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SPINORIALITY:
FROM PROJECTIONS IN A FLAT SET OF PATHS

TO ELEMENTS IN CURVED SPACE(-TIMES)

EDOARDO NICCOLAI

Abstract. This paper proposes a description of the notion of spinor by restricting attention on
its definition in curved space(-time). The starting point is a study on a flat ambient (Euclidean)
space, followed by the concept of (isotropic) vector. After a quick specimen of Cliffordian
spin group, the question is addressed via tensor-spinor equivalence, using the Pauli–Levi-Civita
toolbox, as well as the Riccian algebraic spectrum plus the Riemann curvature tensor. And it
ends with the identification of the gravitational spinor.

Keywords: Cliffordian spin group, curved spinorial spaces, (curved) spinor manifold, spin
structure, spinor covariant derivative, spinor curvature, spinor-gravity.
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2 2 Flat Spinor: Sort of Points of a Line Bundle, & Stick-Spinors

Thierry’s Question
Question à toi: Est-il possible de définir un spineur dans un espace-temps courbe ou bien c’est seulement par projection

dans l’espace plat qui est localement tangent?
— T. Lehner, via email to me

1. Memorandum

Let us do a li’l refresher.

1.1. The First, Crude, Definition

É. Cartan talks about himself [3, intro]:
Spinors were first used under that name, by physicists,a in the field of Quantum Mechanics [but] [i]n their most

general mathematical form, spinors were discovered in 1913 by the author of this work in his investigations on the linear
representations of simple groups [2, pp. 53-96]; they provide a linear representation of the group of rotations in a space
with any number n of dimensions, each spinor having 2ν components where n = 2ν + 1 or 2ν. Spinors in four-dimensional
space occur in Dirac’s famous equations for the electron, the four wave functions being nothing other than the components
of a spinor.

2. Flat Spinor: Sort of Points of a Line Bundle, & Stick-Spinors

If we decide to work in a (pseudo-)Euclidean space, flatness imposes a projective map (represen-
tation). For instance, in Euclidean 3-space, the spinors are points of a line bundle, viz. of a line
varying from point to point (a curve) in a continuous space, with a 1-dimensional vector space for
any point. But beware: if we take the Möbius strip,

Ö ∼= S1 ×Z/2 R, (1)

the set of these lines, or rather, the infinite set of points that constitute them, under the imaginative
lens of the visual picture, are not very different from the bamboo-sticks (挑竹籤), which characterize
the game of spillikins (Fig. 1).

Figure 1. Spinorial simplification in 4 sticks depicted as vector elements resting on a Möbius bundle
distinguished by spin groups Spin+

2,1(R) ∼= SL2(R)

The spin group, in this case, is the special linear group

SL2(R) =
(
α β
γ δ

)
, α, β, γ, δ ∈ R, αδ − βγ = 1, (2)

composed of all matrices [M ]2×2
R =

( α β
γ δ

)
with unit determinant. For convenience, we can think of

these sticks as lines of dimension D = 1, which rest on a piece of deformable 2-dimensional fabric,
i.e. on a vector space, and of infinitesimal thickness.

The stick-spinors have infinitesimal rotations, according to the Lie algebra, which is associated
with a linear representation of the Clifford algebra. The Clifford space here is, of course, flat, e.g.

a The first is P. Ehrenfest, according to S.-I. Tomonaga’s testimony [16, p. 129].
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Cℓs = E2 a/o E3. There is no shortage of spinor representations in Minkowski pseudo-Euclidean 4-
space,a and in such a case, one speaks of spinors in/of 4-dimensional space, of spinors of space-time,
or of spinors of Minkowski space.

Alternatively, the spinor space, in the Cliffordian geometric algebra, can be computed in a
0-dimensional space-time. However, this simplification has a peccatum originale behind it, that
of starting with an aporetic primitiveness, with the subsequent obligation to ascend to higher
dimensions.

