU) and ¢, j=1,...,s as

J
) At
() — 0 _ At < <k>>
(3.10) p pr =) a - Ve (v
k=1
j—1 j J
. _ At At At
k=1 k=1 k=1

where, as usual, the summation Zi;ll in the explicit term is zero for j = 1.

Although the expressions above are implicit, the stage values p(), ¢(*) can be found
in an explicit manner by using the known quantities p™, g, and the stage values p\7),
2= {2,3,...,s} can be found explicitly from p",¢"™ and the previous stage
values p), g VI € {1,2,...,j — 1}. Indeed, proceeding similarly as for the first

order scheme, we get the following expression of (), j =1,...,s from (3.11),
(3.12)
‘ , -1 i j-1
g(” = Ie(&t (ezg" —€ Z &jkAtTg(k) —€ Z a;jp AtoM - pr(k) + Z ajkAtLg(k)> .
k=1 k=1 k=1

Further, we write (3.10) by splitting the summation on k as

j—1
- At At ~
I = < (k>> e v < (J)>
P P = ajk c x vg v Qjj c '® vg v’
and inserting (3.12) in the last term leads to the update of pU) for j=1,...,s

(3.13) pV) = (I — a2, ALY, - (D?Atvx)yl <pn _ jiajkitvx . <vg<k>>v
k=1

j—1
—a;j; AtV - <1}I§&t (eg” — &jkAtTg(k)
’ k=1
j—1 1 j—1
— Z ajkAtvM . Vrp(k) + E ajkAtLg(k))>V>,
k=1 k=1

where the definition of T, DS)N and Ie(,Jgt are given by (3.7)—(3.9). After this refor-
mulation, p¥) can be computed from (3.13) by inverting a linear elliptic type problem

This manuscript is for review purposes only.
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and following this, ¢/} can be found from (3.12). The GSA property in (3.5) guaran-
tees that the solution at "1 = (n + 1)At is same as the last RK stage values, that
is, pn+1 _ p(s) and gn+1 _ g(s)

4. Asymptotic preserving property. In this section, we show that the time
integrated scheme (3.13)-(3.12) becomes a consistent scheme for the diffusion equation
(2.5) in the limit € — 0. We will discuss the asymptotic preserving property for both
CK-ARS and type A time integrators as performed in [8] for the fluid limit. First, we
recall the definition of well-prepared initial data in our context.

DEFINITION 4.1 (Well-prepared initial data). The initial data p(0, x) and g(0, z,v)
in (2.9) and (2.10) are said to be well-prepared if g(0,x,v) = O(e).
LEMMA 4.2. Assume that € is sufficiently small. Let a;, and aji be the coefficients
of the RK method (3.4) applied to the scheme (3.10)-(3.11). Then, the following holds:
1. CK-ARS case: If g" = O(e), then g/ = g™ = O(e) and
gV =eL " (oM)-V,p9) +0(e?), Vje{2,...,s}
2. Type A case: gU) = eL=Y(vM)-V,pU) + 0O (62) , Vjedl,... s}

Proof. Let j € {1,...,s} such that aj; # 0. Observe that the operator Iggt
defined in (3.9) admits, for small ¢, the following expansion:

(4.1) T9), = —(aj;AtL) ™! + O(é2).

Consider now an A-type time integrator, so with a;j; # 0 for any j € {1,...,s},
and assume g" = O(1). From (3.12) and the previous expansion, we obtain

gV = —(ap AtL)™? [—eallAtvM VaepW | +0(2) = eL7 (M) - Vo p) + O(€2).
Now, the proof is performed by induction on j € {2,...,s} assuming that for any

Ee{l,...,j—1}, g% = eL=Y(wM) - V,p*) + O(e?). In particular g¢*) = O(e) and
the formula (3.12) has therefore the following expansion:

J j—1
g9 = —(a;; ML) |O(E) — €Y apAtoM - Vap®™ + " aj AtLg®) | + O(e?).
k=1 k=1

Inserting the induction hypothesis in the last sum, most of the terms in the two sums
eliminate so that finally g\ = eL=1(vM) - V,p) + O(€?).

The case of a CK-ARS time integrator is slightly different. First a;; = 0 so that
g = g™ = O(e) by the particular well-prepared assumption. Now ags # 0 and (3.12)
has the following expansion for j = 2:

9P =—(agpAtL)™! [0(62) —eag AtuM - Vzp@)} +O(2)=€eL  (vM)-Vop? + O(e).
Again, the proof is by induction on j € {3,..., s} assuming for any k € {2,...,j—1},

g®) = eL7Y(vM) - V,p®*) + O(e?). The same computation as above is available since
g = O(e). One has (note that aj; = 0 for any j so that the sums start at k = 2):

J Jj—1
gV = —(a;;AtL)~! |O(e?) — eZajkAtvM Vaup® 4+ ZajkAtLg(k) + O(€?)
k=2 k=2
= L7 (wM) - Vp'9 + O(e?). 0
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HIGH ORDER AP SCHEME FOR KINETIC EQUATIONS IN DIFFUSIVE SCALING 7

Due to the GSA property of both time integrators, we have g"*t! = g(*) = eL='(vM)-
V.p® + 0 (?) = eL7HvM) - Vp"+! + O (€) for sufficiently small e. Thus, the
following are evident from Lemma 4.2:

1. For type CK-ARS, if the initial data is well-prepared (that is, ¢° = O(e)),

then ¢g" = O(e), Vn > 0.

2. For type A, if the initial data is such that g° = O(1), then g" = O(e), ¥n > 0.
As observed in [8], the initial data does not need to be well-prepared for type A time
integrator, unlike type CK-ARS, to ensure AP property.

THEOREM 4.3. Consider the scheme (3.10)-(3.11) approzimating the macro-micro
model (2.7)-(2.8), with the RK method (3.4) of type A or of type CK-ARS (with well-
prepared initial data g° = O(¢)). Then in the limit ¢ — 0, the scheme (3.10)-(3.11)
degenerates to the following scheme for the diffusion equation

J
(4.2) pl) =pn 4 ZajkAtVQE . (/-@V:cp(k)) ,Vi=1,...,5 k=—{(v® Lil(vM)>V .
k=1

Proof. Corresponding to each case (CK-ARS or type A), we have the following;:
Type CK-ARS Assumptions in criterion 1 of Lemma 4.2 are satisfied, and its im-
plications can be utilised. Hence, inserting g0 = eL=1(vM) - Vp¥ +

O(e?), Yl € {2,3, .., s} into (3.10), we get (recall that aj; = 0)

