
HAL Id: hal-04102940
https://hal.science/hal-04102940v1

Preprint submitted on 22 May 2023 (v1), last revised 21 Sep 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Formally Verifying Optimizations with Block
Simulations

Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux,
Alexandre Bérard

To cite this version:
Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, Alexandre Bérard. Formally
Verifying Optimizations with Block Simulations. 2023. �hal-04102940v1�

https://hal.science/hal-04102940v1
https://hal.archives-ouvertes.fr

Formally Verifying Optimizations with Block Simulations

LÉOGOURDIN, BENJAMINBONNEAU, SYLVAINBOULMÉ,DAVIDMONNIAUX, andALEXAN-
DRE BÉRARD
CompCert (ACM Software System Award 2021) is the first industrial-strength compiler with a mechanically
checked proof of correctness. Yet, CompCert remains a moderately optimizing C compiler. Indeed, some
optimizations of “gcc -O1” such as Lazy Code Motion (LCM) or Strength Reduction (SR) were still missing:
developing these efficient optimizations together with their formal proofs remained a challenge.

Cyril Six et al. have developed efficient formally verified translation validators for certifying the results of
superblock schedulers and peephole optimizations. We revisit and generalize their approach into a framework
(integrated into CompCert) able to validate many more optimizations: an enhanced superblock scheduler, but
also Dead Code Elimination (DCE), Constant Propagation (CP), and more noticeably, LCM and SR. In contrast
to other approaches to translation validation, we co-design our untrusted optimizations and their validators.
Our optimizations provide hints, in the forms of invariants or CFG morphisms, that help keep the formally
verified validators both simple and efficient. Such designs seem applicable beyond CompCert.

1 CONTEXT AND MOTIVATIONS
Compilers are complex pieces of software, and are thus likely to contain bugs. Some bugs result
in the compiler crashing or aborting, some in missed optimizations, and some, more annoyingly,
result in miscompilation: the generated code is incorrect. Many miscompilation bugs have been
found in the optimization phases of major compilers such as GCC and LLVM [Zhou et al. 2021].

Translation validation, as coined and popularized by Pnueli et al. [1998], is a defensive approach
for ruling out miscompilation. It consists in validating, during or after compilation, that the target
code (of a single transformation or even for a whole compilation run) matches the source code. Hence,
the correctness of the compiler is reduced to that of the validators. This is likely simpler and more
maintainable than proving the correctness of each individual optimization, since a given validator
may be able to validate a whole class of transformations, and may be robust to optimization tuning.
Checking semantic equivalence between two code fragments is undecidable in general. Yet,

two major successes of software formal verification have leveraged translation validation. Comp-
Cert [Leroy 2009a] uses a specialized validator to check register allocation [Rideau and Leroy 2010].
The validator is specific to this compilation phase. In contrast, seL4 [Sewell et al. 2013] attempts to
automatically match the C source and object code of the seL4 kernel (itself proved correct w.r.t. a
high-level specification); the resulting verification conditions are discharged by an SMT solver.

These two projects had very different constraints. The seL4 validation team had to work with an
existing compiler, which was not to be modified; but they could write the software to be compiled in
a certain way that helped with the “matching”, and they could tune per-module optimization options
if needed. Their scheme is unlikely to work with other programs, or even with other compiler
versions, unless these programs or the matching scheme are manually modified.1 In contrast,
CompCert was (informally) expected to compile arbitrary source programs without failure;2 but
code transformations and validators were designed together. In such a context, it is possible to have

1According to [Sewell et al. 2013, §4.2], the translation validation of seL4 is very unstable w.r.t. the version of GCC.
2This is another argument against general-purpose translation validation based on SMT-solving for compilation of many
different and evolving code bases: SMT solvers tend to be brittle, changes in solver version or minor changes in the source
program may result in the solver timing out on validation problems that it could previously discharge.

Authors’ address: Léo Gourdin, Leo.Gourdin@univ-grenoble-alpes.fr; Benjamin Bonneau, Benjamin.Bonneau@ens.psl.eu;
Sylvain Boulmé, Sylvain.Boulme@univ-grenoble-alpes.fr; David Monniaux, David.Monniaux@univ-grenoble-alpes.fr;
Alexandre Bérard, alexandre.berard2@etu.univ-grenoble-alpes.fr.

2023-05-22 18:22. Page 1 of 1–32.

HTTPS://ORCID.ORG/0000-0002-9501-9606
HTTPS://ORCID.ORG/0000-0001-7671-6126
https://orcid.org/0000-0002-9501-9606
https://orcid.org/0000-0001-7671-6126

Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard

the code transformation leave hints to the validator. The validator is then likely to be more robust
(it need not guess how source and target match), simpler, and to perform fewer computations.

However, according to Leroy [2011], special-purpose translation validation is not a “silver bullet”
either. Indeed, developing specific validators is tedious and expensive: they should be formally
proved yet reasonably efficient, two characteristics that may be contradictory. Moreover, between
ultra-specialized validators and fully-general ones, there is a continuum that remains to be sys-
tematically explored. Paving this way, Necula [2000] proposed a general-purpose but predictable
translation validator (without a formal proof) combining symbolic execution [King 1976; Samet
1976] and normalized rewriting. Tristan and Leroy [2008] showed how to build a formally verified
instruction scheduler from formally verified symbolic execution. Yet, their validator did not scale.3
Then, they proposed [Tristan and Leroy 2009, 2010] formally verified translation validations of
lazy code motion and other optimizations. None of their extensions were integrated into the public
releases of CompCert.4 Tatlock and Lerner [2010] designed an extensible CompCert by translation
validation, but their validator was not formally verified, hence significantly augmenting the Trusted
Computing Base.5 The register allocator introduced by Rideau and Leroy [2010] was the first
formally verified optimization by translation validation to be integrated into mainline CompCert.
Its validator uses a specialized formally verified data-flow analysis, still used in current releases.
Since these works, from more than a decade ago, the efficiency of formally verified translation

validation for advanced optimization, in particular in CompCert, did not progress a lot (see related
works in §9), despite the interest in improving the performance of the generated code—a sign of the
difficulty of the task. Recently, Boulmé, Monniaux and Six designed an efficient formally verified
translation validation by symbolic execution thanks to formally verified hash-consing [Boulmé 2021;
Six et al. 2020]. Then Six et al. [2022] extended the approach for validating an efficient superblock
scheduling with peephole optimizations in CompCert.6
This paper generalizes the translation validation techniques of Six et al. [2022] to support a

larger class of optimizations, including Lazy Code Motion (LCM) [Knoop et al. 1995, 1992] and
Lazy Strength Reduction (LSR) [Knoop et al. 1993] which were not yet provided by CompCert.
First, §2 gives a high-level introduction to our translation validators. Second, §3 details our central
contribution: a new IR (Intermediate Representation) called BTL, along with a symbolic simulation
validator, dedicated to “inter-block transformations”, a concept introduced in §2.2.2. Then, three
sections apply our validators to a distinct optimization: §4 to superblock scheduling, §5 to LCM,
and §6 to LSR. Last, §7 briefly discusses how the translations need to be instrumented for being
validated, §8 gives an experimental evaluation and §9 concludes. Our implementation represents
around 12Kloc of Coq and 5Kloc of OCaml oracles, without comments and excluding the code that
we directly reused from the CompCert version of Six-et-al. 7

2 INTRODUCTION TO OUR VALIDATORS
We consider optimizations over RTL code [Leroy 2009b]. RTL (Register Transfer Language) is an IR
of CompCert’s backend representing each function as a CFG (Control Flow Graph) of instructions,

3 Source code for their extensions at https://github.com/jtristan/CompCert-Extensions. Tristan and Leroy [2008, §7] mention
two important algorithmic issues (including lack of hash-consing) that were solved in [Six et al. 2022].
4https://github.com/AbsInt/CompCert
5See [Monniaux and Boulmé 2022] for an extensive discussion of CompCert’s TCB.
6Mullen et al. [2016] formally verified peephole optimizations for x86-32 within CompCert, based on the integer representa-
tion of pointers. Such low-level optimizations are out-of-scope of our work. In contrast, they do not support instruction
reordering, nor loop optimizations. Moreover, they introduced a peephole execution engine with formally verified rewriting
rules, but in a direct style, without translation validation.
7https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert

2023-05-22 18:22. Page 2 of 1–32.

https://github.com/jtristan/CompCert-Extensions
https://github.com/AbsInt/CompCert
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert

Formally Verifying Optimizations with Block Simulations

themselves operating over an unbounded set of pseudo-registers. These pseudo-registers are
allocated to the actual machine registers by a subsequent pass, called register allocation [Rideau
and Leroy 2010], to another IR called LTL. Hence, RTL is convenient for “middle-end” optimizations,
because they can easily introduce fresh (pseudo)registers for storing intermediate results.
We mainly combine two kinds of translation validators: the first one, described §2.1, targets

code duplications or factorizations; the second one, described §2.2, targets what we call inter-block
transformations. At high-level, each of our optimizations can be viewed as a composition of several
transformations on the RTL code, with generally “preprocessing passes” (e.g. loop-unrolling or
register renaming), the core of the optimization (e.g. superblock scheduling) and possibly some “post-
processing passes” (e.g. code factorization). Each transformation must be checked by a validator.
Distinct transformations may be checked by the same validator. If each transformation in a sequence
can be checked by the same validator, then the oracles performing them can sometimes be composed
into a single oracle requiring a single validator run at the end.
In CompCert, the correctness of a backend pass is established by a forward simulation proof

[Leroy 2009b]. Each of our validators is thus formally proved to establish a forward simulation of
the source code by the target code. Validation is helped by hints provided by oracles: information
easy for the oracle to yield, but that would be hard to have the validators reconstruct.

2.1 CFG Morphisms for Duplications or Factorizations
By specialization of the notion of graph homomorphism, we define a CFG morphism between two
RTL CFG as a mapping between the nodes of the CFG preserving the instruction contents with the
successor relationship (and the successor orders), and also preserving the CFG entry point. Almost
trivially, two CFG related by a CFG morphism are bisimulable (they are semantically equivalent).
Checking that a given function is a CFG morphism is also very easy. Hence, we reuse the CFG
morphism checker, initially introduced by [Six et al. 2022, §4.4].

𝐴

𝐵

𝐶 𝐷

𝐴 = before the loop
𝐵 = loop-condition
𝐶 = loop-body
𝐷 = after the loop

𝐴

𝐵1

𝐶

𝐵2 𝐷

rotate
(i.e. if-do-while)

𝐴

𝐵1

𝐶1

𝐵2

𝐶2 𝐷

unroll (peel)
1st iteration

𝐴

𝐵1

𝐶1

𝐵2

𝐶2 𝐷

unroll body

Fig. 1. Three loop-unrollings of a “while-do” loop

Indeed, Six noticed that many code dupli-
cations useful for superblock scheduling—e.g.
tail duplication, loop-unrollings—are CFG mor-
phisms: their mapping is the function associat-
ing each duplicated node in the target CFG to
its origin in the source CFG. Fig. 1 depicts var-
ious loop-unrollings on an abstract CFG: their
CFG morphism corresponds to the mapping
that forgets numeric indices on node contents.

Our first improvement is to notice that the re-
verse transformations, i.e. code factorizations,
can also be verified with the same validator
(thanks to the reverse simulation). In partic-
ular, we formally verify a CFG minimization
pass which mimics Moore’s algorithm for DFA
(deterministic finite automaton) minimization.

We have also generalized the notion of CFG
morphism for mappings from BTL—our new IR
detailed in §2.2—to RTL. Roughly speaking, in BTL, a CFG node syntactically corresponds to a
loop-free fragment of a RTL CFG: a BTL program partitions a RTL program into blocks. A variant of
Six’s CFG morphism checker [Six et al. 2022, §4.4]—called the BTL projection checker—validates the

2023-05-22 18:22. Page 3 of 1–32.

Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard

selection of these blocks in the RTL code, modulo code duplication or insertion of synthetic nodes8.
While these transformations are validated during the RTL to BTL translation, the factorization
from our minimization oracle is validated on the way back to RTL.

2.2 Block-by-block Symbolic Simulation Modulo Invariants
Given a RTL CFG, we characterize a block of this CFG as a loop-free sub-CFG that has a single
entry-point from the remainder of the surrounding CFG, and where only exit-points may emit
observational events.9 Replacing a block by a semantically equivalent one does not change the global
CFG semantics. More generally, by partitioning the CFG into blocks, we decompose the “global”
simulation proof between two CFGs into a finite conjunction of “local” simulation proofs between
block pairs. Then, by means of invariant annotations, the “local” simulations are aggregated at the
global level, making sure that changes are consistent between blocks. Validation of these block
simulations is fully automated by comparing their symbolic executions [Six et al. 2020].

2.2.1 Intra-Block Transformations. Symbolic execution of both blocks amounts to computing the
final contents of registers and of the memory as symbolic expressions over their initial contents.
If these expressions are structurally equal, then these concrete executions are observationally
equivalent, assuming these executions do not trap. Since certain processor operations may trap (e.g.
reading from invalid memory locations, division by zero), the symbolic execution of each block
also computes a symbolic precondition (represented as a conjunction of symbolic clauses) such
that the concrete execution traps if and only if the precondition is not satisfied. We require that
the precondition of the source code implies the one of the target code. For compilation efficiency,
structural equivalence of expressions is reduced to pointer equality through hash-consing (i.e.
memoizing expressions such that two structurally equal expressions are uniquely allocated in each
compiler run). See Ex. 2.1.

Example 2.1 (Symbolic simulation of basic blocks). Consider two basic blocks 𝐵1 and 𝐵2:
(𝐵1) 𝑟1 B 𝑟1 + 𝑟2; 𝑟3 B load[𝑚, 𝑟1]; 𝑟3 B 𝑟1; 𝑟1 B 𝑟1 + 𝑟3
(𝐵2) 𝑟3 B 𝑟1 + 𝑟2; 𝑟1 B 𝑟3 + 𝑟3
Both 𝐵1 and 𝐵2 lead to the same parallel assignment:

𝑟1 B (𝑟1 + 𝑟2) + (𝑟1 + 𝑟2) ∥ 𝑟3 B 𝑟1 + 𝑟2.
𝐵1 is preconditioned by OK(Read, 𝑟1 + 𝑟2)—meaning “the location at address 𝑟1 + 𝑟2 is readable”—
whereas 𝐵2 has a true precondition. Hence, 𝐵2 simulates 𝐵1, but not the converse.

When applicable, this approach is very powerful, because it is simple, efficient and does not
require hints from oracles (after the CFG is partitioned into blocks). A typical application is
instruction scheduling, which reorders instructions to improve parallelism in the processor pipeline.
In their first work on instruction scheduling, [Six et al. 2020] only considered basic blocks

(sequence of instructions with only one exit-point) of assembly code, and relied on a specific
DSL (Domain-Specific Language) for symbolic execution. They later generalized their symbolic
simulation validator to superblocks (sequence of instructions with intermediate conditional exit-
points plus a final exit-point) to validate superblock scheduling [Six et al. 2022]. In some further
improvements of their system, the source superblock may be transformed into an extended block (a
sequence of trees without internal joins) which is not a superblock. They overcame the limitation
of their symbolic simulation to superblocks with an intricate sequence of passes combining ad-hoc
validators [Justus Fasse 2021].
8 Synthetic nodes are “no-op” blocks inserted in the CFG in preprocessing of code motion [Knoop et al. 1992, §3.1].
9In CompCert, certain actions, such as calls to external functions and volatile variable accesses, generate events. Global
correctness amounts to preserving observable event sequences. In contrast, registers etc. are internal affairs of the program.

2023-05-22 18:22. Page 4 of 1–32.

Formally Verifying Optimizations with Block Simulations

In contrast, one of our contributions is to define our symbolic simulation validator on a very
general syntax for blocks, even if its current applications only apply it to extended blocks. We have
introduced an IR called BTL (Block Transfer Language) for representing CFGs of RTL blocks: it
replaces the “RTLpath”—a decoration of RTL defining a block semantics—of [Six et al. 2022]. In
contrast to RTLpath, BTL represents the control-flow within each block structurally (with an usual
abstract syntax tree), instead of an explicit sub-CFG. This makes our symbolic simulation test both
simpler and more efficient.10 Proving the passes between RTL and the CFG of blocks becomes
however less trivial: this leads us to generalize the notion of CFG morphism as sketched in §2.1.

2.2.2 Inter-Block Transformations. The simulation test sketched above is only applicable if the
transformation preserves the semantics of each block. Indeed, it uses the equality of the source and
target states (that is, the registers and memory) at the entry of each block as a simulation invariant.
Inter-block transformations cannot be validated using this invariant for two reasons. Firstly, a
transformation only needs to consider initial states at the block entry that are reachable by the
program, whereas the above simulation test requires proving the preservation for any values of
the registers and memory at the block entry. Secondly, the source and target states at the entry of
the block dot not need to be equal. For instance, Dead Code Elimination (DCE) only maintains the
equality of the live registers; some transformations use auxiliary registers, which hold meaningful
values only in the target program.

To validate such global transformations, we generalize the invariants relating the source and
target states at block entries. We progressively explain this idea, with the help of Fig. 2, providing a
transformation on C pseudocode.11 Both the source and the target code are CFGs of two (extended)
blocks, labeled by Entry (their entry-point) and Loop. The target is obtained after a combination
of Constant Propagation (from a=7) and Strength Reduction: the multiplication originally within
Loop is moved to Entry and reduced in Loop to an addition on a fresh register i_a. The target also
benefits from DCE, since register a and its assignment are eliminated.

Source CFG
Entry:

s = 0;
a = 7;
goto Loop;

Loop:
if (i > n)

return s;
s += i*a;
i += 3;
goto Loop;

Target CFG
Entry:

// iT = iS ∧ nT = nS
s = 0;
i_a = i*7;
goto Loop;

Loop:
// aS = 7 ∧ iT = iS
// ∧ i_aT = iS ∗ 7
// ∧ nT = nS ∧ sT = sS
if (i > n)

return s;
s += i_a;
i += 3;
i_a += 21;
goto Loop;

Fig. 2. Simulation modulo Invariants

To account for the differences between the source and
target registers at the beginning of the block, we allow
our symbolic expressions to mention the initial mem-
ory, the initial source registers (denoted with an “S” sub-
script) and the initial target registers (denoted with a “T”
subscript). An invariant is then the conjunction of the
equality of the source and target memories, a precondi-
tion expressed as a symbolic proposition, and equalities
between some registers and symbolic expressions. The
symbolic proposition and equalities are produced by our
untrusted oracles for each block. Fig. 2 represents the
equalities attached to each block of the target code, all
preconditions are trivially true in this example.

The simulation modulo invariants is validated by sym-
bolic execution. For each block, we use the invariant at the entry to build an initial symbolic value
for each register in the source and target programs. We then perform the symbolic execution of
both the source and target blocks, and we compare their respective results through the invariant
associated to every block exit. Let us detail this process for the Loop block of Fig. 2:
• For the source block, the symbolic execution starts from symbolic state “a B 7” itself deduced

10Our representation also slightly generalizes the “tree-based representation” of [Tristan and Leroy 2008, §5.1], because in
ours, “sequences of trees” are blocks.
11Implicitly, all arithmetic computations operate on unsigned long.

2023-05-22 18:22. Page 5 of 1–32.

Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard

from the invariant at the block entry. It thus computes the following symbolic assignments at the
“goto Loop” exit: “a B 7 ∥ i B iS + 3 ∥ s B sS + iS ∗ 7”.
• For the target block, the symbolic execution deduces from the invariant at block entry the fol-
lowing initial symbolic state : “i B iS ∥ i_a B iS ∗ 7 ∥ n B nS ∥ s B sS”. Then, it obtains for this
same exit: “i B iS + 3 ∥ i_a B iS ∗ 7 + 21 ∥ n B nS ∥ s B sS + iS ∗ 7”.
•We then compare those symbolic values according to the invariant at the exit point (here again,
the invariant at the Loop entry). After substituting the symbolic expressions of the source and
target registers within this invariant, we check the following syntactic equalities: (1) 7 = 7, for
equation aS = 7; (2) iS + 3 = iS + 3 for iT = iS; (3) iS ∗ 7 + 21 = (iS + 3) ∗ 7 for i_aT = iS ∗ 7;
(4) nS = nS for nT = nS; (5) sS + iS ∗ 7 = sS + iS ∗ 7 for sT = sS.

In order to prove equality (3), the symbolic execution is extended with rewriting rules normalizing
affine expressions (see §6.3). Expressions on both sides are normalized into “21 + 7 · iS”. The
rewriting engine within symbolic execution is similar to the one of [Six et al. 2022]: it is simply
defined more modularly. Now, each transformation may independently define its own rewriting
rules, over a common underlying architecture.
In contrast to [Six et al. 2022], we do not use an ad-hoc validation of register liveness. While

our oracles generate only invariants for live registers of the target program, the validation of this
liveness analysis implicitly results from the preservation of equational invariants between source
and target registers. An incorrect liveness analysis will result in an invariant that is invalid after
substitution of the target registers, because it will still involve a target register not itself bound to a
symbolic expression of source registers.

This implicit liveness validation is strictly more expressive than the explicit liveness validation of
[Six et al. 2022]: we express each register “r” considered live by Six-et-al as an equation “rT = rS”.
This enabled us to port their superblock scheduling to BTL (and even improve it) as detailed in
§4. Moreover, because they only validate a weak liveness analysis of the source program, their
framework is unable to validate any kind of DCE. In contrast, as shown on Fig. 2, ours validates
some DCE “for free” (i.e. just from liveness equations as above).

3 BTL AND ITS SYMBOLIC SIMULATION
The abstract syntax of BTL functions—given Fig. 3—is largely inspired by the one of RTL [Leroy
2009b]. Each (internal) function f is associated to a CFG cfg and an entry-point pc𝑒𝑛𝑡𝑟𝑦 in this
CFG. Such a CFG is a map from labels pc to instruction blocks ib. Syntactically, a block ib may
be composed of two sub-blocks, either sequentially with Bseq or through a kind of “if-then-else”
written Bcond. A block may be reduced to a basic instruction: either Bnop that skips, or Bop that
assigns the result of “op(# »r𝑎𝑟𝑔)” to register r𝑑𝑠𝑡 , or a few others. Last, it may also be a final instruction
named fi that stops the current block execution, such as Bgoto that enters another block of label pc
and Breturn that returns from the current function. In order to cope with CompCert simulation
proofs, we impose that function call—written Bcall—is a final instruction, branching to pc𝑟𝑒𝑡 after
the call. See Fig. 4 for an example in BTL syntax.

Similarly to RTL, the formal semantics of BTL programs and functions is a small-step operational
semantics, where each step emits at most one single event. In contrast to RTL where a step runs at
most one single instruction, each BTL block is run in one big-step. By construction, such a block
big-step necessarily ends just after the RTL-style small-step of a final instruction.12

12If no final instruction is present, the block cannot step. See our source code online for the Coq definitions.

2023-05-22 18:22. Page 6 of 1–32.