2.1. Spinor as an Isotropic Vector, But . . .

The foregoing suggest that a spinor is an element comparable to a vector, to an isotropic vector,
to be precise. Cartan [3, p. 42, I replaced the prime notation with the (over)dot notation] writes:

Consider a rotation (or reversal) defined by the equations

ẋ1 = αx1 + βx2 + γx3,
ẋ2 = α̇x1 + β̇x2 + γ̇x3,
ẋ3 = α̈x1 + β̈x2 + γ̈x3,

where αβγ, α̇β̇γ̇, α̈β̈γ̈ are the nine direction cosines of three orthogonal directions. Consider the spinor (ξ0, ξ1) associated
with an isotropic vector (x1, x2, x3) and one of the spinors (ξ̇0, ξ̇1) associated with the transformed vector; then

ξ̇20 = 1
2 [(α− iα̇)x1 + (β − iβ̇)x2 + (γ − iγ̇)x3] =

1
2 (α− iα̇+ iβ + β̇)ξ20 − (γ − iγ̇)ξ0ξ1 + 1

2 (−α+ iα̇+ iβ + β̇)ξ21 .

Since the discriminant of the quadratic form on the right-hand side is

(γ − iγ̇)2 − (α− iα̇+ iβ + β̇)(−α+ iα̇+ iβ + β̇) = (α− iα̇)2 + (β − iβ̇)2 + (γ − iγ̇)2 = 0,

the right-hand side must be a perfect square. Thus the quantity ξ̇0 is linear in ξ0, ξ1, and the same is obviously true for ξ̇1.

This brings us to two immediate considerations.
(1) A spinor is an isotropic vector-like and a Euclidean tensor (which is the title of the Section

from which the above passage is taken), cf. Secc. 3.1 and 3.3.
(2) Do spinors build a (topological) vector space, then? If the spinorial representation is

vectorial, as happens in quantum mechanics and quantum field theory, the answer is yes. If, on the
other hand, one wants an exquisitely algebraic (C. Chevalley) or algebro-geometric construction
(Lie group),b the vectorial structure is lost, and the answer is no;c except that a Lie group is but
a smooth differentiable manifold, and a differentiable manifolds is locally identifiable with, and
relatable to, a vector space—endowed with global topological properties in a differentiable way
(see the theorems of Cartan–Hadamard, de Rham’s, Bonnet–Myers, and Synge–Weinstein).

2.2. Synoptic Spin-Spectrum; a Specimen of Cliffordian Spin Group

All topics in the previous Sections cling to the representation of the Lie algebra and the spin
groups. Here are some of the most frequent.

(1) Spin group on the R-field (from 1 to 10):

SpinR



Spin1(R) ∼= O1(R),
Spin2(R) ∼= U1(R),
Spin3(R) ∼= SU2(R) ∼= Sp1,

Spin4(R) ∼= SU2(R)× SU2(R) ∼= Sp1 × Sp1,

Spin5(R) ∼= Sp2
(
H ∼= R4

)
,

Spin6(R) ∼= SU4(R) ⊂ U4.
d

(3a)
(3b)
(3c)
(3d)

(3e)

(3f)

a The plain characterization of Minkowski space is M
n viz. Mn = R1,n−1 or Rn−1,1 of n ⩾ 2 dimension.

b See C. Chevalley [4] [5] [6] [7].
c G. Coddens [8, p. 4, e.m.] is of this opinion: «[S]pinors in SU(2) do not build a vector space but a curved manifold.

This is almost never clearly spelled out. A consequence of this is that physicists believe that the linearity of the Dirac
equation (and the Schrödinger equation) implies the superposition principle in QM, which is wrong because the spinors are
not building a vector space. In this respect Cartan stated that physicists are using spinors like vectors. This confusion
plays a major rôle in one of the meanest paradoxes of QM, viz. the double-slit experiment».

d And then come: Spin7(R) ⊂ O8, Spin8(R) ⊂ O8 ×O8, Spin9(R) ⊂ O16, Spin10(R) ⊂ U16. Here the unitary group
(Un), the special unitary group (SUn), the symplectic group (Spn)—in the H-algebra of quaternions—appear.
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(2) Spin group on the C-field (from 2 to 6):

SpinC



Spin2(C) ∼= C×,

Spin3(C) ∼= SL2(C),
Spin4(C) ∼= SL2(C)× SL2(C),
Spin5(C) ∼= Sp4(C),
Spin6(C) ∼= SL4(C).a

(4a)
(4b)
(4c)
(4d)
(4e)

I report the complex spin representation, denoted by the letter D in its generality, under the
Dirac algebra dir(4,1),

D±
SpinC

∼=
(
D+

SpinC
⊕ D−

SpinC

)
: Spindir

4 (R) → SU2

(
U±
C
)
, (5)

in accordance with the pre-eminence it has in the physico-mathematical area; in it the spin group
is a subset of a plexus of Clifford algebra,b