, At
p(]) — p” — 7 Zajkvm . <U€L_1('UM) : pr(k)>v + 0(6)7
k=2

J
=p" — AtZajka . (<v ® L_l(vM)>V Vmp(k)) + O(e).
k=2

Type A Assumptions in criterion 2 of Lemma 4.2 are satisfied, and its implications
can be utilised. Hence, inserting g = eL='(vM) - V p'¥ + O(e?), V¢ €
{1,2,.., s} into (3.10), we get the required result by following the same sim-
plification as before. The only difference is that here Y 7 _, instead of > 7 _,.0

Remark 4.4. For type CK-ARS, if the initial data is not well-prepared, computing
g® from (3.11) involves EZ—;L*(I —TI) (v - V,g™M) which is not of O(e?). Thus,

9@ = e?L—l(I — (v VogM) + L7 (M) - Vop® + 0 (),
22
and inserting in the macro equation (3.10) for j = 2 leads to (since az; = 0)

P = %At <v ® L™ (U - H)”V39(1)> >v

— AV, - ((ve L7 @M)), V.p® ) +0(),
which is not consistent with the diffusion equation. Thus, for CK-ARS, asymptotic
consistency cannot be attained if the initial data is not well-prepared.

5. Space and velocity discretization. In this section, we present the spatial
(for both non-staggered and staggered grids) and velocity discretization strategies
that we employ in our numerical scheme.
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8 M. ANANDAN, B. BOUTIN, AND N. CROUSEILLES

5.1. Discrete velocity method. For the velocity discretization, we will follow
the discrete velocity method [16]. Thus, the velocity domain is truncated as v €
[—Vmax, Umax], and a uniform mesh is used vy = —Vpmax+kAv, k=1,..., N, (N, € N¥)
and Av = 20 /N,,. Further, f(¢,2,v) and M (v) are represented as:

fe(t,x) = f(t,x,vr), My :=M(vg) for k=1,...,N,.

Then, according to the definitions (2.3) and (2.6), we have for j =1,..., N,

Ny—1 Ny—1
v A v A
plt, ) ~ M and (ITf(f,2,v)), ~ f;zi)l—fkvM*

K=o MrAv 2pto MiAv

For the presentation, we will skip the velocity part to focus on space discretization.

5.2. Space discretization using staggered grid. First, we will consider stag-
gered grid to approximate g() and p{¥) in space following [25]: the two meshes of the
space interval [0, 1] are x; = iAx and ;41 /5 = (i+1/2)Ax fori =0,..., Ny (N, € N*),
with Az = L/N,,. Periodic boundary conditions will be considered in this section.

The expressions for g¥) and p) in (3.12)-(3.13) are spatially discretised by con-
sidering staggered grid: pU) is stored at z; (pZ(-j) ~ pY)(x;)), and g is stored at
Tit1/2 (ggi)l/z(v) ~ gU)(2;11/2,v)). The term v-V,g*) in (3.12) and (3.13) is discre-
tised in an upwind fashion as v -V, = vt - G, + v~ - G{, where vt = (v+]v))/2,
Gu:tpw denote the N, x N, matrices that approximate V,. For instance, the first order
version is

1 1
— _ . + _ .
(51) Gupw - ECIFC([*LL}), G1'upw - FxC|rC([ia 1])7
where the notation circ is defined in Appendix A. With these notations, we get
(4) () (4

()
. 9.1 — 4.1 g s —g. 1 ‘
0ugP) et TR g (0hGy, 07 G o)
(U =9 Tit1/2 Y Az i Ax (U upw+'U upw)g 5’

where in the last term, the ¢ index has to be understood as the i-th component
of the vector. Instead of first order upwind discretization, one can also use high
order upwind discretizations so that the matrices G, will be different. Further, the
term vM - V,p*) in (3.12)-(3.13) and the terms of the form V, - ((-))y, in (3.13) are
discretised using second order central differences as in [25]. In particular, the term

vM - Vp™*) is approximated by
(k) _ (k)

W 1
(5.2) (fuM@mp(k)) “UM%:(UMG@%/J(’“)),, Gcenngxcim(ﬂ, 1).
Tit1/2 7

Finally, the gradient terms V, - ((-)),, in (3.13) are approximated as follows

(53) (0, <'>V)gc-(<.>V)i+1/2Ax(<.>V)i_1/2 —(Geen, (Iy), Gcenp:AixCirC([*l,l])

i

Again, high order centered finite differences methods can be used so that it will give
different expressions for Geen, and Geen,. Let us remark that the term V, -V, = A
in (3.13) is approximated by Geen,Geen,> i€ Geen,Geen, = A%Czcirc([l,;Q, 1]), which
gives the standard second order approximation of the Laplacian.
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To ease the reading, we present the fully discrete scheme for first order ARS(1,1,1)
but the generalization to high order can be done using the elements of Section 3

g = (1 - AtL)fl(EQg”—eAt (I-1I) (vF Gy, +v G

oot Gl
P = (1= MG, (v (21— AtL) ™ (011)) Gceng))il x
(" = AtGeen, (v (€21 = ALL) ™ (eg” =At (I = 11) (v G0 Gifp) 97)) ) ) -

5.3. Space discretization using non-staggered grid. We also address the
case of non-staggered grids which may be more appropriate when high dimensions are
considered in space since only one spatial mesh is used: x; = iAz, for i = 0,1, .., N,
with Az = L/N,. Let g¥) and p\) in (3.12)-(3.13) Vj € {1,2, .., s} be approximated in
space by g(])( ) &~ g (x;,v) and p(j) p(J)( ;). The term v-V,g®*) in (3 12)-(3.13) is
discretised in an upwind fashion as v-V, = v G, +v~ G{,,, where vE = (v |v])/2.

Here, Gupw denote the matrices that represent an upwind approximation of V. For

instance, the definition (5.1) can be used, but also its third order version

) g'— eAtvMGcengp”+1)

(5.4) Gopw = GA%circ([l, —6,3,2]), Gl = Gixcirc([—zl& 6,—1]),
where circ represents the matrix notation described in Appendix A can be used. The
term vM - V,p*) in (3.12)-(3.13) and the terms of the form V, - (())y, in (3.13) are
discretised in central fashion, since these terms act as source in (3.12) and diffusion
n (3.13). Here, V, is approximated by central differences as in (5.3) or (5.2) but in
the non-staggered case, the same matrix can be used for both terms. As an example,
the fourth order central difference produces:

(5.5) Geen = circ([1,-8,0,8, —1]).