Formally Verifying Optimizations with Block Simulations

f ::= (sig, # »r𝑎𝑟𝑔, cfg, pc𝑒𝑛𝑡𝑟𝑦, · · ·)
cfg ::= (pc ↦→ ib)
fi ::= Bgoto(pc)
| Breturn(𝜖 |r)
| Bcall(sig, (r |id), # »r𝑎𝑟𝑔, r𝑑𝑠𝑡 , pc𝑟𝑒𝑡)
· · ·

ib ::= Bnop
| Bop(op, # »r𝑎𝑟𝑔, r𝑑𝑠𝑡)
· · ·
| Bseq(ib1, ib2)
| Bcond(cond, # »r𝑎𝑟𝑔, ib𝑡ℎ𝑒𝑛, ib𝑒𝑙𝑠𝑒)
| BF(fi)

Fig. 3. Syntax of BTL internal functions

if (x >= y) goto L;
x = z << 2;
return x;

Bseq(Bcond(_>=_, [x;y], BF(Bgoto(L)), Bnop),
Bseq(Bop(_<<2, [z], x),

BF(Breturn(x))))

Fig. 4. A superblock in C syntax and its BTL representation

sv ::= Sinput((Src|Trg), r)
| Sop(op, # »sv𝑎𝑟𝑔)
· · ·

sm ::= Sinit
| Sstore(sm, chunk, addr, # »sv𝑎𝑟𝑔, sv𝑠𝑟𝑐)

sis ::= (pre, (r ↦→ sv), sm)

sfv ::= Sgoto(pc)
| Sreturn(𝜖 |sv)
| Scall(sig, (sv |id), # »sv𝑎𝑟𝑔, r𝑑𝑠𝑡 , pc𝑟𝑒𝑡)
· · ·

ss ::= Scond(cond, # »sv𝑎𝑟𝑔, ss𝑡ℎ𝑒𝑛, ss𝑒𝑙𝑠𝑒)
| Sfinal(sis, sfv)

Fig. 5. Syntax of the symbolic representations

3.1 Symbolic representations
The symbolic execution operate on symbolic representations of the dynamic values involved in the
semantics of BTL. Fig. 5 presents the syntax of the main symbolic representations. They express
the dynamic values as functions of the context, which fixes the values of the source and target
registers at the entry of the block, represented by Sinput, and the common memory at the entry,
represented by Sinit. An internal symbolic state sis represents the pair of a register state and a
memory, using a symbolic memory sm and by associating a symbolic value sv to each register.
It also contains a symbolic proposition pre (such as the OK precondition of Ex. 2.1), so that the
symbolic state does not represent any concrete state if this proposition is not satisfied. Our paper
often write internal symbolic states as parallel assignments such as the one of Ex. 2.1.

3.2 Compact Invariants
ci ::= (# »r𝑑𝑠𝑡 B iv, # »r𝑜𝑢𝑡𝑝𝑢𝑡)
iv ::= input? r

| Iop(op, # »
input? r)

| Iload(chunk, addr, # »
input? r)

Fig. 6. Syntax of Compact Invariants

A symbolic value represents the value of a register r after
a sequence of concrete BTL assignments. As introduced
in §2.2.2, our invariants themselves contains symbolic
values. However, Ex. 2.1 illustrates on block (𝐵2) that the
symbolic values may contain (exponential) term duplica-
tions w.r.t. a sequential representation. Because invari-
ants are syntactically provided by the oracle under validation, we design a compact syntax which
represents them as sequences of assignments from the source state. A first sequence, the history
invariant H , provides symbolic expressions for the source registers. A second sequence, the gluing
invariant G, provides symbolic expressions for the target registers.13 The preconditions of the
operations of the sequences are used to define the precondition of the invariant.
13The term “gluing invariant” is inspired by Abrial [1996]. Our “gluing invariants” have also similarities with “simulation
invariants” of Rinard and Marino [1999], and our “history invariants” with their “standard invariants”.

2023-05-22 18:22. Page 7 of 1–32.

Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard

Fig. 6 provides our abstract syntax for compact invariants. A compact invariant ci is a sequence
of assignments of invariant values iv to registers r𝑑𝑠𝑡 together with a set of output registers. An
invariant value iv may read a register r , optionally with a prefix “input” indicating that the input
value is considered instead of the current one (within the assignment sequence). It can also represent
an operation involving current or input registers, or a load from the current memory. Initially,
current and input registers are the registers of the source. In the rest of this document, we will note
sequential invariants as “([a1:=v1;a2:=v2;...;aK:=vK], {o1,o2,...,oN})”, where the “ai:=vi” are
the assignments and where the set of output registers is between braces.

Example 3.1. Interpreted as gluing invariants, the two following compact invariants
“([a:=y[5]; z:=a+input x; x:=a+input z], {x,z,t})”
and “([z:=y[5]; x:=z+input z; z:=z+input x], {x,z,t})”
both represent the equations “xT = yS [5] + zS ∧ zT = yS [5] + xS ∧ tT = tS” with precondition
“OK(Read, y[5])”.

Given a symbolic internal state representing the source state, the simulation checker performs a
hash-consed symbolic execution of a compact invariant to obtain symbolic representations of the
right-hand side expressions of the invariant and its precondition. At the entry of the block, we can
complete the result of this execution using trivial equalities rS = rS or rT = rT to obtain a symbolic
value for each register.

The symbolic validation exploits two properties of those invariants:
• Given a pair of source and target symbolic internal states, we can check that an invariant holds
by executingH and G from the source state and comparing the symbolic values obtained for the
right-hand sides with the symbolic value associated to the registers by the symbolic states. We also
check that the precondition of the invariant is implied by the precondition of the symbolic states.
• Given some invariants H and G, we can build symbolic states representing any pair of con-
crete states related by those invariants and reflecting the properties they enforce. We start with
an empty symbolic state representing trivially the source state (using 𝑟 ↦→ 𝑟S for the registers).
We executeH to obtain a new representation of the source state that enforce the equalities and
the precondition ofH . Then we execute G from this new symbolic state to obtain a state repre-
senting the target state. Finally, we refine the source symbolic state by adding the precondition of G.

3.3 Symbolic Execution with Trace-Partitioning By Continuation-Passing
Our theory of symbolic execution improves upon Six et al. [2022]’s with mainly two features.
First, as explained in §2.2.2, the oracle provides invariants that allow the validation of inter-block
transformations. Second, BTL symbolic execution supports arbitrary nested sequences of “if-then-
else” instead of superblocks only. This required both a more general representation of the symbolic
states generated by symbolic execution and a kind of trace-partitioning within it.

A symbolic state represents all possible block steps of given BTL block. Fig. 5 defines a symbolic
state ss as a binary decision tree, where each branch represents one possible execution path of the
block. A “Scond” node represents the choice between two branches. Leaves are “Sfinal(sis, sfv)”
where sis—a symbolic internal state—represents the state of the program when it reaches the exit
of the block, and sfv—a symbolic final-value—represents the final instruction of the exit (where
registers have been substituted by their final symbolic values).

Fig. 7 sketches the Coq code of the symbolic execution. Here, sstate and sistate are respectively
the types of symbolic state ss and symbolic internal state sis. Function set_sreg updates the current
sis by assigning a new symbolic value to register dst. The symbolic execution of the register list
args into a symbolic value list is delegated to function lmap_sv.

2023-05-22 18:22. Page 8 of 1–32.

Formally Verifying Optimizations with Block Simulations

Fixpoint sexec_rec ib sis (k: sistate → sstate): sstate B
match ib with
(** basic instructions *)
| Bnop ⇒ k sis
| Bop op args dst ⇒ k (set_sreg dst (Sop op (lmap_sv sis args)) sis)
| . . .

(** others *)
| Bseq ib1 ib2 ⇒ sexec_rec ib1 sis (fun sis2 ⇒ sexec_rec ib2 sis2 k)
| Bcond cond args ifso ifnot ⇒

Scond cond (lmap_sv sis args) (sexec_rec ifso sis k) (sexec_rec ifnot sis k)
| BF fi ⇒ Sfinal sis (sexec_final_sfv fi sis)
end

Fig. 7. Symbolic Execution in CPS

The symbolic execution—named sexec_rec—computes over block ib recursively. The initial
(internal) state is sis. The trace partitioning is here realized in Continuation Passing Style (CPS).
Continuation k represents how symbolic execution should “normally” continue on updates of
internal state. It is initialized as “error_sstate”, which returns a state with a false precondition,
reflecting the fact that each BTL block step must reach a final instruction.

3.4 Symbolic Simulation Modulo Invariants

csS,0 csT,0

csT,1, fiT

sisS sisT

ssS ssTcsS,1, fiS

csS,2 csT,2

R

R

ibS

fiS

ibT

fiT

ibS ibT

init from
invariant

comparison

wrt invariants

Fig. 8. Simulation Step using Symbolic Simulation

The blue subdiagram in Fig 8 represents
the computations performed by our sym-
bolic simulation validator. The surround-
ing diagram (in black color) represents its
correctness proof wrt concrete executions.
Hence, we deduce the lock-step forward
simulation14 of the source BTL code by the
target one from their simulation block-by-
block, and check the latter by comparing
the symbolic states produced by the sym-
bolic execution of each block. Our simu-
lation relation R relates pairs of states at
the same program location, using the in-
variants provided by the oracle for this
location. In the formal proof, we also need to relate the call stacks of the two programs (see
Appendix A.1).

Since we prove a forward simulation, we consider a pair of source and target states csS,0 and
csT,0 at the entry of the block and related by the invariant defined by the oracle for the block. We
assume that the source program take a step to csS,2, and we have to prove that the target program
can take a corresponding step to some state csT,2 related to csS,2.

Because csS,0 and csT,0 are related by the invariant of the block, we can build from it two symbolic
internal states sisS and sisT representing the source and target initial states. The validator perform
the symbolic execution of the blocks to obtain two symbolic states ssS and ssT representing the
outcomes of the executions of the blocks. It then performs a comparison of those two decision trees.
It checks that they have the same structure with the same conditions. For each corresponding leaves,
it checks that (1) the symbolic final values and symbolic memories are identical; (2) the symbolic
precondition of the source outcome implies the one of the target; (3) the simulation relation is

14Thanks to deterministic target languages, the correctness of CompCert’s backend passes reduces to a forward simula-
tion [Leroy 2009b].

2023-05-22 18:22. Page 9 of 1–32.

Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard

satisfied after an execution of the common final instruction. For this last condition, it checks the
invariants associated to all the blocks the final instruction can jump to. In the case of a final value
“Scall(sig, (sv |id), # »sv𝑎𝑟𝑔, 𝑜, pc𝑟𝑒𝑡)”, it also checks that those invariants do not constrain the memory
and the output register 𝑜 , possibly modified by the call: it only allows “liveness” equation oT = oS.
The step of the source block can be decomposed into an execution up to a final instruction fiS

followed by an execution of this final instruction. By the correctness of sexec , ssS represents the
state of the source program before the execution of fiS. In particular, its precondition is satisfied. The
comparison ensures that the precondition of ssT is also satisfied, hence by the correctness of sexec ,
the target program can take a step-up to a final instruction fiT. Since fiS and fiT are represented by
the same symbolic final value, we can simulate the execution of fiS by an execution of fiT to a state
csT,2. Because of the comparison performed between the symbolic states, the simulation relation
holds between csS,2 and csT,2.

Besides this block-to-block simulation, we also need to ensure that invariants at the CFG entry do
not constrain any register, except by liveness equations. Indeed, in our intra-procedural verification,
the value of parameters must be considered as unknown.

3.5 Refinement with Hash-Consing and Normalized Rewriting
In our Coq development, the code in Fig. 7 specifies the symbolic state that the symbolic execution
should produce modulo semantic equivalence. This specification is refined with normalized rewrit-
ing and hash-consing in the impure monad of Boulmé [2021]. Rewriting reduces comparisons (of
symbolic values) modulo a set of equations to structural equalities [Kirchner and Kirchner 2014].
Hash-consing reduces these structural equalities to pointer equalities. Hence, §3.4 gives itself a
specification of our validator which compares symbolic values using pointer equality of OCaml.
Here, we adapt the technique of Six et al. [2022] with much more complex rewriting rules. See §6.3.