Spindir
4 (R) ⊂

(
Cℓ4,1,C⊗(R)

viz
= Cℓ4×(C)

)
︸ ︷︷ ︸

dir(4,1)
eqv
==R4,1

∼= Cℓ1,1 ⊗ Cℓ3,0 ∼= 2R⊗ 2C ∼= 4C, (6)

from which the following isomorphism and automorphism, respectively, arise,

Cℓ4,1,C⊗(R)
φCℓ−−→ C⊗ Cℓ1,3(R), (7)

Spindir
4 (R)

D±
SpinC−−−−→ autC

(
U±
C
)
; (8)

and the symbol
U±
C
∼=
(
U+
C
∼= C2 ⊕ U−

C
∼= C2

) ∼= C4 = R8 (9)

is the complex vector space w.r.t. n-spinors, so that

(
v1

v2

v3

v4

)
∼=
(
v1

v2

0
0

)
+

( 0
0
v3

v4

)
.

NB. Pay attention to the following two facts.
The last term of (6) is the algebra of C4×4-matrices, having this chain of congruences:

4C viz
= C(4) ∼= C⊗ 4R ∼= C⊗ H ⊗ H. (10)

What lies behind (7) is an endomorphism,

Cℓ4,1,C⊗(R)
eqv
== endC

(
U±
C
)
, (11a)

Cℓ4,1(R) → endC
(
U±
C
)
. (11b)

(3) Spin of type
(
0
k,p

)
:

(
Spin0

k,p

)
1⩽k⩽q
k+q⩽6



Spin0
1,1

∼= R×,

Spin0
1,2

∼= SL2(R),

Spin0
1,3

∼= SL2(C),

Spin0
1,4

∼= Sp1,1
(
H ∼= R4

)
,

Spin0
1,5

∼= SL2

(
H ∼= R4

)
,

Spin0
2,2

∼= SL2(R)× SL2(R),

Spin0
2,3

∼= Sp4(R),

Spin0
2,4

∼= SU2,2,
c

Spin0
3,3

∼= SL4(R).

(12a)

(12b)

(12c)

(12d)

(12e)

(12f)

(12g)

(12h)

(12i)

a With the appearance of the special linear group (SLn).
b A synopsis on the spinoriality of Cliffordian (geometric) algebra is in [12, sec. 3.6]
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3. How to Build Spinors in Curved Space-Time?

The classical way to build spinors in curved space-time is, as a first step, to introduce—from
quantum mechanics—2-component spinors (column vectors with two complex components), or
Pauli-like spinors, videlicet 2-component wave functions like this

ψ =
(
ψα

ψβ

)
, ψα+ =

(
ψα

0

)
, ψβ− =

(
0
ψβ

)
, ψ ∈ C2 ∼= H, (13)

at each point of a complex tangent 2-space. Secondly, associate each tensor of this space with a
2-component spinor.

NB. It is not possible to make a reverse combination: not every spinor is translatable to a tensor.
Why? That is because there is no isomorphism, but only homomorphism (н), between the group
SO+

1,3(R) = Л ↑
+ and its double covering group SL2(C), according to an irreducible and non-unitary

representation of the latter group. Specifically,
SO+

1,3(R) is the indefinite special orthogonal group of linear transformations of the Minkowski
space-time M4 = R4

1,3, and Л ↑
+ is the restricted Lorentz group,

SL2(C) is the special linear group of

[M ]2×2
C =

(
α β
γ δ

)
; (14)

it is a 3-dimensional complex Lie group and a real 6-dimensional Lie group; lastly, SL2(C) is
simply connected.

With a diagrammatic condensation:{
SL2(C) ∼= Spin+

1,3(R) ↪→ R4
1,3 × SL2(C) → R4

1,3

}
SO+

1,3(R) = Л ↑
+

GL(M
viz
= R1,n−1)

ς

н◦ς
н

with the representation of Л ↑
+ on M (real vector space à la Minkowski) as a homomorphism н of

SO+
1,3(R) into a general linear group GL(M). The spinor map

ς :
(
SL2(C) ∼= Spin+

1,3(R)
)
−→

{
SO+

1,3(R) = Л ↑
+ ↪→ R4

1,3 ×
(
SO+

1,3(R) = Л ↑
+

)
→ R4

1,3

}
(15)

is equivalent to a 2-fold covering, viz. a double cover, of SO+
1,3(R) = Л ↑

+. Namely, SL2(C) is the
universal covering group of the Lorentz group Л ↑

+.