1
12Az
The term V, -V, = V2 in (3.13) is discretised as the matrices product G2, =
GeenGeen- Like in the staggered grid case, we present the fully discrete scheme for
first order ARS(1,1,1) time discretization to ease the reading:

g = (1 = AtL) (29" —eAt (I - 11) (7 Gy + 0~ G, g7 —eAtM Geenp” )

upw

(UM)>V G)) x

(0" = AtGeen (v(21 = ALL) ™ (g™ = AT =T ((0F Gy + 0 G) 7)) )

" = (1= APGee ((ve (21 - AtL) ™

Remark 5.1. We know that the term > 7 _, ajk%vx : <Ug(k)>v in (3.10) is split
into first j — 1 and last j contributions, and g is substituted for the last j contri-
bution, as in (3.13). The gradient in Zk LSV, (v g(k)>v of (3.13) is discretised
using Geen,. Further, the substitution of g for the last j hints the combination of
V. - Vg as V2 for the terms of ¢ involving V,g and V.p. However, if we choose
a spatial discretization for V2 as Ggifr, then these terms will experience Geen, Geen,
for the first 7 — 1 contributions and Gy for the last j contribution of the p(j ) update
equation. This disrupts the ODE structure present in RK time discretization, and
hence reduction to first order time accuracy was observed numerically. Therefore,
in order to retain high order time accuracy, it is important to carry out the space
discretization carefully. Hence, we do not introduce a different discretization for V2,
and we retain Gceanceng even for the last j contribution of p(j) equation.

This manuscript is for review purposes only.
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10 M. ANANDAN, B. BOUTIN, AND N. CROUSEILLES

Remark 5.2. The matrices introduced for spatial discretization do not change the
Chapman-Enskog expansion so that the AP property is still true in the fully discrete
form. Thus, we have g*) = €L} (vM)Geen, p + O(€?) for k € {1,..., s} by using
type A. For CK-ARS with well-prepared data, we have g*) = eL= (v M)Geen, p*) +
O(€?) for k € {2,...,s}. Inserting this in macro equation, we get the corresponding
RK scheme for the diffusion

J
P = g = A ajxGeen, ((v® L7 (0M)),, Geen, p™)) + O(e).
k=1
6. Extensions to other collision operator and inflow boundary prob-
lems. In this section, we show that our high order AP schemes can be extended to
other problems involving advection-diffusion asymptotics and inflow boundaries.

6.1. Advection-diffusion asymptotics. In this part, an advection-diffusion
collision operator is considered (see [17, 13]),

(6.1) Lf:=Lf+eM-A(f),, AcRY |4l <1,

where L denotes a collision satisfying the properties listed in Section 2. A famous
simple example is Lf = (f),, M — f.

Using the notations introduced in Section 2, we can derive the micro-macro model
satisfied by p = (f), and g = f — pM by applying II and I —1II to (2.1) with collision
L to get the macro and micro equations in this context

1
(6.2) Op + sz “(vg)y =0,

1 1 1
(6.3) og+ = (I ) (v-Vzg) + —oM - Vup=5Lg+—vM- Ap.

A Chapman—Enskog expansion can be performed to get g = eL"Y(vM) - Vyp —
eL=Y(vM) - Ap + O(€?). Inserting this in the macro equation (6.2) enables to ob-
tain an advection-diffusion equation in the limit ¢ — 0:

(6.4) Op+Va- (0@ L (vM)),, Vap) = Vo - ((v®@ L™ (vM)),, Ap) = 0.

The goal is to design a uniformly stable high order time integrators for (6.2)-(6.3)
so that they degenerate into a high order time integrator for (6.4) as ¢ — 0. The
extension of the schemes introduced in Section 3 will lead to an IMEX discretization
of the asymptotic model (6.4), where the advection term is treated explicitely while
the diffusion term is implicit.

6.1.1. High order time integrator. In this subsection, we present the dis-
cretization of macro and micro equations (6.2)-(6.3). As in Section 3, in the micro
equatlon we treat % = Lg implicitly to ensure uniform stability and the additional term

vM Ap expll(:ltly since it will be stabilized by the implicit treatment of the stiffest
term Regarding the macro equation and the remaining terms in micro equation, we
follow the lines from previous Section 3. We thus obtain the following high order
IMEX RK scheme to approximate (6.2)—(6.3)

(6.5) p(J _ P Zajki . <vg(k)>v7

; N L a -
(6.6) g@:g”—j > auTe®+ Zajkvamp(’”—Zf’“Lg(“ > agpoM:Ap,

k=1 k=1 k=1 k=1

This manuscript is for review purposes only.
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where the coeflicients aj, a;, are given by the Butcher tableaux. As in Section 3,
some calculations are required to make the algorithm explicit. First, we have

Jj—1 J
6.7) ¢D=19), <e2g”—eAt[ZajkTg<’“>+ZajkvM - Vp®)
k=1 k=1

1 j—1 j—1
LS et - St 4] ).
k=1

k=1

with Tg®) = (I-1I) (U~Vmg(k)) and Ie(fgt: (eQI—ajjAtL)_l. Then, p¥) is obtained
by inserting ¢g\/) given by (6.7) in the macro equation (6.5) to get

(6.8) p) = (I — a2, ARV, - (Dﬁ{gtvx)) - (,0” - Ji ajk%% : <vg(’“)>v
k=1

j—1 j—1
—a;j; AtV - <UI€(7JLI <eg" — ZdjkAtTg(k) - ZajkAtvM . pr(k)
k=1 k=1
1 j—1 j—1
+- Z CijAtLg(k) + Z CNijAt’UM . Ap(k)> > ) s
€
k=1 k=1 \%

where DY), = (v @ (I — aj;AtL) " (vM))y. Thus, pi¥) can be updated by using
(6.8) and ¢g\) can be found explicitly by using (6.7).

6.1.2. Asymptotic preserving property. This part is dedicated to the as-
ymptotic preserving property of the scheme (6.8)-(6.7). We first show the AP prop-
erty of type A time integrator, and we later remark how this property is true for the
CK-ARS time integrator with well-prepared initial data. First we have

LEMMA 6.1. If g" = O(1) and ¢"® = O(e),Vk € {1,2,...,5 — 1}, then g¥) =
O(e),Vj € {2,3,..,s} for small e. In particular, we have Vj € {2,3, .., s}
(6.9)

i =1 i1 -
g = EZ Gk =1 (M) -V, p*) — Z Gk o) _ N YR p=10,07) . ApR) 1 O(e).
k=1 ajj k=1 JJj k=1 ajj

Proof. Plugging in (6.7) the expansion (4.1) of Iggt given by (3.9), along with the
assumptions stated in the Lemma, we obtain (6.9) from which we deduce g¢) = O(e)
for all j € {2,3,..,s}. |

Remark 6.2. For type A time integrator, if g" = O(1), we have from (6.7):

g = LAV +0() = O(e)
11

This satisfies the induction hypothesis in Lemma 6.1. Further, (6.9) holds by omitting
7~1 terms for j = 1. Thus, (6.9) is true for j € {1,2, .., s}.