BTL is annotatable with results of verified static analyses. See Appendix A.4. These annotations
are taken into account in the semantics and used to justify some rewritings. In particular, we rely
on a non-alias analysis to overcome our symbolic representation of the memory as a single variable
(see Appendix B), and an interval analysis enables an integer promotion pass (see §6.4).

3.6 Limitations of our Simulation Checker
Our simulation checker has two kinds of limitations: performance ones (impacting CompCert
running times) and expressivity ones (restricting the class of simulations that can be validated).

Performance. While in theory, any piece of code without loops may be represented as a BTL
block, in practice our symbolic execution performs a naive trace partitioning: it is thus exponential
over the number of internal joins of the input block (i.e. such that two branches of a given block join
at a point which is not a block entry). Because we currently only apply our checker to extended
blocks, which, by definition, do not have such joins, this is not an issue. Furthermore, for blocks
with a bounded number of internal joins, and without rewriting rules, our symbolic execution is
linear in the size of invariants and blocks (see §8.1). In the general case, its cost depends on the
normalization system. For example, for the normalization of affine forms (for SR), it is expected
to be quadratic in the worst case. Lastly, the comparison of symbolic states costs O((𝑙 + 𝑡) × 𝑒)
where 𝑙 (resp., 𝑡) is the maximal number, by execution path, of liveout registers (resp., trapping
instructions) and 𝑒 is the number of execution paths (coinciding with the number of exits for blocks
without internal joins). Block selection is a way to finely control 𝑒 , and thus checker performance.

Expressivity. The relative simplicity and efficiency of our checker comes at a price: its expressive
power is limited. (1) Our invariants only support equations of the form “𝑟 = sv” but not the
more general “sv1 = sv2”: this limitation avoids the need of costly saturation techniques. (2) Our

2023-05-22 18:22. Page 10 of 1–32.

Formally Verifying Optimizations with Block Simulations

simulation checker performs no reasoning on conditions. It simply checks that the two symbolic
states under comparison have the same binary decision tree structure, with syntactically equals
conditions on nodes. Future works include supporting conditions within invariants with a more
expressive comparison of decision trees and preconditioned rewriting rules. (3) Our invariants
implicitly express that their trapping expressions are actually safe in the execution context. This
forbids the target to anticipate traps with respect to the source. Avoiding this restriction would
require prophecies [Abadi and Lamport 1991] ensuring that these traps will eventually be observed
on the source before any subsequent observable event. Besides generalizing the semantics of our
invariants, this would need introducing a notion of “decreasing variant” forbidding never-realized
prophecies. Currently, we partly overcome this restriction with the help of CFGmorphisms. See §5.1.
(4) The invariants presented here require the source and target memories to be equal at BTL block
boundaries. We can however generalize the invariants while keeping the formalism of §3.4. This
enables for example validating the loop invariant code motion of a memory update after a loop.

4 APPLICATION TO SUPERBLOCK SCHEDULING
In-order processor cores execute assembly instructions in their syntactic order. If one instruction
computes a register used by the next one, then the core stalls until the value computed becomes
available, which may take several clock cycles. Optimizing compilers thus reorder instructions
to minimize stalling: e.g. prioritizing instructions with high latencies and impacting many other
instructions. For example, the superblock scheduler of Six et al. [2022, §6] attempts to minimize
the running times of the execution path covering the whole superblock, even if it may increase
running times of early exiting paths, but without increasing register usage beyond the point where
the subsequent register allocation would be forced to spill registers to memory. This scheduler is
based on a solver that reorders the superblock without code duplication.

double sumsq(double *x, unsigned long len) {
double s = 0.0;
for (unsigned long i=0; i<len; i++) s+=x[i]*x[i];
return s;

}

Loop:

x7 = float64[x2+x3 <<3]

x6 = x7 *f x7

x4 = x4 +f x6

x3 = x3 +l 1

if (x3 >=lu x1)

goto Exit

// start second iteration

x7 = float64[x2+x3 <<3]

x6 = x7 *f x7

x4 = x4 +f x6

x3 = x3 +l 1

if (x3 >=lu x1)

goto Exit

goto Loop

Exit:

return x4

Loop: // live: x1, x2, x3, x4

x11 = float64[x2+x3 <<3]

x8 = x3 +l 1

if (x8 >=lu x1) {

x10= x11 *f x11

x9 = x4 +f x10

x4 = x9

goto Exit // live: x4

}

x3 = x8 +l 1

x7 = float64[x2+x8<<3]

x10 = x11 *f x11

x6 = x7 *f x7

x9 = x4 +f x10

x4 = x9 +f x6

if (x3 >=lu x1)

goto Exit // live: x4

goto Loop

Fig. 9. Interleaving of unrolled loop-bodies on AArch64.

We ported the Six et al.’s superblock
scheduler from RTLpath to BTL. We now
explain, on a variant of their example [Six
et al. 2022, Fig. 10], how the design of
BTL makes the implementation much eas-
ier. This example applies a weak form of
software pipelining, that they call if-lifting,
and targets ARM Cortex-A53 (AArch64),
a dual-issue in-order processor with two
ALUs. In Fig. 9, we optimize the top source
C code by parallelizing computations be-
tween two successive iterations of the loop
body. The left-hand side represents the
BTL code of the loop body, after a loop-
rotate and unroll-body (see Fig. 1). Hence,
the “Loop” superblock (which is a loop
body containing two iterations of the origi-
nal loop) is scheduled as the BTL block rep-
resented on the right-hand side: the two
floating-point computations of the first it-
eration (in violet color) have been moved
below the intermediate exit in order to be interleaved with those of the second iteration. The

2023-05-22 18:22. Page 11 of 1–32.

Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard

scheduler predicts15 that the target loop body will run in at most 22 cycles instead of 32 cycles for
the original one (e.g. more than 30% gain of running time). However, preserving the semantics
requires register renamings with fresh registers (in red color) and insertion of compensation code (in
blue color) at the intermediate exit. Because of this insertion, the target block is an extended block.

This whole transformation is directly validated by our simulation checker, with gluing invariants
reduced to a conjunction of liveness equations “rT = rS”, over all registers r of the live sets given
on the right-hand side (in yellow color). On the contrary, because RTLpath can only represent
superblocks, validating this transformation with Six’s design required an “intricate combination of
passes” [Six et al. 2022, Footnote 10].
Our implementation of the oracle is also quite simple. First, register renamings are performed

backward in a preliminary pass (we avoid forward renamings of [Six et al. 2022, §5.3] because
they tend to pollute the superblock under scheduling with compensation renamings). Then, we
invoke the scheduling solver on a fake superblock, with an empty live set on intermediate side exits.
Last, we insert the necessary compensation code in the side exits, following Justus Fasse [2021]’s
heuristic. We then compare the makespan (total estimated time) of this scheduling to the standard
one (computed on the original superblock with correct liveness and without compensation code).
If the ratio of the size of the compensation code over the makespan gain is greater than a given
threshold, we keep the standard one instead. Hence, compiler users may control this scheduling
heuristic by tuning the threshold on the command line.

We have also refined this formally verified scheduler with reordering of non-interferring load or
store w.r.t store for some non-alias analyses (see Appendix B). Yet, we measured a gain only on a
few benchmarks.

5 APPLICATION TO LAZY CODE MOTION
Code motion consists in anticipating some instructions in order to remove redundant computations.
For example, by data-flow analysis, we may detect expressions remaining constant within a loop
and anticipate their computation before the loop: this is LICM (Loop Invariant Code Motion).
However, if done carelessly, this transformation may anticipate a loop-invariant expression that
traps (e.g. a memory load from a potentially invalid pointer, or a division operation on some
architectures), whereas this computation is unreachable in the original loop. Safe elimination of
such computations—that are redundant on some but not all program paths—is called PRE (Partial
Redundancy Elimination). According to Bodík et al. [1998], “to achieve a complete PRE, control flow
restructuring must be applied. However, the resulting code duplication may cause code size explosion.”
They propose to guide these CFG restructuring with path-profiling and data-flow frequency analysis.

Lazy Code Motion [Knoop et al. 1995, 1992] performs safe and optimal PRE without CFG unrolling,
while limiting the register pressure induced by code motion. Instructions are safely anticipated
but not earlier than the minimum necessary to reach computational optimality (i.e. with a minimal
average running time for PRE without CFG unrolling). In other words, among computationally
optimal code motions, LCM selects those that minimize register pressure. Below, we present our for-
mally verified PRE within the CompCert compiler: §5.1 combines LCM with simple CFG unrollings
on the example in Fig. 10; §5.2 details the validation of our LCM oracle on this example.

5.1 Performing LICM by PRE on an Example
Figure 11 presents an extract of the RISC-V code produced by CompCert with CSE3 of [Monniaux
and Six 2021, 2022] activated for the source C code in Fig. 10. The computation of a[0] has been

15This estimation occurs at an abstract level and thus cannot be precise. First, the subsequent register allocation could
introduce unexpected spills. Second, this estimation assumes that there is no cache miss. Third, the pipeline model is inexact.

2023-05-22 18:22. Page 12 of 1–32.

Formally Verifying Optimizations with Block Simulations

factorized in f3 register over the whole program. But, computations (in violet color) of a[1] in f0
and a[2] in f2, and loading of floating-point 7 in f1 is performed at each iteration of the loop of
label .L102.

1double approx(double *a) {
2double r = 2;
3if (a[0] < 2) return 2;
4while (r < a[1])
5if (r >= a[2]) r -= a[0];
6else r *= 7;
7return r;
8}

Fig. 10. Four Candidates for LICM

fld f3 ,0(x10)

fld f10 ,.L100 ,x31

flt.d x31 ,f3,f10

bne x31 ,x0 ,.L101

.L102: # Loop Entry

fld f0,8(x10)

flt.d x31 ,f10 ,f0

beq x31 ,x0 ,.L101

fld f2,16(x10)

fle.d x31 ,f2,f10

bne x31 ,x0 ,.L103

fld f1,.L104,x31

fmul.d f10 ,f10 ,f1

j .L102

.L103:

fsub.d f10 ,f10 ,f3

j .L102

.L104: ...# 7.0 in hexa

.L100: ...# 2.0 in hexa

Fig. 11. CSE3 alone

... # Same prolog

fld f0,8(x10)

flt.d x31 ,f10 ,f0

beq x31 ,x0 ,.L101

fld f2,16(x10)

fle.d x31 ,f2,f10

bne x31 ,x0 ,.L103

fld f10 ,.L105 ,x31

j .L102

.L103:

fsub.d f10 ,f10 ,f3

.L102:

fld f1,.L104,x31

.L106: # Loop Entry

flt.d x31 ,f10 ,f0

beq x31 ,x0 ,.L101

fle.d x31 ,f2,f10

bne x31 ,x0 ,.L107

fmul.d f10 ,f10 ,f1

j .L106

.L107:

fsub.d f10 ,f10 ,f3

j .L106

.L105: ...# 14.0 in hexa

.L104: ...# 7.0 in hexa

Fig. 12. Unroll+LCM

In contrast, in Fig. 12 (the four first lines are
omitted because identical), after unrolling the
first iteration (see Fig. 1) our LCM moves all
these computations before the loop, starting
now at label .L106. Remark that if the condi-
tion of the loop is initially false, a[2] is not
computed by the original loop, but may trap if
the address is invalid. Thus, simply anticipat-
ing the computation of a[2] before the loop is
incorrect: unrolling the first iteration gives a
simple workaround.