Marginalia 3.1. Suggestions from some of my writings.
(1) About the spinorial representation of the orthogonal group on a 3-space, and the Pauli-like

spinors, see [12, secc. 2.8.2 and 2.8.3].
(i) Do not forget that a rotation of 360◦ in a SO3(R)-space is not homotopic to the identity,

c’est-à-dire to a null rotation, but a rotation of 720◦ is homotopic to the identity/to a null rotation,
see Fig. 1 in relation to the Möbius strip.

Let M viz
= [M ]2×2 =

( α β
−β̄ ᾱ

)
be a (2 × 2)-matrix, α, β ∈ C, referring to the special unitary

2-group, and write

M =

(
e−

1
2 iθ

3

0

0 e
1
2 iθ

3

)
∈ SU2(C) −→ Rθ3 =

(
cos θ3 − sin θ3 0
sin θ3 cos θ3 0

0 0 1

)
∈ SO3(R), (16)

where Rθ is the rotation (matrix) through an angle θ. The subsequent values, ẋ1 = cos θ3x1 −
sin θ3x2, ẋ2 = sin θ3x1 + cos θ3x2, ẋ

3 = x3, are outlined. A coordinate system comes back to its
original state after a rotation about, say, the x3-axis thru an angle θ3 = 2π = 360◦. A spinor,

c SU2,2 is the pseudo-unitary (spin) group.
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however, returns to its original state (identity, or neutral, symmetry) after two full rotations, to
wit, after a rotation of 4π = 720◦ about the x3-axis.

(ii) The covering map
ς : SU2(C) → SO3(R) ∼= Spin3(R) (17)

sets out a smooth surjective homomorphism between SU2(C) and SO3(R). As we know, SU2(C) is
compact and simply connected, and SO3(R) is compact and connected but not simply connected;
the meaning of the map arises from this discrepancy, which has a mathematical bottom and a
deep-seated physical motives. The set SU2(C) is the simply connected universal covering group of
SO3(R).

(2) About the spinor (structure) bundle, see [12, sec. 3.5] and [13, sec. 3.2].

3.1. The Tensor-Spinor Association: Pauli–Levi-Civita Toolbox

It starts with four C2×2 Hermitian matrices, say X
viz
= [X]2×2, ou seja four complex (2× 2)-

matrices, each of which is allied to a 4-vector xµ = (x0, x1, x2, x3),

X =
{
xµ =

(
x0, x1, x2, x3

)
· σµ = (σ0, σ⃗)

}
= x0 + x1σ1 + x2σ2 + x3σ3 =

(
x0+x3 x1−ix2

x1+ix2 x0−x3

)
, x ∈ R,

(18)
where σ⃗ = (σ0,σ1,σ2,σ3) is the spin 4-vector whose distinctiveness consists of the Pauli (spin)
matrices,

σ0
viz
= I =

(
1 0
0 1

)
,a σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (19)

The 2-component complex column vectors on which such (2× 2)-matrices act—by matrix
multiplication—are precisely the Paulian spinors (13).

With a more synthetic formalism, one fixes

σ
µ

ȷk̇
= σ̄µkȷ̇ = σ̄

µ

k̇ȷ
, (20)

letting µ = 0, 1, 2, 3 be the space-time tensor indices, and ȷ = 0, 1, ȷ̇ = 0̇, 1̇, k = 0, 1, k̇ = 0̇, 1̇, be
the spinor indices, whilst the short overline (via \bar command) is for the complex conjugate. A
chance to bring out the spinorial attribute, is to employ the aforementioned Pauli matrices (19), so
as to satisfy two relations of equality (equivalence, to be exact) together with the metric tensor
(field) gµν , in this way, 

gµνσ
µ

ȷk̇
σ
ν
lṁ = εȷlεk̇ṁ,

σ
µ

ȷk̇
σ
νȷk̇ = gµν ,

σ
µ

ȷk̇
σ
ȷk̇
ν = δµν ,

(21a)

(21b)