Lemma 6.1 enables to get an expansion of g/) that can be inserted in (6.8) to identify
the time discretization of the asymptotic limit. However, this leads to quite involved
calculations which requires to introduce some notations.
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12 M. ANANDAN, B. BOUTIN, AND N. CROUSEILLES
DEFINITION 6.3. For j € {1,2,..,s} and ki,m € {1,2,..,j} we define
m ajk ko ok1 ok Fon— k
6.10 no—= Ik (Skogkigke  Gkm-1) (REm 7
(610 o = (v )®))
with
ki—1

Sko=1, Sh= Z Mforle{l,?,..,m—l},mzz

a
kiii=1 kiy1kita

km km—1
R = 3" ap ik L WM) - VP — N g g LN (0M) - Apthmen),
kmi1=1 kmy1=1

As usual, we will use the convention Zq._l =01ifqgeZ\N.

The term M7~ will be useful in the following study and deserves some remarks:
the index m denotes the depth of the embedded sums, j corresponds to the current
stage and k; corresponds to the indexing over previous stages. We continue with the
following lemma which gives an induction relation on M,

LEMMA 6.4. For j > 2, we have

J—1
N =" Nt forme{2,3,.,5}, and NV, =0 for ky € {1,2,..,5 — 1}.
klzl

Proof. For the first relation, considering k1 = j (with j > 2) in (6.10) leads to

My = (v (S*&/8k .. §Fm=1) (RF)),,

j—1
. . —; ajk
since aj; # 0. Further, since Sh=i = 172 we get
kg1 Th2ke
-
j—1
Ny =(ov) k2 (shgh ghnt) (RFn)
7
ak‘gkz
ko=1 e

By employing the change of variables as ky — k¢—1 for £ € {2,3,..,m} in the right
hand side of above expression, we get

-1
ny, = <v > ik (Shogkr | Shm-2) (ka1)>

=1 Ak ks v
j—1 Jj—1
Ak —
. jk1 ko ok km—2 km—1 — m—1
> (v (shosh st (RE)) = 3D
ka1 1k1 Vo k=1

which proves the first identity.
For the second relation, considering m = j in (6.10) leads to

|'|J _< ajkl (8k08k18k2 Sk}j—l) (RkJ)>
14

k
J:r1 Aoy key

We first prove the relation for j = 2. It is clear from Definition 6.3 that the summation
in S* goes from ko = 1 to ks = ki — 1. For ki = 1, the summation goes to
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ky = k1 —1 = 0. Thus, since S¥* involves Z(IJ for k1 =1, it is zero according to the
convention. Hence I'Ij = =0 for k; = 1.

We now prove the relatlon for j > 2. From Definition 6.3, it can be seen that the
summations in S¥* and S*2 go from ko = 1to ko = k1 — 1 and ks = 1 to ks = ko — 1
respectively. Thus, the summation in S*2 can go to atmost k3 = ky—1 = (k1 —1)—1 =
k1 — 2. Proceeding in this manner, we see that the summation in S¥-1 can go to
atmost k; = k1 — (j — 1).

For ky € {1,2,..,j—1}, k;j = k1 — (j—1) € Z\N so that S¥i-1 = 0 and hence I'Ig,h1 =0
for k1 € {1,2,..,j — 1} which ends the proof. d

Now, we can use the previous Lemma to identify the asymptotic numerical scheme.

LEMMA 6.5. When € — 0, the numerical scheme (6.5)-(6.6) degenerates into

J J
(6.11) pV =p" + ALYV, (Z( n‘nt kl) forj € {1,2,..,s},

ki1=1 £=1

where I'If’,Cl is given by Definition 6.3.

Proof. We start with the macro equation in (6.5)

J
At
= 2w Ve g™y

k1=1

in which we insert g*1) given by (6.9) to get

7 ki—1
p(j) = pn — At Z \E < ajkl <Z ak?1k2 UM) k2) Z aknk:z UM) A (k2)>>
14

k=1 Whks \p, 21 ka=1
t < a; il
= Z v, - ( vtk Z gy 1y g2 +0(e)
ki=1 Wik \ g1
1 2 \4
j ‘ kit
—AtZVI'<“fm (sR") > Z Vo (022 (3 ang™ ) )+ 00
k=1 kuky k=1 st kz=1
1 1= 2 \
ki —1
aji
I (z <>)> +o(.
k1=1 k1=1 1R ko=1 1%

Inserting ¢*2) from (6.9) in the above equation and simplifying as before, we get,

O
, g At ajk klflakkkzl
N L S PO S R
Vv

a
ki1 k=1 kiky \ T Qkaka g
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This procedure can be continued (j — 1) times to finally get,

J J—1
p(j) =p"+ At Z V- (Z( ) rl] k1>

ki1=1 l=1

j k1—1 kj_2—1 kj—1—1
At ik Ak k Ak _oki_
1)]717§:Vm' o2 2: 1k2 E: j—2Rj—1 jzak] 1kg
€

k=1 ka1 2k Whjrks

ky_1=1 CRi-tki—n Ty
J Jj—1
pn+Athx'<Z( )rljk1>

ki1=1 =1

AL : £
1)3162v£.<vaﬂkl Shogh | Ski-2 Z ar, 5, 9" > +0(e).

Ak ky

ki=1 kj=1

v

We know from Definition 6.3 that the summations in S¥* and S*2 go from ky = 1 to
ko = ki1 —1and k3 = 1 to ks = ko — 1 respectively. Thus, the summation in Sk2 can go
to atmost k3 = ks —1 = (k1 —1) — 1 = k; — 2. Proceeding in this manner, we see that
the summations in S¥-2 and Z:?;ll_l ak, 11,9 go to atmost kj_1 = ki — (j — 2)
and kj = k1 — (j — 1) respectively.

Since the summation in k; goes to atmost j in the above equation, k; in the term
Zl,z;;l_l ak, 1k, 9% goes to atmost k; = ky — (j—1) =4 — (j — 1) = 1, and k;_4
in S%-2 goes to atmost kj_1 = k1 — (j —2) = j — (j —2) = 2 and so on. Thus,
only k; = 1 remains in the last summation so that Zk akj_lk].g(kj) = aglg(l) =
can1 LM (vM)-Vyp+0(€2) = LLear; L (0M)-Vpl +0(e2) = eSki-1RFI +O(€?).
Thus, we have

111

J J—1
pl9) = p" + At Z \E (Z( 1) I'IJ k1>
=1

ki1=1

J
1At ST v, - <vajk1 Skogh | Ski-iRki > +O(e
) klzzl k1 ko ( ) v 9

V.- (S( 1)t k1> + V.- (1M,
(=1

J

:p"JrAtZ

ki1=1

+ O(e).