However, it may not suffice. For example, in
Fig. 10, if the test on line 3 was omitted, then
simply unrolling the first iteration would not
suffice to allow a[0] to be moved before the
loop. Indeed, if r < a[2] at the first iteration,
then a[0] is not computed and may still trap af-
terward. Actually, following [Bodík et al. 1998],
we may find an unrolling (validated by Six’s
CFG morphism checker) that enables it. But
this would cost even more code duplications
than those of Fig. 12.
Let us now explain why LCM is more pow-

erful than CSE. Applying CSE3 after unrolling
produces almost the same code as the one of
Fig. 12 except that the load of floating-point 7
is not factorized.16 This is due to the fact that
some execution path of the first iteration does
not load floating-point 7 into f1. Indeed, CSE3
can only eliminate computations that are available on all incoming paths. Thus, CSE3 only performs
some FRE (Full Redundancy Elimination): it misses FRE if the same value is available on different
incoming paths, but in different registers. In contrast, LCM is able to perform any FRE and even
non-trapping PRE without unrolling. On Fig. 10 example, the load of floating-point 7 is anticipated
even without any loop unrolling. In the original version of [Knoop et al. 1995], LCM also safely
moves a[1] out of the loop without any loop transformation: this is a FRE, since a[1] is present
in the condition of the loop, which is at least run once. Nevertheless, due to the current design of
our simulation checker (see §3.6), anticipating trapping code w.r.t. the original program does not
pass validation: our LCM can only eliminate a[1] within the loop, after at least a loop-rotation
(see Fig. 1). This is not an issue on this very simple example: after applying our CFG minimization,
we still finally achieve the FRE of a[1] without any code duplication.

16The original CSE of CompCert does not even eliminate the redundant “a[0]”. This contrast with gcc -O1 (version 9.4.0)
which performs a PRE with slightly less code duplications than ours on this example. However, the original CSE of CompCert
factorizes the load of floating-point 2 into register “f10”. Such a “trivial” CSE is required by the LCM algorithm: block-based
LCM cannot exempt from, at least, an intra-block CSE. See [Knoop et al. 1995].

2023-05-22 18:22. Page 13 of 1–32.

Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard

5.2 Formally Validated LCM

x2 = 2f
x9 = ld[x1+0]
x8 = x9
x8 <f? x2

x10 = ld[x1+8]
x7 = x10
x2 not(<f)? x7

x11 = ld[x1+16]
x6 = x11
x2 >=f? x6

x2 = 14f

x12 = 7f

x2 = x2 -f x8

x12 = 7f

x7 = x10
x2 not(<f)? x7

x6 = x11
x2 >=f? x6

x2 = x2 *f x12

gotox2 = x2 -f x9

goto

goto

goto

x3 = x2

goto

x3 = x2

goto

ret x31

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

Fig. 13. Full BTL CFG of Fig. 12

Code motion moves computations from one block to an-
other, and is thus global over the CFG. Figure 2 illustrates
how invariants propagate information between blocks. Our
simulation modulo invariants also validates our LCM, as
now detailed on the previous example.
Our LCM oracle optimizes a BTL CFG of basic blocks.

The CFG of the example is represented in Fig. 13, where
each node is identified by a unique number (in yellow),
and where synthetic nodes (explained in Footnote 8) are
denoted with a violet border. The four candidates detected
by the oracle have been inserted at their optimal points, by
assigning them to a fresh variable (in red).
For instance, the load of floating-point 7 illustrates this

“lazy” behavior of LCM as it is inserted in two different
blocks (14 and 16) to minimize the live range. The calcu-
lation is therefore duplicated on two branches, and both
chosen blocks are the last possible ones before the loop.
However, this code duplication does not appear in the final
assembly code of Fig. 12, because it is factorized by our
subsequent CFG minimization pass. In Fig. 13, it also ap-
pears that some fresh variables, such as x10 and x11, are
duplicated through a compensation move (in blue). This be-
havior will be explained §6. Note that these pseudo-register
duplications do not increase the actual live range since they
will be removed by the subsequent register allocator.

Now let us detail how the invariants are generated by our LCM oracle before sending the
whole result to the verifier. Our LCM only requires gluing invariants: thus, history invariants
remain trivially empty here. Invariants are generated in the sequential representation of §3.2. As
explained at the end of §3.4, the invariant of the entry block (here block 20) is always reduced
to a liveness set. Besides liveness sets, invariants are updated for each candidate just after they
appear in code: at the entry of block 19, we have “([x9:=ld[x1+0]], {x1,x2,x8,x9})” to remember
the load, and because these four variables are live. The second (resp. third) load is added to the
gluing invariant at block 18 (resp. blocks 15 and 17). Thus, for all blocks with a label in 14 . . . 17, the
invariant contains the same sequence of assignments (but the sets of live variables are different):
“x9:=ld[x1+0]; x10:=ld[x1+8]; x11:=ld[x1+16]”. From block 13 and up to block 8 (included), we
append to this list the assignment “x12:=7f”. Finally, blocks 1 to 7 only contain pure-liveness
invariants, as the verification need not remember the values of candidates anymore.

Example 5.1. Validating symbolic simulation for block 14 (with the validator described in §3.4).
G(14) = ([x9:=ld[x1+0]; x10:=ld[x1+8]; x11:=ld[x1+16]], {x2,x9,x10,x11})

This leads to the following initial states:
sisS = (pre, 𝜖)

sisT = (pre, x2 B x2S∥x9 B ldS [x1S + 0] ∥x10 B ldS [x1S + 8] ∥x11 B ldS [x1S + 16])
where pre = OK(Read, ldS [x1S + 0]) ∧ OK(Read, ldS [x1S + 8]) ∧ OK(Read, ldS [x1S + 16])

After the symbolic execution of the blocks:
ib𝑠 = BF(Bgoto(13)) and ib𝑡 = Bseq(Bop(7f, [], x12), BF(Bgoto(13)))

2023-05-22 18:22. Page 14 of 1–32.

Formally Verifying Optimizations with Block Simulations

we obtain:
ssS = Sfinal(sis𝑠 , Sgoto(13))

ssT = Sfinal((pre, x2 B x2S∥x9 B ldS [x1S + 0] ∥ . . . ∥x12 B 7f), Sgoto(13))
The two decision trees have the same structure and their unique leaves match. In particular, the
gluing invariant of the successor block 13 is satisfied:
G(13) = ([x9:=ld[x1+0]; x10:=ld[x1+8]; x11:=ld[x1+16]; x12:=7f], {x2,x9,x10,x11,x12})

For instance, the right-hand side expression for x9 evaluates to ldS [x1S + 0] in ssS, whichmatches
the value of x9 in ssT.

We further detail in §9 the comparison of our formally verified LCM w.r.t. [Monniaux and Six
2021, 2022; Tristan and Leroy 2009].

6 APPLICATION TO LAZY STRENGTH REDUCTION
Strength-reduction (SR) consists in replacing (sequences of) computations by semantically equivalent—
but more efficient—ones. Simple forms of strength reduction, for instance replacing a multiplication
by a power of two with a left shift, are already implemented in CompCert. Here we tackle a much
more advanced approach: Lazy Strength Reduction [Knoop et al. 1993], a generalization of LCM that
reduces computations while moving them. For instance, an expensive multiplication 𝐶 × 𝑖 within a
loop with loop index 𝑖 may be replaced by accumulation (𝐶 × (𝑖 + 1) = 𝐶 × 𝑖 +𝐶).

6.1 Motivations for RISC-V

ldr x0 ,[x0,w1,sxtw #3]

slli x6,x11 ,3

add x6,x10 ,x6

ld x6 ,0(x6)

Fig. 14. AArch64 (top) vs.
RISC-V (bottom) addressing

Some architectures provide instructions or addressing modes for com-
monly found patterns, such as array addressing. In truly reduced
instructions sets, such as RISC-V, these patterns instead result in a
multi-cycle sequence of instructions, amenable to SR. Figure 14 shows
the single AArch64 load generated for array access “x = a[i]” (with
an addressing mode that shifts an index by three bits and adds it to a
base address) compared to the succession of RISC-V instructions that
shift, add, then load. The lack of SR for such sequences may explain why CompCert performs more
poorly compared to GCC on RISC-V than on other architectures.

6.2 SR on a realistic example
We specialized and extended our LCM algorithm in order to strength-reduce multiplicative and addi-
tive computations on the RISC-V (64 bits) backend. Our contribution generalizes the LSR algorithm
of [Knoop et al. 1993] to operate over basic blocks, and is also validated via our general-purpose
framework. Note that for LSR, both types of invariants are exploited, because the simulation have
to remember the value of constants when verifying the correctness of newly inserted instructions.
Since the feasibility of SR for a given candidate is conditioned by the existing dependencies on its
variables, we apply a pass of move forwarding in the first place. The latter removes read-after-write
dependencies coming from move instructions, that might be obstacles to the LSR.
The C code of Figure 15 multiplies a slice [i, n) of a vector x by a scalar l, and contains two

candidates to be reduced. Indeed, in addition to the product itself, the addressing computation to
access x[i] can be rewritten as well. The original and optimized BTL codes are set side-by-side
in Figure 16. The yellow comment on the left gives the correspondence between registers and
variables from the source C program. The multiplication “l * i” corresponds to “x1 *l x4” in both
codes, and, on the left code, the sequence “x8 = x1 <<l 3; x6 = x3 +l x8” calculates into x6 the
address of x[i]. Synthetic nodes are still denoted in violet, fresh variables in red, and compensation
code in blue. We omitted blocks 14 and 1 in the optimized BTL code, as they are identical.

2023-05-22 18:22. Page 15 of 1–32.

Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard

1void init_slice(long *x, long n, long i) {
2long l = 10;
3for(; i < n; i++) x[i] = l * i;
4}

Fig. 15. Two Candidates for LSR
Variables:

x1 = i; x2 = n;

x3 = x; x4 = l

14: x4 = 10L

goto 12

12: goto 11

11: if (x1 >=ls x2)

goto 1

goto 9

9: x8 = x1 <<l 3

x6 = x3 +l x8

x7 = x1 *l x4

int64[x6 + 0] = x7

x1 = x1 +l 1

goto 3

3: goto 11

1: return

H : ([x4B10], {x4})

G : ([], {x1,x2,x3,x4})

12: x9 = x1 <<l 3

x10 = x3 +l x9

x11 = x1 *l x4

goto 11

H : ([x4B10], {x4})

G : ([x9Bx1 <<3; x10Bx3+x9;

x11Bx1*x4],

{x1,x2,x3,x10 ,x11})

11: if (x1 >=ls x2) goto 1

goto 9

H&G : see block 11

9: int64[x10 + 0] = x11

x10 = x10 +l 8

x11 = x11 +l 10

x1 = x1 +l 1

goto 3

H&G : see block 11

3: goto 11

Fig. 16. Original (left) and Reduced (right) BTL

Our oracle significantly improves the
original LSR algorithm of Knoop et al.
[1993] by (1) sorting (and processing)
candidates according to their topologi-
cal order of appearance17; (2) substituting
freshly introduced variables; (3) inferring
the history (H) and gluing (G) invariants
required for validation (in the Figure, those
for block 9 and 3 have been omitted, be-
cause they are identical to those of block
11). Applied to our example after mov-
ing the left shift instruction from block 9
to block 12, the old destination (here x8)
is replaced in the instructions following
the original position of the candidate (in
block 9) with the newly allocated variable
(x9)18. This enables then to also strength-
reduce the addition originally assigning to
x6 in block 9 (it is moved to block 12 as the
assignment to x10). Note that the substi-
tution of x8 by x9 is fundamental here: if
we had simply inserted a move directly in
place of the shift instruction, the data-flow
analysis over the addition would have been blocked because of the write to one of the arguments
within the block. The multiplication originally in block 9 is moved out as in the standard way of
Knoop et al. [1993].
Of course, it is necessary to update the registers of all these anticipated computations as the

x1 argument is incremented inside the loop. To handle this, we keep a map from registers to
affine forms which is updated during the candidates’ detection phase. For example, the left shift
operation associates x9 (formerly x8) to affine form “8 · x1” (knowing that 𝑥«𝑛 = 2𝑛 · 𝑥). When the
subsequent addition is selected as a candidate, a new affine form for x10 (formerly x6) is created,
and by substitution of existing affine forms, its value is “x3 + 8 · x1”. The normalization of affine
forms in the oracle follows the theory given §6.3.