(21c)

where ε =
(

0 1
−1 0

)
is the skew symmetric Levi-Civita (metric) spinor à la M. Carmeli [1, p. 120],

obtained from the Levi-Civita symbol [11, pp. 180-182], which is a pseudo-tensor or tensor density,
and δ is the Kronecker delta, here as a spinor. The Levi-Civita spinor respects this identity,

εȷkεlm + εȷlεmk + εȷmεkl = 0. (22)

A caption-illustration of Eq. (21a):
1st lhs expr.−−−−−−−−→ gµν︸︷︷︸

metric tensor field g

2nd lhs expr.−−−−−−−−→ σ
µ

ȷk̇
σ
ν
lṁ︸ ︷︷ ︸

Pauli (spin) matrices

rhs expr.−−−−−→ εȷlεk̇ṁ︸ ︷︷ ︸
Levi-Civita (metric) spinor.

a The matrix σ0 = I is the Pauli identity matrix.
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3.2. Spinorial Behavior

Let ζ and χ be two 2-spinors of generic value. One has:

ζ- and χ-spinors


ζȷ = εȷkζk, χ

ȷ̇ = εȷ̇k̇χk̇,

ζȷ = ζkεkȷ, χȷ̇ = χk̇εk̇ȷ̇,

ζȷχȷ = −ζkχk
(
step by step: ζȷχȷ = ζȷχkεkȷ = −ζȷεȷkχk = −ζkχk

)
.

(23a)

(23b)

(23c)

3.3. The Tensor-Spinor Equivalence

The equivalence will concern two types of tensors, Τ-tensor and g-tensor.
(1) Let Τξϱ be a tensor, without a specific definition; its equivalent spinor will therefore be

(based on what we have seen above)

Τȷk̇lṁ

eqv
== σξ

ȷk̇
σ
ϱ
lṁΤξϱ. (24)

The matrix group acting isometrically on R4
1,3, within Pauli–Levi-Civita’s scheme, is the SL2(C) ∼=

Spin+
1,3(R) group, see the map (15).

From Eqq. (21a) (21b) (21c) (24), we get

σ
ȷk̇
µ σ

lṁ
ν Τȷk̇lṁ

eqv
== σȷk̇µ σ

lṁ
ν σ

ξ

ȷk̇
σ
ϱ
lṁΤξϱ

eqv
== δξµδ

ϱ
νΤξϱ

eqv
== Τµν . (25)

(2) By Eq. (21a), we shall proceed to the spinorial equivalence with the metric tensor g,

gȷk̇lṁ
eqv
== σξ

ȷk̇
σ
ϱ
lṁgξϱ

eqv
== εȷlεk̇ṁ, (26a)

gȷk̇lṁ
eqv
== σȷk̇ξ σ

lṁ
ϱ gξϱ

eqv
== εȷlεk̇ṁ. (26b)

NB. The space-time metric tensors are, explicitly, such matrices,

gȷk̇lṁ = gȷk̇lṁ =

{
0

(
0 1
−1 0

)(
0 −1
1 0

)
0

}
, (27)

and

glṁ
ȷk̇

eqv
== σξȷk̇σ

ξlṁ eqv
== δlṁ

ȷk̇

{
( 1 0
0 1 ) 0
0 ( 1 0

0 1 )

}
. (28)

To seek for a correlation with the metric tensor of Minkowski space-time ηµν , take the Pauli
matrices (19), and divide them by the square root of 2, i.e., in the position of lowering indices,

σ
0123
ȷk̇

=
{

1√
2
( 1 0
0 1 )σ0 ,

1√
2
( 0 1
1 0 )σ1 ,

1√
2

(
0 −i
i 0

)
σ2
, 1√

2

(
1 0
0 −1

)
σ3

}
, (29)

and, in the position of raising indices,

σ
0123ȷk̇ =

{
1√
2
( 1 0
0 1 )σ0 ,

1√
2

(
0 −1
−1 0

)
σ1
, 1√

2

(
0 −i
i 0

)
σ2
, 1√

2

(−1 0
0 1

)
σ3

}
. (30)

The tensor operation of raising indices,a leads to

σ
ȷk̇
µ σ

lṁ
ν gȷk̇lṁ = ηµν . (31)

a From σ0123
ȷk̇

to σ0123ȷk̇.
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3.4. Spinor (Field) Covariant Derivative

The spinor (field) covariant derivative (32a) (32c), and its complex conjugate version (32b)
(32d), employing a ζ-spinor (see Section 3.2), can be established, axiomatically, as