We can now prove the asymptotic property of the scheme (6.5)-(6.6).
THEOREM 6.6. When € — 0, the scheme (6.5)-(6.6) degenerates into

J
(6.12) pW) = pn — AtZajka . <<U ® Lil(vM)>V pr(k)>
j—1
JrAtZ&jsz : ((v ® Lfl(vM)>VAp(k)) , forje{1,2,...,s}.

k=1

Proof. From Lemma 6.5, the asymptotic limit ¢ — 0 of the macro equation in
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(6.5) is (for j € {1,2,..,s})

k1=1 =1 k1=1
J j—1
1 E 4
eSS GRS YEL RS wETD SN
=2 k1=1

Using the recurrence relation given by Lemma 6.4 and a change of indices lead to

) 1
pP = p" + ALV, - <_I_IJJ

e S S S )

kll k1=1

-1
:puw,(_n;j_z DSL TS S ZHM)
/=1

k=1 =1 k=1
j-1r
= p" 4 ALV, - (—n;’j +(-17 > rl;h) .
k71:1

From Lemma 6.4, we have EJ ! I_IJ &, = 0, so that from Definition 6.3 we get

14

ajj

ki—1
— AtV - < (Z Wy L (WM - Vp2) Z gy e, L (VM) - Ap(kz)>>
14

ko=1 ko=1

j—1

j
— At Z Uik, Va - (<v ® L™ (vM)),, pr(k2)> + At Z Gk, Ve - (<U @ L (wM)), Ap(k2>) 7

ko=1 ko=1

which ends the proof.

15

j i J
p(]) =p" + At Z V- <Z( l)fnﬁ kl) =p" + AtV,- (Z(—l)f ( it Z rl] k1
(=1

d

Remark 6.7. For CK-ARS schemes with well-prepared initial data, we obtain
g = ¢g" = O(e) and p() = p*. The presentation in this section will apply for
CK-ARS from the second RK stage onwards. For instance, Definition 6.3 applies for
CK-ARS with the following change in indexes: j € {2,3,..,s}, k1, m € {2,3,..,j} and
all the summations involved start from 2 instead of 1 since a;; = 0. The lemmas and
theorems that follow also undergo the corresponding change in indexes, and the AP

property for CK-ARS can be observed for j € {2,3, .., s}.

Remark 6.8. Upon incorporating the spatial matrices corresponding to staggered

grid in place of the continuous gradient operator, we obtain in the limit € — 0,

(6.13) p(j) = (I + ajjAthenp (<U ® L_l(’UM)>V Gceng))il X

Jj—1
(p" o Z ajkAthe"p (<’U ® Lil(UM)>V Gcengp(k))
k=1
j—1
+ 3 @At Geen, (0@ L7 (0M))y, Gaug, A9
k=1
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16 M. ANANDAN, B. BOUTIN, AND N. CROUSEILLES

The matrices Geen,; Geen, are given in subsection 5.2 and Gayg, = %circ( [1,1]). Thus,
A (,o(k))gciﬂ/2 = %A(pgi)l + pgk)) = (Gavg, Ap™);. This results in a central discretiza-
tion of the advection term in the macro equation. Thus, we obtain a consistent internal
RK stage approximation of the advection-diffusion equation in the limit € — 0.

6.2. Inflow Boundaries. So far, periodic boundary conditions were considered.
In this part, we consider inflow boundary conditions for f solution to (2.1)

(6.14) ft,x,v) = folt,z,v), (x,v)€ I xV such that v-n(x) <0, Vt,

where f, is a given function and n(z) denotes the unitary outgoing normal vector to
0. As mentioned in [25, 24], such boundary conditions cannot be adapted naturally
to the standard micro-macro unknown p(¢,x) and g¢(¢,z,v) solution to (2.6). To
overcome this drawback, another micro-macro decomposition is introduced in [24]

[ fdu

(6.15)  f=pM+3g, p(t,x) = (f(t,z,")y, @Gt z,)y =0, (fHy.= m7
A

where the velocity domain V_ is defined by
(6.16) V_o(z) ={v e Viw(z,v) <0}, Vi(z)=V\V_(z).

The function w(z,v) extends v - n(z) in the interior of domain. Some examples of
w(x,v) for different geometries are provided in [24]. It can be seen that the bound-
ary conditions for p(t,z) and g(t,z,v) can be evaluated from the inflow boundary
condition in (6.14). Indeed, for (z,v) € 9 x V such that v - n(z) < 0, V¢, we define

(617) ﬁb(tax) = <fb(t’x7 ')>V, ; yb(t7xvv) = fb(tax7v) - pb(t7x)M(U)'

The derivation of the micro-macro model needs to be adapted to this decomposi-
tion. The projector II~ is defined as II"h = (h),, M. Then, substituting (6.15) into

(2.1) and applying I~ and I — II~ enable to get the macro and micro equations:

1 1 1
(6.18) op+ . (oM)y, - Vup+ gvr (V9. = 5 (Lg)y._
1 1 1 -
(6.19) 0:g + p (I — Hf) (v-V.9) + p (I — Hf) oM -V, ,p= €f2L§,

where L = (I —II7) L. Moreover, it can be seen that L = (I =)L (I —1I7) =
(I —17) L (I—TI) since I~ h,ITh € N(L),Vh.

The macro equation (6.18) turns out to be more complicated than the one obtained
for standard micro-macro decomposition. It can be made simpler by using p = p +
(v, f = pM —(g),, M + g, obtained from the decompositions (2.6) and (6.15).
Applying IT to (2.1) instead of II™, we obtain the simpler macro equation,

1
(6.20) Op + va - (vg)y =0,

and the micro-macro system that we will consider in the sequel is (6.19)-(6.20).
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6.2.1.

Numerical scheme. In this part, we present the fully discretized scheme

to approximate (6.19)-(6.20). The boundary conditions on p, and g, in (6.17) will be

utilised along with the relation p = p+ (g),,

that allows to link p and p in the interior

of the domain. We will use a staggered grid in space following [24] and a high order
scheme in time, following the strategy developed previously. To ease the reading, only
the first order version will be presented.
First, we present the space approximation based on a staggered grid. Let us consider
the space interval [0, L] with two grids: x; =4iAx and ;41,2 = (i +1/2)Az, Az =
The ’interior’ variables such as p,p are stored at grid points x; with

L/(N,

2—1

—1).