Finally, every affine form “injured” within the loop needs to be incremented (resp. decremented)
by the product of the constant factor—within the form—of the concerned variable by its increment
(resp. decrement) step in the “injuring” operation (e.g. the loop induction variable). In this specific
example, incrementing x1 by one corresponds to increment the affine forms of x9 and x10 by 8.
Thus, the oracle inserts assignments “x9 = x9 +l 8” and “x10 = x10 +l 8” in the loop, before the
injuring operation. The exact same method applies to the affine form “10 · x1” associated to x11

(formerly x7).
For the sake of simplicity, this updating phase of our LSR oracle does not track whether the x9

variable is read afterward (either in the current block or in a successor). At the end, after having
updated the liveness information to complete the invariant mapping with a set of “output” variables,

17Sorting is made possible thanks to a prior post-order CFG renumbering, which also accelerates fixed point calculations.
18When the original variable is live in successors or read in the final instruction, the oracle inserts a move before the last
read (or the end of the block) to compensate.

2023-05-22 18:22. Page 16 of 1–32.

Formally Verifying Optimizations with Block Simulations

𝑐 · (𝑣1 + 𝑣2) = (𝑐 · 𝑣1) + (𝑐 · 𝑣2) 𝑐1 · (𝑐2 · 𝑣) = (𝑐1𝑐2) · 𝑣 𝑐1 · 𝑐2 = 𝑐1𝑐2

𝑣1 + 𝑣2 = 𝑣2 + 𝑣1 (𝑣1 + 𝑣2) + 𝑣3 = 𝑣1 + (𝑣2 + 𝑣3) 0 + (𝑣1 + 𝑣2) = 𝑣1 + 𝑣2 0 + (𝑐 · 𝑣) = 𝑐 · 𝑣

(𝑐1 · 𝑣) + (𝑐2 · 𝑣) = (𝑐1 + 𝑐2) · 𝑣 (𝑐 · 𝑣) + 𝑣 = (𝑐 + 1) · 𝑣 𝑣 + 𝑣 = 2 · 𝑣

Fig. 17. Affine Arithmetic of CompCert 64-bits Integer Operators on Values

0 + 𝑣 = 𝑣 0 · 𝑣 = 0 1 · 𝑣 = 𝑣 (𝑣 + 𝑣) − 𝑣 = 𝑣 + (𝑣 − 𝑣)

Fig. 18. Examples of Invalid Equalities for CompCert 64-bits Integer Operators

𝜋 ::= 𝑣 | 𝑐 · 𝑣 𝜙 ::= 𝑣 | 𝑐 + Σ𝑛𝑖=1𝜋𝑖 where 𝑛 ≥ 0 and (𝜋𝑖)𝑖≥1 is strictly increasing

Fig. 19. Representation of our Affine Forms

the LSR oracle eliminates the dead assignments previously generated through an untrusted DCE
pass, local to the block. In this example, the update “x9 = x9 +l 8” is safely removed.

6.3 Formally-Verified Normalized Rewriting on Affine Forms
Equational Theory. Our SR is validated in the variant of affine arithmetic given in Fig. 17, where

𝑐 represents a 64-bits integer constant and 𝑣 is a CompCert value. Actually, we consider this theory
extended with specific operators such as 𝑣«𝑐 = 2𝑐 ·𝑣 . However, note that some usual equations—such
as those given in Fig. 18—do not hold. For example, if one of their argument is not a long integer or
not a pointer—e.g. a float—64-bits integer operations return the absorbing Vundef value.19 Moreover,
operation “+” also performs pointer arithmetic in the abstract CompCert model of pointers (and
our LSR leverages this opportunity). In this model, on a 64-bits architecture, if 𝑣 is a pointer, then
𝑣 + 𝑣 ′ ≠ Vundef if and only if 𝑣 ′ is a 64-bits integer (in this case, 𝑣 ′ is seen as a relative offset w.r.t
𝑣). And 𝑐 · 𝑣 = Vundef if 𝑣 is a pointer. This explains why we never identify 𝑣 and 1 · 𝑣 . But, if 𝑣 is a
pointer, then 𝑣 + 𝑣 = Vundef and we still have 𝑣 + 𝑣 = 2 · 𝑣 .20

Normal Forms. Since our symbolic values are evaluated to CompCert values (for a given block
execution context), Fig. 17 also induces semantic equalities about symbolic values. As noticed
in §3.5, normalized rewriting (when applicable) reduces such semantic equalities to structural
equalities. Our representation of normal (i.e. canonical) forms is given in Fig. 19, where 𝑣 represents
now a variable (representing itself a symbolic value). Due to the commutativity of “+”, normal
forms depend on a total order over variables. Let us assume such an order. Because 1 · 𝑣 may not
be 𝑣 , we introduce a notion of pseudo-product, written 𝜋 (see Fig. 19). We then lift the total order
over variables to a total preorder over pseudo-products. We then define a normal form, written 𝜙 ,
as either a variable 𝑣 or as the sum of a scalar 𝑐 (possibly null) with a strictly increasing sequence
(possibly empty) of pseudo-products (see Fig. 19). Last, the affine normalization is mainly reduced
to two operations “𝑐 · 𝜙” and “𝜙1 + 𝜙2” (detailed in Appendix A.2) preserving normal forms by
applying Fig. 17 equations.

Implementation. Following the principles described in Six et al. [2022, §7.6], rewritings are
handled during both symbolic executions of source and target blocks: we apply a normalization
19Vundef represents an undefined value (e.g. of an uninitialized register) that is not a failure unless it is observable.
20Last, if 𝑣 and 𝑣′ are two pointers in the same block, then 𝑣 − 𝑣′ computes their relative offset. Thus, if 𝑣 is a pointer, then
𝑣 + (𝑣 − 𝑣) = 𝑣 but (𝑣 + 𝑣) − 𝑣 = Vundef. This lack of associativity of operator “−” within sums explains why it is not yet
supported in our LSR.

2023-05-22 18:22. Page 17 of 1–32.

Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard

procedure to every right hand-side of an assignment. Its formal correctness expresses that given a
symbolic value sv1, it returns a symbolic value sv2 such that for all register and memory states,
if evaluation of sv1 does not fail, then sv2 evaluates to the same value as sv1. Its implementation
depends on the architecture. Currently, our affine normalization procedure is only implemented for
RISC-V. Moreover, our framework has several—potentially overlapping—sets of rewriting rules, so
each instantiation of the symbolic execution is parametrized with one of these sets: the scheduling
pass does not need any rule, while the SR is configured with our affine normalization procedure.
Selecting rules according to oracles avoids slowing down the verifier with useless rewritings.
Our affine normalization needs to integrate affine forms with symbolic values that do not

represent pure affine computations. In particular, affine variables in Fig. 19 actually reify symbolic
values whose root is not an affine computation (i.e. neither a 64-bits immediate, nor a “·”, nor a
“+”). In practice, we do not introduce explicit affine variables, but rather define a total order on the
reified symbolic values. Thanks to hash-consing, each symbolic value stores in its root an integer
that is expected to uniquely identify it [Boulmé 2021, §3.3.2]. This identifier gives a simple and
efficient total order over symbolic values that we do not even need to prove correct. Similarly to
[Boulmé 2021; Six et al. 2022], the correctness of our normalization modulo hash-consing is only
derived from a sound Coq model of OCaml pointer equality.21
To facilitate the proof of recursive operations over affine forms and future extensions, we

extend the representation sv of symbolic values (sketched Fig. 5) with a dedicated constructor,
written “Sfoldr(op, # »sv𝑖 , sv0)”, and semantically equivalent to “Sop(op, [sv0, Sop(op, [sv1, . . .])])”.
This enables us to represent affine forms written “𝑐 + Σ #»𝜋 ” in Fig. 19 as “Sfoldr(+, #»𝜋 , 𝑐)” in our
implementation. See Appendix A.2 for more details.

6.4 Strengthening our Strength-Reduction with a Prior Integer Promotion
Currently, our formally-verified strength-reduction is still embryonic. Its scope is limited to affine
arithmetic on long (signed and unsigned ones) for RISC-V 64 bits architectures. We now sketch
how we mitigate this limitation (Appendix A.3 describes other obstacles to generalizing our SR).

On 64-bit architectures, a 32-bit index (int) must be cast to 64 bits before being scaled and added
to the base address. Due to overflows, it can be wrong to strength-reduce the scaling. We overcame
this limitation of our SR by combining a preliminary pass that combines two techniques: (1) a
formally verified interval analysis able to justify the absence of overflow—for instance, under a loop
condition of the form “𝑖 < 𝑛” for some 𝑛, then we know that the increment of 𝑖 cannot overflow22

(2) the use of the intervals found by this static analysis within an oracle in order to validate the
“promotion” of int variables as long: if there are no overflows, sign-extension (or zero-extension)
and addition commute. The transformation performed by this oracle is itself validated by our
symbolic simulation test modulo appropriate invariants. The intervals found by the static analysis
are themselves integrated within the symbolic simulation, as explained in §3.5.

7 ADAPTING THE LAZY TRANSFORMATION ALGORITHMS OF KNOOP-ET-AL
The previous sections present LCM and LSR as two distinct optimizations, but in our implementation,
they are achieved within a single pass, from a single oracle. This oracle actually combines the LCM
& LSR algorithms of Knoop et al. [1995, 1992, 1993] and adapts them for our validator by symbolic
simulation. Our main contribution consists in a generalization of their LSR: (1) that operates over
basic blocks by adapting the analysis of Knoop et al. [1993], in the same fashion as it was done

21A bug in the hash-consing mechanism makes—at worse—the verifier fail to prove some expected equalities.
22In C, overflow has undefined behavior in signed arithmetic, so if the loop index is signed (int), as it often is, we could
simply assume overflow does not occur. Signedness information is however not available at that stage in CompCert.

2023-05-22 18:22. Page 18 of 1–32.

Formally Verifying Optimizations with Block Simulations

in [Knoop et al. 1995] for LCM; (2) which integrates a rewriting procedure to widen the scope of SR
over sequences of operations, rather than on each instruction independently; (3) capable of inferring
invariants from data-flow equations (including liveness analysis) for the translation validation. We
also improve LCM to infer invariants, although we had to restrict the original algorithm because
our validator forbids anticipating potentially trapping operations (e.g. loads).23
The framework introduced by [Knoop et al. 1995, 1993] combines several advanced data-flow

analyses, and its full description requires dozens of pages. The precise description of our algorithms
is thus provided in a dedicated “companion” paper [Gourdin 2023]. Below, we simply give a
high-level overview of our adaptations to the original LCM & LSR.

7.1 A Brief Overview of the LCM & LSR Analyses
Roughly speaking, the LCM algorithm of Knoop et al. [1995] consists in analyzing which “candidate
instructions” can be “moved”, and then, where it is “the best place” to move them. This analysis
results from the computation of a dozen of predicates by candidates. For example, a predicate called
transparency is satisfied by blocks that do not erase the candidate’s dependencies. Computing this
simple predicate only requires a local analysis of each block. In more complex cases, predicates are
computed as greatest fixed points of data-flow equations. Operating over basic blocks makes these
computations more efficient, but also more complex.24
Extending the LCM process sketched above to LSR is mainly about merging the candidate

detection phases of both algorithms, and interleaving the LSR specific predicates with those of
LCM. A naive generalization of the LCM into LSR would only require a new local predicate (that
we call pseudo-transparency, as it is a weaker version of it), and a new data-flow one for computing
points where an update compensation addition must be inserted. Nonetheless, this naive approach
would still generate some redundant computations. In contrast, our implementation reproduces the
three refinements steps described in [Knoop et al. 1993], and thus adds three data-flow predicates
and one global, non data-flow intermediate predicate.