∇µζ
ȷ =

∂ζȷ

∂xµ
+ Γ ȷkµζ

k,

∇µζ̄
ȷ̇ =

∂ζ̄ ȷ̇

∂xµ
+ Γ̄ ȷ̇

k̇µ
ζ̄ k̇,

∇µζȷ =
∂ζȷ
∂xµ

− Γ kȷµζk,

∇µζ̄ȷ̇ =
∂ζ̄ȷ̇
∂xµ

− Γ̄ k̇ȷ̇µζ̄k̇,

(32a)

(32b)

(32c)

(32d)

with the presence of the Christoffel symbols, here for a spinorially metric connection acting on
spinor (tensor) fields. If we are dealing with a 2-index spinor, and this is what happens in a
Minkowski-like frame, the spinorial derivative will be

∇µη
ȷk̇ =

∂ηȷk̇

∂xµ
+ Γ ȷlµη

lk̇ + Γ̄ k̇
l̇µ
η̄ȷl̇. (33)

3.5. Spinor Curvature

Let us introduce the spinor value

∇µζs = ∂µζs − Γ rsµζr, (34)

and, from Eq. (32c), determine that

∇ν∇µζs = ∂ν (∇µζs)− Γ ξνµ∇ξζs − Γ ksν∇µζk, (35)

and

∇ν∇µζs = ∂ν∂µζs − Γ rsµ∂νζr − ∂νΓ
r
sµζr − Γ ξνµ∂ξζs + Γ ξνµΓ

r
sξζr − Γ ksν∂µζk + Γ ksνΓ

r
kµζr. (36)

Eq. (36) contains the quantity we are looking for. It gives us

Cß
r
sµνζr = ζs (∇µ∇ν −∇ν∇µ) , (37)

where
Cß

r
sµν = Γ rsµ,ν − Γ rsν,µ + Γ ksµΓ

r
kν − Γ ksνΓ

r
kµ.

a (38)

is nothing but what we can call spinor curvature. For a spinor ζs, Eq. (37) becomes

Cß
s
rµνζ

r = ζs (∇ν∇µ −∇µ∇ν) . (39)

NB. By adopting the bemolle–diesis convention w.r.t. Eqq. (37) (39), something like this comes
out,

Cß

(
♭(ζs)

)
viz
= Cß ζ♭, (40)

Cß

(
♯(ζs)

)
viz
= Cß ζ

♯, (41)

which are a combination of those equations.
If the spinor has two indices, say Τrs, the spinor curvature formula, along with the commutator

(with the subtraction of nabla operators), is

Cß
ȷ
rµνΤȷ

s = Τr
s (∇µ∇ν −∇ν∇µ) + Cß

s
ȷµνΤr

ȷ. (42)

From Eqq. (37) (39) it is possible to easily arrive at

Cßrsµνζ
r = ζs (∇ν∇µ −∇µ∇ν) , (43)

Cßsrµνζ
r = ζs (∇ν∇µ −∇µ∇ν) , (44)

a Or Cß
r
sµν

+ Γ r
sν,µ + Γk

sνΓ
r
kµ = Γ r

sµ,ν + Γk
sµΓ

r
kν .
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which reveals the symmetrical constitution of the spinor curvature:

Cß-symmetry (of spinor curvature)

{
Cßrsµν = Cßsrµν

Cßrsµν = −Cßrsνµ.

(45a)

(45b)

3.6. Algebro-geometric Spinor: Inside Ricci Calculus

Continuing the discussion of the previous Section, we can approach the Ricci calculus. And so
be it,

Cß
ȷ
tµνΤ

su···
rȷ··· = Τsu···rt··· (∇µ∇ν −∇ν∇µ) + Cß

s
ȷµνΤ

ȷu···
rt··· + Cß

u
ȷµνΤ

sȷ···
rt··· − Cß

ȷ
rµνΤ

su···
ȷt··· , (46)

C̄ß
ȷ̇

ṡµνΤ
r
ȷ̇ = Τ

r
ṡ (∇µ∇ν −∇ν∇µ) + Cß

r
ȷµνΤ

ȷ
ṡ, (47)

C̄ß
ȷ̇

ṡµνΤrȷ̇ = Τrṡ (∇µ∇ν −∇ν∇µ)− Cß
ȷ
rµνΤȷṡ, (48)

C̄ß
ṡ

ȷ̇µνΤ
rȷ̇ = Τrṡ (∇ν∇µ −∇µ∇ν)− Cß

r
ȷµνΤ

ȷṡ, (49)

for a
(
su
rt

)
-spinor Τsu···rt··· , as in (46), and for

(
r
s

)
-spinors Τrṡ, Τrṡ, Τrṡ, as in (47), (48), (49),

respectively.