,N; —2) and g is stored at ¢ + 1/2 = 1/2,---

, Ny —3/2. We also use

the Varlable G = gU gy € RN+t The whole domain including boundary will be
considered for the micro unknown g so that the components of g, correspond to the
grid indices ¢ +1/2 = —1/2,--- | N, — 1/2. The matrices corresponding to spatial
operators are given by

(6.21)

B-

upw

1 . 1 .
AxC'fC([;l, 1) (N, ~1)x(N, +1)» Bipw = ECIFC([Qa

=1, 1)) (Ny—1)x(No+1) 5

1 . 1.
(6.22) Been, = IC'VC([j» ) (N.-2)x (N, -1): Bavg = geire((L, 1) (v, ~2)x (N, -1);

(6.23) Been, =

AJUcwcb([ A (v, —1)x (N, —2)-

The circy definition is presented in Appendix A. Further, we also introduce a vector

containing the boundary values of p as py; = A%c [*ﬁbi:o, 0,0,...,

T

07pbi:Nm—l](Nz—1)><1'

We now present our scheme by using this matrix notation. For simplicity, we assume
that p, is time invariant. We also use the following notations:

ge,At =

(I = AtL) At (I —17) (wM)),,, Zear = (€1 — AtL)

Th=(I-1I") (v"Bg,, + v B}

upw upw

) h, Dear = (0(2T = AtL) ' At (I —T17) (vM))y
-1

L T=(-1") wM)]

The micro equation (6.19) is discretised in time as in the previous (periodic) case

(6.24)

gt = Tene (62§” — eAtT gl — eAthcengﬁ”""l — eAtjﬁbd) ,

and for the macro equation (6.20), we obtain

Pt =t 1 —nt1

Tar e (B gy =0
Substituting g"*! in the above equation, we get
(6.25) p"t = p" — AtBcen, (VTeat (67" — AtT Gl — AtTBeen, p" T —
In index notation, we use p ™! = pI'*t + (g gl

AtTPua) )y

g;" 1/2+91+1/2> (since p=p+ (g)v) to

match the two grids. In matrix notation, this becomes p"*1 = p" 1 + Bay (3" )y
with B,y given by (6.22). Substituting this into the above equation and inserting the
expression for g"*! into B.g < +1>V enable to update the interior macro unknown

(6.26)

—n-+1
P

= (I —€Bayg (Ee,Atheng) - Athenp (55,Atheng))
(pn - Bavg <TE7At (€2§n - EAt?gle - EAtjpbd) >V

-1

X

—AtBcen, (VZear (65" — AtT gl —
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The right hand side of above expression involves only known quantities so that p"*!
can be updated from (6.26) which can then be used to update g"™! in (6.24). Then,
we update §Zl+1 thanks to the boundary conditions (6.17), and finally p"*! can be
computed from p"*! = 5"t + B,y <§"+1>V. In the limit € — 0, the above equation
becomes,

= (I + AtBeen, (<v ® i_7>v Bceng>)71 (P"—Athenp (<U ® i_17>v ﬁbd))

This is a consistent discretization of the diffusion equation in (2.5) since (vVQL ™17 )y =
(v® LY (vM))y = —k. Further, the high order scheme in time can be constructed
in a similar manner as before.

7. Numerical results. In this section, we present the numerical validation of
our high order asymptotic preserving schemes in different configurations.

7.1. Diffusion asymptotics. First, we check time and space accuracy for the
micro-macro scheme in the diffusion limit.

7.1.1. Time order of accuracy. The spatial domain L = [0, 27] of the prob-
lem is discretized using N, = 50 grid points. The velocity domain is truncated to
[—Vmax, Umax] With vmax = 5 and we take Av = 1. The initial condition is:

p(0,z) = 1+ cos(x)
Well-prepared data (WP): g(0,z,v) = €*(I —II) (v M) p(0, z)
Non-well prepared data (N-WP): g(0,z,v) = (I —II) (v*M) p(0, z),

with M(v) = \/%e_’ﬂ/? Periodic boundary conditions are used on both p and g.
The spatial terms are discretised by using the atmost-third order accurate matri-
ces on non-staggered grid presented in subsection 5.3. The final time is T = 0.5,
and the following At are considered to validate the different high order time in-
tegrators: At = 0.5,0.1,0.05,0.01,0.005,0.001. The type A micro-macro schemes
constructed using the Butcher tableau corresponding to DP-A(1,2,1), DP2-A(2,4, 2)
and DP1-A(2,4,2) are considered. Although DP1-A(2,4,2) is second order accurate,
the implicit part of it when used separately is third order accurate. Further, we also
consider the type CK-ARS micro-macro schemes constructed using Butcher tableau
corresponding to ARS(1,1,1), ARS(2,2,2) and ARS(4,4, 3). The Butcher tableau of
different time integrators utilised are presented in Appendix B.

In Figure 1, we plot the time error for the different time integrators in both WP
and N-WP cases and for different values of e. Note that the reference solution for
each curve is obtained by using the same micro-macro scheme corresponding to that
curve with At = 10~%. For € = 1, the required orders of accuracy are recovered for
type A schemes with both N-WP and WP initial data, as observed in Figures la
and 1b. For € = 107, due to the asymptotic degeneracy of our scheme into a fully-
implicit scheme for diffusion equation, only the implicit part of the Butcher tableau
plays a role. Hence DP1-A(2,4,2) becomes third order accurate in time, while DP-
A(1,2,1) and DP2-A(2,4,2) are first and second order accurate respectively. This is
shown in Figures 1c and 1d. On the other hand, CK-ARS schemes with both N-WP
and WP initial data for ¢ = 1 recover the required orders of accuracy as shown in
Figures le and 1f. However, for € = 1074, orders of accuracy are observed only when
WP initial data are used (Figure 1h). As shown in the analyses presented in previous
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a
-

loguolLs error)

s oboL L

Do s o s Do 3s 20 s do s So 45 4o s 4o 05 S0 35 30 s
logso(At) logio(At) logao(At) logao(At)

(a) AN-WP, e =1 (b) AWP, e=1 () AN-WP, e =10 (d) A WP, e=10"*

f/7/ 5/7/

10(Lz error)

olL2 error)
logaolL2 error)
logzo(Lz error)

log;

S0 s o s S0 4s 20 s o0 s S0 s -0 s o 0 S0 25 30 s
logro(At) logao(At) logao(At) logso(At)

(e) CK N-WP, ¢ = 1 (f) CK WP, e=1 (g) CK N-WP, e=10—% (h) CK WP, e = 104

Fic. 1. Accuracy in time for different type A and CK-ARS time integrators (both WP and
N-WP initial data). The reference solution is obtained from the micro-macro with At = 1074,

sections, usage of N-WP initial data for CK-ARS time integrators does not allow the
asymptotic accuracy (Figure 1g), as discussed in [8].

Since we proved the asymptotic preserving property, the diffusion solution is used as
reference solution in the asymptotic regime (e = 10~%) with At = 10~* (in Figure 2)
to check the orders of accuracy of high order integrators. The results are similar to
the ones obtained for ¢ = 10~ in Figure 1, except that here we observe a plateau
for third order scheme and small At. This is due to the O(e?) difference between the
schemes based on micro-macro and diffusion models. This error dominates O(At?)
error, and hence it is observed.