After having detected candidates, our combination of LCM & LSR (that we named “LCT”, for Lazy
Code Transformations) sort candidates topologically, and iterates over them. Each time, it starts
by calculating local and global (including data-flow) predicates, and it rewrites the CFG for the
current candidate, while substituting the freshly allocated variable locally in basic-blocks. Thanks
to this enhancement, our LCT is capable of reducing instructions sequences, as illustrated in §6.2.

7.2 Co-design for Validation and Invariant Inference
A strong advantage of using such data-flow based algorithms is that we can reuse the computed
predicates in order to infer the hints needed by our validation mechanism. By combining a liveness
analysis (which is in any case required for the symbolic simulation validator) with the data-flow
information from LCM, we designed a generic method inferring the exact set of nodes where (for
each moved or reduced candidate) a gluing or history invariant must be inserted. Our method
to determine the invariants’ insertion points is executed after the main loop that iterates over
candidates of §7.1. Internally, the LCT oracle represents predicates as bit vectors: each bit is the value
of the predicate (true or false) for a given basic block. Hence, the invariant generation efficiently
computes a vector 𝑉𝑝 of preservation points that contains “true” when a gluing invariant must be
annotated.
23We partially mitigate this limitation thanks to control-flow graph restructurings (duplications and factorization) in
pre-/post-processing of our oracle, as previously described.
24For each candidate, basic blocks are split in two parts: an entry part containing all the instructions until (and including)
the first modification of the candidate’s dependencies, and an exit part with all the remaining statements. All predicates,
except transparency, apply to block parts.

2023-05-22 18:22. Page 19 of 1–32.

Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard

For a non-trapping candidate, 𝑉𝑝 is the disjunction of two situations. First, if the candidate was
replaced and not inserted in the block (we compute this for all blocks at once using a bitwise “and”
on the insertion and replacement predicates); and second, if it is neither marked as isolated nor
delayed (those two information are also encoded in specific predicates, and correspond, resp., to
cases where an insertion would be either useless because isolated, or delayable later). When the
candidate may trap, we reuse 𝑉𝑝 in conjunction with an anticipability constraint, so that we only
insert gluing invariants from the first apparition point of the candidate in the source. This constraint
enforces the anticipability limitation of trapping instructions previously mentioned.
Finally, and in contrast with gluing invariants’ preservation points which only rely on bitwise

operations, the places where a history invariant must be inserted are slightly more complex to infer.
Roughly, a history invariant is mandatory in a block if the candidate depends on a constant defined
before in the CFG, stored in a fresh variable, and when either the block is a gluing preservation
point (in 𝑉𝑝), or the constant’s fresh variable is live in the block.

8 EXPERIMENTAL EVALUATION
CompCert’s formal proof ensures partial correctness: if compilation succeeds, then it is correct,
but there is no formal proof that it succeeds. In particular, there is no formal guarantee that our
checkers will succeed in validating our untrusted oracles. We checked that CompCert successfully
compiled a test suite of thousands of C programs, some from non-regression tests, some from real
applications (including large programs such as GCC and OCaml themselves), and others generated
from fuzzers (CSmith [Yang et al. 2011], YarpGen [Livinskii et al. 2020], and CCG).25 When the
oracle terminated with an internal error, or when the checker refused the transformation, we
reduced the test case using C-Reduce26 [Regehr et al. 2012] and fixed the oracle and/or the checker.
See details on our test methodology in [Monniaux et al. 2023].

8.1 Compilation Time Measurements

Fig. 20. Oracle and Validator times w.r.t. the num-
ber of instructions (logarithmic scale)

Translation validators of complex optimizationsmay
not scale up on large programs. To ensure that our
formally verified LCT was efficient even on heavy
applications, we instrumented the code to time both
the LCT oracle and the validator by Symbolic Execu-
tions (SE). The correlation between their execution
time is near 99%, considering the four benchmark
suites of §8.2. Fig. 20 graphically represents those
timings measures w.r.t. the total number of BTL in-
structions for every benchmark listed in §8.2. Each
point in the figure correspond to a single bench-
mark whose timings and number of instructions
were summed for all its BTL functions. Due to a
fixed maximum of the candidate number (currently 64), the oracle seems linear in the number of
instructions. And the validator seems a bit faster than the oracle for a given benchmark size.

8.2 Performance Benchmarks
We evaluated the performance improvements of our optimizations over two architectures: for
AArch64, a Cortex-A53 in-order dual-issue core (Raspberry Pi 3 Model B+ Rev 1.3); for RISC-V,

25https://embed.cs.utah.edu/csmith/ https://github.com/intel/yarpgen https://github.com/Mrktn/ccg
26https://embed.cs.utah.edu/creduce/

2023-05-22 18:22. Page 20 of 1–32.

https://embed.cs.utah.edu/csmith/
https://github.com/intel/yarpgen
https://github.com/Mrktn/ccg
https://embed.cs.utah.edu/creduce/

Formally Verifying Optimizations with Block Simulations

a SiFive in-order dual-issue U740 core (HiFive Unmatched). We measured the performance over
four suites of benchmarks (distinct from our suite testing the “functional correctness”): (1) a subset
of the LLVM test suite27; (2) a subset of MiBench [Guthaus et al. 2001]; (3) PolyBench [Pouchet
2012]; (4) TACLeBench [Falk et al. 2016]. To obtain reliable results and avoid common measurement
bias [Curtsinger and Berger 2013; Mytkowicz et al. 2009], we always performmultiple runs (between
five and twenty) and filter them by setting a threshold on the relative standard derivation (here 2%).
All our results are the average execution time (i.e., number of cycles) gain in percentage w.r.t.

the base version. A lower number indicates slower execution, and vice versa. The execution time
gain for a configuration 𝐶 w.r.t. a reference version 𝑅 is computed using the formula: 𝑔𝑎𝑖𝑛(𝐶) =
((𝑅 −𝐶)/𝐶) × 100. The latter gives the evolution rate relatively to 𝑅. For instance, if 𝑅 = 1000 and
𝐶 = 500 cycles—so 𝐶 is twice faster—then 𝑔𝑎𝑖𝑛(𝐶) = 100%; in contrast, if 𝑅 = 500 and 𝐶 = 1000—so
𝐶 is twice slower—we have 𝑔𝑎𝑖𝑛(𝐶) = −50%. Our benchmark evaluation toolkit will be available
online, with our exhaustive list of tests.
We measure the performances of our optimizations within our CompCert fork: our port of the

superblock scheduling and CSE3 [Monniaux and Six 2021, 2022] are always enabled; and the com-
parison is always done w.r.t. the mainline version of CompCert (3.12). Ideally, it would be interesting
to lead an experimental comparison with the LCM implementation of Tristan and Leroy [2009];
this would however be very difficult, since their framework is unmaintained, undocumented and
designed for a much earlier version of CompCert (e.g. before the integration of 64-bit architectures
that we target).
First, Table 1 shows a sample of results on various benchmarks, and focuses on evaluating

the performance of the whole LCT algorithm (LCM + LSR) on the U740 core. We propose this
individual view to highlight the variability of results according to the input benchmark: the sample
includes benchmarks from all suites, and the whole PolyBench suite (at line “PolyBench/*”). The
table compares GCC -01 (11.3.0), a “Base1” version of our fork (with scheduling, CSE3, and loop
peeling to facilitate LICM), and “Base1”+LCT versus the mainline CompCert. On average, we are
still slower than GCC -O1; nevertheless, the LCT implementation closes the gap and even exceeds
the GCC’s performance in some cases. On the other hand, there are still benchmarks where our
optimizations are not perfectly tuned: for instance, on “MiBench/stringsearch” in Table 1, enabling
the LCT dramatically decreases timings. This comes from a register pressure issue: without loop
peeling, the LCT improves the time by nearly 40% on the latter benchmark; but with the unrolling,
the number of alive registers becomes too high and makes the allocator spilling. Such a situation
remains, fortunately, quite rare.

Second, another set of results is provided in Table 2: this time, we compared a “Base2” version of
our fork (still with scheduling and CSE3, but with loop rotate and loop body unrollings instead
of peeling, since they help in lifting conditionals), and we incrementally added if-lifting (which
includes register renaming), LCM, and LSR (for RISC-V only). The table contains results for both
the AArch64 and RISC-V backends, and distinguishes the four suites of benchmarks. The mean
gain observed on our if-lifting implementation is far more interesting than the one observed by Six
et al. [2022, §9].
In conclusion, observing that SR has the ability to significantly reduce execution time, we are

encouraged to broaden its application scope in the future.

9 RELATED AND FUTUREWORKS
Besides CompCert, Vellvm [Zhao et al. 2012] and CakeML [Kumar et al. 2014] are two other
compilers, formally verified with an interactive proof assistant (resp. Coq and HOL4). To our

27Accessible at https://github.com/lac-dcc/Benchmarks.

2023-05-22 18:22. Page 21 of 1–32.

https://github.com/lac-dcc/Benchmarks

Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard

Table 1. Sample of results for GCC, our fork Base1=(scheduling+CSE3+unroll single), and Base1+LCT
vs. mainline CompCert on RISC-V

Setup GCC-O1 Base1 Base1 + LCT
LLVMtest/fpconvert +24.22% +7.9% +17.15%
LLVMtest/matmul +15.9% +115.05% +144.11%
LLVMtest/nbench_bf +74.58% +11.84% +24.51%
MiBench/jpeg +27.75% +20.62% +24.75%
MiBench/sha +92.43% +45.68% +51.73%
MiBench/stringsearch +133.34% +40.28% -10.15%
PolyBench/* +64.05% +38.06% +46.23%
TACLeBench/bsort +49.04% +9% +33.16%
TACLeBench/deg2rad +56.75% +41.5% +50.28%
TACLeBench/md5 +42.18% +18.59% +47.93%

Table 2. Base2=(scheduling+CSE3+unrollings), If-lifting (§4), LCM (§5) & LSR (§6)
vs. mainline CompCert on RISC-V & AArch64

LLVM tests MiBench PolyBench TACLeBench
Setup RV A64 RV A64 RV A64 RV A64
Base2 +19.9% +23.6% +19.0% +19.2% +38.2% +68.9% +19.4% +25.7%
+If-lifting +27.4% +31.5% +24.2% +21.5% +40.7% +69.1% +22.0% +28.5%
+LCM +27.8% +31.0% +24.7% +25.6% +43.8% +84.2% +24.1% +33.4%
+LSR +29.4% - +26.4% - +55.1% - +26.2% -

knowledge, none of them attempts to leverage translation validation as we do. They do not integrate
the kind of formally verified optimizations that we support. Our translation validation framework—
within the CompCert compiler—formally verifies various intra-procedural optimizations: superblock
scheduling [Hwu et al. 1993], lazy code motion [Knoop et al. 1992] and strength-reduction [Knoop
et al. 1993]. It extends the translation validation techniques of Tristan and Leroy [2008] and Six
et al. [2022], which were themselves inspired by King [1976]; Necula [2000]; Samet [1976].