3.7. The Riemann Tensor Graft

If Eq. (48) is multiplied by σrṡξ , it comes out that

Τlṁ

(
Cß

l
rµνσ

rṁ
ξ + C̄ß

ṁ

ṡµνσ
lṡ
ξ

)
= Τrṡσ

rṡ
ξ (∇µ∇ν −∇ν∇µ) ,where Τrṡσrṡξ = Τξ, (50)

Τξ (∇ν∇µ −∇µ∇ν) = RlṁξµνΤlṁ = RϱξµνΤϱ, (51)

where Rlṁξµν =
(
Cß

l
rµνσ

rṁ
ξ + C̄ß

ṁ

ṡµνσ
lṡ
ξ

)
, and Rϱξµν = Rlṁξµνσ

ξ
lṁ, which is the Riemann

curvature tensor.

4. (Mathematical) Cues for a Spinor-Gravity

In Sections 3.1 and 3.3, we saw that there is a tensor-spinor equivalence, especially in the
metric g-tensor field version, which is a bridge to the spinor afferent to the gravitational force of
geometrical order. Another piece to represent this bridge is to set, again, the curvature tensor in
an equivalence union with the spinorial part:

Rȷk̇lṁȷk̇lṁ = σµ
ȷk̇
σνlṁσ

ξ

ȷk̇
σϱlṁRµνξϱ =

1
2

(
εȷlRrk̇r♯ṁȷk̇lṁ +Rȷṙlṙ♯ȷk̇lṁεk̇ṁ

)
= 1

4εȷl

(
Rrk̇r♯ṁnk̇n♯ṁεȷl +Rrk̇r♯ṁȷȯlȯ♯εk̇ṁ

)
+ 1

4εk̇ṁ

(
Rȷṙlṙ♯nk̇n♯ṁεȷl +Rȷṙlr♯ȷȯlȯ♯εk̇ṁ

)
.

(52)

Attention, please:
· the two series of indices in #000000- and #E30382-colors are distinct; they have nothing in

common; indicated colors serve to differentiate them without introducing new letters;
· the superscript ♯-diesis symbol serves to remind us that the index-letter is raised.
From Eq. (52) we arrive at such definable

4-indices ζ- and χ-spinors

ζȷlȷl = − 1
4Rȷṙlṙ♯ȷȯlȯ♯

eqv
== − 1

2Cßȷlȷȯlȯ♯ ,

χȷlk̇ṁ = − 1
4Rȷṙlṙ♯nk̇n♯ṁ

eqv
== − 1

2Cßȷlnk̇n♯ṁ.

(53a)

(53b)

A spinor decomposition reveals, as a result, that

Rȷk̇lṁȷk̇lṁ = −ζȷlȷlεk̇ṁεk̇ṁ − χȷlk̇ṁεk̇ṁεȷl − εȷlχ̄k̇ṁȷlεk̇l̇ − εȷlεȷlζ̄k̇ṁk̇ṁ. (54)

The equivalence between the Riemann tensor and the spinor manifold passes from spinors (53a)
and (53b). They have symmetry properties because the symmetry pertains to the curvature tensor
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just mentioned:a {
ζȷklm = ζkȷlm = ζȷkml = ζlmȷk,

χȷkl̇ṁ = χkȷl̇ṁ = χȷkṁl̇ = χ̄l̇ṁȷk,

(55a)
(55b)

with the occurrence of the usual complex conjugate in the χ-spinor.
The ζ-spinor is characterized by 11 real independent components, but no more than 6 complex

components; the χ-spinor has 3 real et 3 complex components, 9 in total—it is a Hermitian-like
(3 × 3)-matrix. The spinor-gravity is exemplified by the ζȷklm-spinor, as it is able to define the
Weyl spinor [12, sec. 3.5.2.2] et the Ricci scalar curvature [12, sec. 3.3.2.2].

4.1. Spinor Decomposition: Two Theorems

We return to the previous Section.

Theorem 4.1. The spinor decomposition of the Riemann curvature tensor (useful for isolating the
spinor-gravity) is provided by Eq. (52).