7.1.2. Space order of accuracy. The problem set-up is the same as described
in the previous subsection, except for the following changes. Here, we consider the
final time to be T' = 0.01 and At = 0.001 so that the error in time is small enough to
study the spatial accuracy. To do so, we consider the following number of points in
space: N, = 20,24,30,40 and 60. The reference solution is obtained with N, = 120.
Since the spatial accuracy plots obtained from different time integrators are quite
similar, we present only the plots obtained by using DP1-A(2,4,2) and ARS(4,4, 3)
for different values of € (¢ = 107%,0.2,1) in Figures 3a and 3b. For the spatial
discretization, we only show the results obtained by the third order spatial matrices
on non-staggered grid presented in subsection 5.3 so that the scheme is expected to
be third order accurate in space. In Figures 3a and 3b, the expected order is observed
for the two time integrators and for the three considered values of e.

7.1.3. Qualitative results. In this part, we compare the density obtained by
the micro-macro equation (MM), the linear kinetic equation with BGK collision op-
erator (BGK) and the asymptotic diffusion equation, for different values of e. The
MM scheme described in previous sections is utilised, the BGK is discretized using an
IMEX (implicit treatment of collision term and explicit treatment of transport term)
scheme whereas for the diffusion model, an implicit scheme is used. For all three
models, the Butcher tableau corresponding to DP1-A(2, 4, 2) time integrator is used.
For the spatial discretization, we use third order scheme on non-staggered grid.
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F1G. 2. Accuracy in time for different type A and CK-ARS time integrators (both WP and
N-WP initial data). The reference solution is obtained from the diffusion equation with At = 10~%.

- £=107,DP1-A(2,4,2) 4 =107 ARS(4,4,3)
-5.01 4 £=02,0P1-A(2.4,2) -5.01 - £=02,ARs(4,4,3)

- £=10P1-A(2,4,2) - £=1,4RS(4,4,3)
-5.5{ — slope 3 -5.5{ — Slope 3

log1(L2 error)
.

logio(L; error)
.

I N I e N D . RN a2
(a) A N-WP (b) CK-ARS WP

F1G. 3. Accuracy in space for the third order spatial scheme coupled with DP1-A(2,4,2) (left)
and ARS(4,4,3) (right) for the time approzimation.

The problem domain L = [0, 2] is discretised using N, = 20 grid points for all the
three models. The final time is T' = 0.5, and At = 0.005. We use the same N-WP
initial and boundary conditions described in the previous subsection. Further, we also
consider the same velocity discretization as before for both MM and BGK models.
In Figure 4a for rarefied regime (¢ = 1), the MM and BGK models compare very
well, while the diffusion model is different as expected. In the intermediate regime
(e = 0.2), the BGK and MM models match very well while the diffusion model is
slightly different. For ¢ = 10~4, we only compare MM and the diffusion in Figure 4c
and illustrate the AP property of the time integrators used for MM.

7.2. Advection-diffusion asymptotics. In this subsection, we present the
time accuracy of our high order micro-macro scheme for the advection-diffusion case.
As in the diffusion case, the spatial domain L = [0, 2] is discretised using N, = 20
grid points whereas the velocity domain is [—vmax, Umax] With Umax = 5 and Av = 1.
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Fic. 4. Qualitative results for diffusion asymptotics

-1~ £=10",DP1-A(2,4,2)
8- £=1,0P1-A2,4.2)
~24 — slope 2

—— £=107%,ARS(4,4.3)
-2 = £=1,4RS(4,4,3)
— slope 3

log1o(L, error)
logio(L error)

-30 25 20 -15 -10 -0.5 -3.0 -25 -2.0 -15 -10 -05

logs0(At) loga0(At)

(a) A (b) CK-ARS

F1G. 5. Accuracy in time. Left: DP1-A(2,4,2) (N-WP initial data). Right: ARS(4,4,3) (WP
initial data). The reference solution is obtained from the micro-macro scheme with At = 1074,

The initial condition for the problem is:

(7.1) p(0,z) = sin(z)
(7.2) Well-prepared data (WP): g(0,z,v) = ¢*(I — II) (v*M) p(0, z)
(7.3) Non-well prepared data (N-WP): g(0,z,v) = (I —II) (v M) p(0, z),

with M(v) = ﬁe"ﬂﬂ. Periodic boundary conditions are used on both p and g.
The spatial terms are discretised by using the atmost-first order accurate matrices
on staggered grid presented in subsection 5.2. The final time is T = 0.5, and the
following time steps are considered: At=0.5,0.1,0.05,0.01,0.005,0.001. We observe
the time order of accuracy for both ¢ = 1 and € = 10~*. We choose the highest order
time integrator in both type A and CK-ARS schemes for studying the time accuracy.
Hence, we consider DP1-A(2,4,2) and ARS(4, 4, 3) with N-WP and WP data respec-
tively.

Asymptotically, our micro-macro scheme degenerates to a consistent scheme for the
advection-diffusion equation with advection and diffusion terms being treated explic-
itly and implicitly respectively. Hence, unlike the case of diffusion asymptotics for
which an extra order is observed asymptotically, DP1-A(2, 4, 2) remains second order
accurate for e = 1074 since both explicit and implicit matrices of the Butcher tableau
are involved here (Figure 5a). For € = 1, the required second order accuracy is ob-
served. Further, the required third order accuracy of ARS(4, 4, 3) is observed for both
e = 107%,1 in Figure 5b, since well-prepared initial data is considered.
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(a) Type A, e=1 (b) Type A, e =107%

FIG. 6. Accuracy in time with type A schemes for ¢ = 1 (left) and ¢ = 10~* (right). The
reference solution is obtained from the micro-macro for inflow boundaries scheme with At = 10~4.

7.3. Inflow boundary condition. In this subsection, the high order numerical
scheme for micro-macro model that allows inflow boundary conditions is validated
numerically. We first present the time accuracy results for high order schemes. Then,
some qualitative plots are shown for two tests with zero inflow at the right boundary,
and equilibrium and non-equilibrium inflows respectively at the left boundary.

7.3.1. Time order of accuracy. If the domain of the problem is a half-plane,

w(z,v) = [—’U,0,0, o ] can be chosen Vz as described in [24]. Here, for numerical
purposes, we consider a domain of L = [0,2] and assume that the right boundary
does not influence the dynamics.
The spatial domain is discretised using IV, = 20 grid points and the velocity domain
iS [~Vmax, Umax] With vmax = 5 with Av = 1. The initial conditions at all interior
points and right boundary conditions for the variables p, p and g are considered to be
0. The left boundary conditions (for v, > 0) are:

(74) f (t,l’i = O,’Uk) = M(Uk)7 ﬁ(taxi = 0) = 17 g(t?'ri+1/2 = —Al‘/Q,’l}k) = 0)

with M (v) = \/%e*'ﬂ/z. The final time is 7' = 0.1, and the following time steps are
considered to check the accuracy in time: At = 0.1,0.05,0.01,0.005,0.001. Like in the
previous problems, we observe the time order of accuracy for both € = 1 and e = 10~%.
The time integrators considered are DP-A(1,2,1) and DP1-A(2,4,2). The reference
solution for each curve in Figure 6 is obtained by using the same micro-macro scheme
corresponding to that curve with At = 10~%. For type A time integrators with ¢ = 1
in Figure 6a, first and second order accuracies of DP-A(1,2,1) and DP1-A(2,4,2)
are observed. In Figure 6b for ¢ = 107%, first and third order accuracies of DP-
A(1,2,1) and DP1-A(2, 4, 2) respectively are observed. As for the (periodic) diffusion
case, DP1-A(2,4,2) turns out to be third order accurate since only the implicit part
of Butcher tableau is involved asymptotically. For ARS(2,2,2) and ARS(4, 4, 3) time
integrators (not shown here), order reduction to first order for e = 1 (due to the initial
condition). However, for € = 1074, the required second and third orders respectively
are observed.

7.3.2. Qualitative results for equilibrium inflow. In this part, we consider
the same problem as before and present a comparison of density plots obtained by
using schemes based on micro-macro (MM), full-kinetic (BGK) and diffusion models,
for different regimes of . The boundary conditions for diffusion model p(t,z = 0) = 1
and p(t,z = 2) = 0. The final time is T = 0.1, N, = 40 and At = 0.001. Further,
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Fic. 7. Qualitative results for equilibrium inflow at the left boundary.

we consider the same velocity discretization as before for both MM and BGK models.
The results for MM are obtained by DP1-A(2,4,2) time integrator.

In Figure 7a for rarefied regime (e = 1), the MM and BGK results are in good
agreement. In the intermediate regime (¢ = 0.4) in Figure 7b, the MM and BGK
results are still close, and still different from the diffusion one. For ¢ = 1074, only
MM and the diffusion are plotted and are found to be in very good agreement, thereby
illustrating the AP property of the numerical scheme for MM.

7.3.3. Qualitative results for non-equilibrium inflow. In this part, we con-
sider the same problem as before, but the left boundary condition is chosen as (for
Vg > 0)

(75) f (t,xi:O,’Uk) = UkMk7 ﬁ(taxZ:O) = <f (t’xizoavk)>V,
(7.6)
g(ta Tit1/2 :_%7 Uk:) :2(f (t7 xi:Oa ’Uk)_ﬁ (t7 Ty :O) Mk) _g(t7 Lit1/2= %7 Uk)'

The number of grid points, velocity discretization, final time and time step are the
same as in the previous (equilibrium inflow) case. Here, we present a comparison of
plots obtained by using schemes based on MM, BGK and diffusion models, for different
regimes of €. The scheme described in subsection 6.2.1 is used for the micro-macro
model and a standard BGK approximation where only inflow boundary condition is
needed serves as a reference. For diffusion, the diffusion term is treated implicitly and
the left boundary condition for diffusion model is obtained from [18] which translates
in our context

>0 Uk (6 wi = 0,v) Av
> o0 Uk MpAv

. ; Y o0 VS (B xi = 0,v1) Av
TS MAw v t,x; =0,v;) — M, ke An
K ka Mk:AU Z k <f( k) k ka>0 UkMkAv

p(t,x; =0) =

v >0

In Figure 8a for rarefied regime (¢ = 1), the MM and BGK models compare very
well, while the diffusion model is driven by the macro boundary condition. In the
intermediate regime (e = 0.4) in Figure 8b, in the MM and BGK results (which are
in a good agreement), a boundary layer starts to be created whereas it is not the
case for the diffusion model. For ¢ = 10™%, one can see that MM model develops a
boundary layer at the left boundary before aligning with the diffusion model in the
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Fic. 8. Qualitative results for non-equilibrium inflow at the left boundary.

interior of the domain. This is consistent with the results observed in the literature
[18, 24, 25, 6].

Appendix A. Appendix: Matrix notation. The circ function is given by:

Am  Am+1 . apy 0 .. 0 a; .. Am—1
Am—1 am am41 .. ap 0 .. 0 ay

(A1) circ([a1,az, .., m, -, apr]) =
Am42 - apy 0 .. Oar .. am Gmy1
amt1 . a0 .. O0ar .. am-1 am

The circy([—1,1]) (N, —1)x (N, —2) function is given by:
10. 0
. -110 .
(A-2) cirey([=1, 1) (v, —1)x (N, —2) = -
C e 1 (N x (N —2)
Appendix B. Appendix: Butcher tableau. The following is the 2-stage
second order accurate Butcher tableau ARS(2,2,2):

0
v
1

0
v
— 1

]
-6

2 O
= o o
oo O O
oo OO
=0 O
2[R © o

Here,yzl—%andézl—%.
The following is the 4-stage third order accurate Butcher tableau ARS(4,4, 3):

0 ]o 0 0 0 0 00 0 0 0 0

12 [1/2 0 0 0 0 1210 1/2 0 0 0

2/3|11/18 1/18 0 0 0 2/310 1/6 1/2 0 0

1/2 [ 5/6  =5/6 1/2 0 0 120 —-1/2 1/2 1/2 0
1 [1/4  7/4 3/4 —7/4 0 1 [0 3/2 —=3/2 1/2 1/2
1/4  7/4 3/4 —7/4 0 0 3/2 -—3/2 1/2 1,2

For type A, we use 2-stage first order accurate Butcher tableau DP-A(1,2,1) (y > %)

o
_ 2

[ S
|
2[R O
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777 The following is the 4-stage second order accurate Butcher tableau DP2-A (2,4, 2):

00 0 0 0 vy 0 0 0

010 0 0 0 0 |-y 7 0 0

778 10 1 0 0 10 1-7 « 0
110 1/2 1/2 0 10 1/2 1/2—7 ~

0 12 12 0 0 12 12—y ~

779 The following is the 4-stage second order accurate Butcher tableau DP1-A(2,4,2)
780  which achieves third order accuracy on the DIRK part:

0 |0 0 0 0 1/2 | 1/2 0 0 0
1/311/3 0 0 0 2/3 | 1/6 1/2 0 0
781 1 1 0 0 0 1/2 | =1/2  1/2 1/2 0
1 1/2 0 1/2 0 1 ]3/2 1-3/2 1/2  1/2
[ 1/2 0 /2 0 | 3/2 1-3/2 1/2  1/2
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