Proof. The demonstration can be simplified by reducing the number of indices to 2. From Eq. (22)
this chain of equalities is reached,

2ζ[ȷk] =

{
ζȷk − ζkȷ,

ζl
lεȷk, in which ζll = εlmζlm,

(56a)

(56b)

just multiply what we have seen to be pertinent to the Levi-Civita spinor identity by this ζlm-spinor.
And so, if we pass to 4 indices, for a ζȷklm-spinor, the chain of formulæ becomes

2ζ[ȷk]lm =

{
ζȷklm − ζkȷlm,

ζk
k
lmεȷk.

(57a)

(57b)

The continuation of the demonstration is implicit in Eq. (52), which is already written in the form
of a result. □

The proof can also be carried out for the properties of the dual curvature tensor, say R∗
µνξϱ, in

Riemann space.

Theorem 4.2. Let R∗
µνξϱ be the dual to Rµνξϱ. Its spinor counterpart will be

R∗
ȷk̇lṁȷk̇lṁ

=
(
ζȷlȷlεk̇ṁεk̇ṁ − χȷlk̇ṁεk̇ṁεȷl + εȷlχ̄k̇ṁȷlεk̇l̇ − εȷlεȷlζ̄k̇ṁk̇ṁ

)
i

(58a)

= σµ
ȷk̇
σνlṁσ

ξ

ȷk̇
σϱlṁR

∗
µνξϱ, (58b)

cf. Eq. (54) relating to Eq. (58a). We want to show that Eqq. (58a) (58b) are the decomposition
of such a dual tensor.

Proof. If the dual curvature tensor in Riemann space is matched to

R∗
µνξϱ =

1
2

{(√
−gRξϱµνεµνςτ

)
=
(
Rξϱµνε

µν
ςτ

)}
, (59)

then
R∗
ȷk̇lṁȷk̇lṁ

= 1
2Rȷk̇lṁnȯpq̇ε

nȯpq̇

ȷk̇lṁ
. (60)

From Eq. (54) plus a ε-spinor of these features

εȷk̇lṁnȯnȯ =
(
δȷk̇nȯδ

lṁ
nȯ − δȷk̇nȯδ

lṁ
nȯ

)
i
, (61)

it is nimble to reconstruct Eq. (58a). □

a Rµνξϱ = −Rνµξϱ = −Rµνϱξ = Rξϱµν , and Rµνξϱ + Rµξϱν + Rµϱνξ = 0.
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5. In Corde Quæstionis

(1) The answer to the initial question has been given. For the sake of synthesis, we offer a brief
summary:

spinor

a

b

c

d

e

(a) spinor as an element of a vector space,
(b) spinor as a part of Clifford algebra/space,
(c) spinor representations of Lie algebras, in which curved spaces are conceivable,
(d) spinor curvature Cß,
(e) spinor-gravity ζȷklm (in general relativity), adoptable for flat (absence of massive body) or

curved spaces.
(2) Let us not disremember, nonetheless, that mathematics is not a mere answering-robota of

questions; but it is, above all, a movement de l’esprit to reflect on the issues that fall under its
investigation, and create new questions & generate new problems.

(3) This paper skips many steps, because the latter are already present in my other works. (For
this reason the bibliography is concise). Readers will excuse me.

One of the pioneering studies on how to conceive the spinor in space-time can be found in R.
Geroch [9] [10]. To mention, then, at least two classical books: R. Penrose & W. Rindler [14] [15].

coda: busillis

The allure of spinors is probably hidden in their algebro-geometric mystery yet to be fully
revealed and understood. M.F. Atiyah gives us a testimony:a

No one fully understands spinors. Their algebra is formally understood but their geometrical significance is mysterious.
In some sense they describe the ‘square-root’ of geometry and, just as understanding the concept of the square root of −1
took centuries, the same might be true of spinors.

a E-mail (15 July 2007) from M.F. Atiyah to G. Farmelo; the excerpt is reported in G. Farmelo, The Strangest Man:
The Hidden Life of Paul Dirac, Mystic of the Atom, Basic Books, New York, 2009, p. 430.
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To my maternal uncle, Roberto,
who left this flagitious society (22 May 2023)

after years of psycho-physical devastation brought on by Parkinson’s disease.
Now, he has boundless clearings of peace ahead of him.
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