Actually, since Pnueli et al. [1998], translation validation has become a quite intensive research
area. For example, Churchill et al. [2019] and Kasampalis et al. [2021] propose equivalence checkers
for translation validations of compiler optimizations, based on SMT-solving. As explained in
introduction, our approach induces very different concerns than such classical approaches of
translation validation. In our work, “synchronization points” and “invariants” between source and
target code (aka “program alignment”) are directly given by the oracles that actually perform the
translations. Generating these informations inside the transformation phase is not very difficult: it
requires quite simple refinements of translation algorithms; in contrast, reconstructing them from
compiler output is hard. We thus do not really experience “false alarms”, because our translations
are designed with the validator limitations in mind. In addition, the design of our validators is
very constrained, because we want them to be formally verified, lightweight at compile-time (i.e.
quasi-linear in practice), and predictable on “false alarms”. This prevents us from using SMT-solvers
in the current state of the art. Below, we only focus on the most related works in translation
validation, while attempting to sketch some future works. See [Clément 2022, §8.1] for a recent
and complementary bibliography.

General-Purpose Predictable Validators. Tate et al. [2011] generalized the notion of symbolic value
with e-graphs (or expression graphs): such an e-graph represents the contents of a single variable
after any arbitrary computations, even including loops. This enables reasoning on loop transforma-
tions only by rewritings these e-graphs (e.g. without explicit invariant inference). Moreover, in
order to “simultaneously explore all possible sequences of optimizations”, they applied a saturation
technique over their e-graphs. Noticing that saturation does not scale well on large programs,
Tristan et al. [2011] experimented with normalized rewriting instead, arguing it is sufficient for

2023-05-22 18:22. Page 22 of 1–32.

Formally Verifying Optimizations with Block Simulations

translation validation. Indeed, they succeeded to validate many existing LLVM optimizations,
without instrumentation nor hints from these transformations. However, they acknowledged that
the algorithmics of their translation validator is complex (and thus probably difficult to formally
verify). Moreover, they did not attempt to be sound w.r.t undefined or diverging behaviors, whereas
these cases are often complex to handle in CompCert correctness proofs.
Kang et al. [2018] have proposed a variant of formally verified translation validation, called

“Verified Credible Compilation” (inspired by Rinard and Marino [1999]). They validate the results
of two existing optimizations of LLVM (register promotion and global value numbering) with a
dedicated oracle that generates proofs in a Relational Hoare Logic (inspired by Benton [2004]), itself
formalized in Coq. Their tool helped to find several new miscompilation bugs in these optimizations.
However, it remains unclear what guarantees are provided to final users of the whole compiler.

Loop Optimizations. Tristan and Leroy [2009] proposed a Coq-verified translation validator for
LCM, based on two formally-verified data-flow analyses, availability and anticipability. These anal-
yses have quite high algorithmic complexity (cubic for availability). In contrast, our validator does
not use them. The availability analysis is replaced by our gluing invariants which are themselves
provided “for free” by the oracle: we hence avoid to replay a data-flow analysis already performed
by the oracle. Hence, from the analysis of §3.6 over the case of our LCM (with a bounded number of
candidates in invariants, without rewriting rules and working on basic blocks—ie, with a bounded
number of block exits), our validator is quasi-linear in practice: its worst-case complexity is O(𝑛×𝑙)
where 𝑛 is the size of the code and 𝑙 the number of maximal simultaneously live registers.

Moreover, we combine LCM with CFG restructurations, which validates some PRE of trapping
instructions (a feature that they did not provide). Our CFG restructurations also partly compensate
the lack of anticipability checking that is necessary to validate FRE of trapping instructions. In
future works, our symbolic simulations might check the anticipability of trapping instructions,
with a dedicated notion of prophecy (see item (3) in §3.6).

Monniaux and Six [2021, 2022] proposed three dedicated and formally-verified passes to produce
an efficient CSE optimization with LICM integrated into CompCert. After loop unrolling (as we
do), they run an untrusted analysis to collect inductive invariants in hash-consed sets, whose
inductiveness is checked by a proven verifier, before eliminating redundant computations. This last
phase actually consists of three sub-steps: replacing computations by move operations; and replacing
moves from a variable to itself by “no-op”; then apply an existing DCE pass. On the one hand,
their decomposition simplifies the formal proofs of each single pass. On the other hand, it can only
validate some PRE. In contrast, our approach aims to validate a wider class of transformations, e.g.
including scheduling and strength-reduction. However, their optimization includes an elimination
of redundant conditions, a feature we leave to future work.

Our framework validates superblock scheduling which interleaves the computations of successive
iterations within a loop. Tristan and Leroy [2010] showed that symbolic simulation is able to validate
even more advanced scheduling techniques, such as software pipelining [Lam 1988]. It remains
however to understand how their technique could be integrated to our framework.

Validating optimizations in the polyhedral model, Clément and Cohen [2022] support much more
advanced loop transformations than we do; but we support a much wider class of input programs
within a general-purpose compiler. While special-purpose translation validation is in the spirit
of CompCert design, it seems very challenging (but very interesting) to integrate such advanced
techniques within a formally verified general-purpose compiler.

Formally Verified SSA Optimizations. Demange [2012]; Demange and Fernandez de Retana [2016];
Demange et al. [2015] propose Coq-verified translation validators for SSA optimizations within
CompCert. In their approach, validators rely on strong SSA invariants (e.g. dominator sets). In

2023-05-22 18:22. Page 23 of 1–32.

Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard

an alternative design, we could imagine extending BTL with optional parallel moves of register
at exit points. This would allow representing (partial) SSA forms within BTL using Appel [1998]
representation: without explicit 𝜙-nodes, but rather by encoding them with explicit parallel moves
on joining edges. The validator would completely ignore SSA-invariants, but would be able to
compare SSA forms with non-SSA ones. Moreover, only SSA oracles would have to maintain
SSA-invariants, without need of formal proof of this.

REFERENCES
Martín Abadi and Leslie Lamport. 1991. The Existence of Refinement Mappings. Theor. Comput. Sci. 82, 2 (1991), 253–284.

https://doi.org/10.1016/0304-3975(91)90224-P
Jean-Raymond Abrial. 1996. The B-book - assigning programs to meanings. Cambridge University Press. https://doi.org/10.

1017/CBO9780511624162
Andrew W. Appel. 1998. SSA is Functional Programming. SIGPLAN Not. 33, 4 (apr 1998), 17–20. https://doi.org/10.1145/

278283.278285
Nick Benton. 2004. Simple Relational Correctness Proofs for Static Analyses and Program Transformations. In Proceedings of

the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Venice, Italy) (POPL ’04). Association
for Computing Machinery, New York, NY, USA, 14–25. https://doi.org/10.1145/964001.964003

Rastislav Bodík, Rajiv Gupta, and Mary Lou Soffa. 1998. Complete Removal of Redundant Expressions. In Proceedings of the
ACM SIGPLAN 1998 Conference on Programming Language Design and Implementation (Montreal, Quebec, Canada) (PLDI
’98). Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/277650.277653

Sylvain Boulmé. 2021. Formally Verified Defensive Programming (efficient Coq-verified computations from untrusted ML
oracles). Habilitation Thesis. Université Grenoble Alpes. https://hal.archives-ouvertes.fr/tel-03356701

Berkeley Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. 2019. Semantic Program Alignment for Equivalence
Checking. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 1027–1040. https:
//doi.org/10.1145/3314221.3314596

Basile Clément and Albert Cohen. 2022. End-to-End Translation Validation for the Halide Language. Proc. ACM Program.
Lang. 6, OOPSLA1, Article 84 (apr 2022), 30 pages. https://doi.org/10.1145/3527328

Basile Clément. 2022. Translation Validation of Tensor Compilers. Ph. D. Dissertation. École Normale Supérieure, Paris,
France. https://basile.clement.pm/papers/phd.pdf

Charlie Curtsinger and Emery D Berger. 2013. STABILIZER: Statistically Sound Performance Evaluation. In ASPLOS’2013.
ACM, 219–228. https://doi.org/10.1145/2451116.2451141

Delphine Demange. 2012. Semantic Foundations of Intermediate Program Representations. Ph. D. Dissertation. École Normale
Supérieure de Cachan, France. http://people.irisa.fr/Delphine.Demange/papers/DemangePhD.pdf EAPLS Best PhD
Dissertation Award 2012. Gilles Kahn PhD Thesis Award 2013.

Delphine Demange and Yon Fernandez de Retana. 2016. Mechanizing conventional SSA for a verified destruction with
coalescing. In 25th International Conference on Compiler Construction. Barcelona, Spain. https://doi.org/10.1145/2892208.
2892222

Delphine Demange, David Pichardie, and Léo Stefanesco. 2015. Verifying Fast and Sparse SSA-based Optimizations in Coq.
In 24th International Conference on Compiler Construction, CC 2015. London, United Kingdom. https://doi.org/10.1007/978-
3-662-46663-6_12

Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch, Christine Rochange, Martin Schoeberl,
Rasmus Bo Sørensen, Peter Wägemann, and Simon Wegener. 2016. TACLeBench: A Benchmark Collection to Support
Worst-Case Execution Time Research. In 16th International Workshop on Worst-Case Execution Time Analysis (WCET
2016) (OpenAccess Series in Informatics (OASIcs), Vol. 55), Martin Schoeberl (Ed.). Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 2:1–2:10.

Léo Gourdin. 2023. “Lazy” Code Transformations in a Formally Verified Compiler. In ICOOOLPS 2023: Proceedings of the
18th ACM International Workshop on Implementation, Compilation, Optimization of OO Languages, Programs and Systems,
July 2023 (LNCS). ACM. https://doi.org/to_appear

M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown. 2001. MiBench: A free, commercially
representative embedded benchmark suite. In Proceedings of the Fourth Annual IEEE International Workshop on Workload
Characterization. WWC-4 (Cat. No.01EX538). IEEE, Austin, TX, USA, 3–14. https://doi.org/10.1109/WWC.2001.990739

Wen-mei Hwu, Scott Mahlke, William Chen, Pohua Chang, NancyWarter, Roger Bringmann, Roland Ouellette, Richard Hank,
Tokuzo Kiyohara, Grant Haab, John Holm, and Daniel Lavery. 1993. The Superblock: An Effective Technique for VLIW
and Superscalar Compilation. The Journal of Supercomputing 7 (05 1993), 229–248. https://doi.org/10.1007/BF01205185

2023-05-22 18:22. Page 24 of 1–32.

https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.1145/278283.278285
https://doi.org/10.1145/278283.278285
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/277650.277653
https://hal.archives-ouvertes.fr/tel-03356701
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1145/3527328
https://basile.clement.pm/papers/phd.pdf
https://doi.org/10.1145/2451116.2451141
http://people.irisa.fr/Delphine.Demange/papers/DemangePhD.pdf
https://doi.org/10.1145/2892208.2892222
https://doi.org/10.1145/2892208.2892222
https://doi.org/10.1007/978-3-662-46663-6_12
https://doi.org/10.1007/978-3-662-46663-6_12
https://doi.org/to_appear
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1007/BF01205185

Formally Verifying Optimizations with Block Simulations

Justus Fasse. 2021. Code Transformations to Increase Prepass Scheduling Opportunities in CompCert. Master Thesis of Science.
Université Grenoble Alpes. https://www-verimag.imag.fr/~boulme/CPP_2022/FASSE-Justus-MSc-Thesis_2021.pdf

Jeehoon Kang, Yoonseung Kim, Youngju Song, Juneyoung Lee, Sanghoon Park, Mark Dongyeon Shin, Yonghyun Kim,
Sungkeun Cho, Joonwon Choi, Chung-Kil Hur, and Kwangkeun Yi. 2018. Crellvm: Verified Credible Compilation for
LLVM. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Philadelphia, PA, USA) (PLDI 2018). Association for Computing Machinery, New York, NY, USA, 631–645. https:
//doi.org/10.1145/3192366.3192377

Theodoros Kasampalis, Daejun Park, Zhengyao Lin, Vikram S. Adve, and Grigore Roşu. 2021. Language-Parametric Compiler
Validation with Application to LLVM. In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). Association for Computing Machinery,
New York, NY, USA, 1004–1019. https://doi.org/10.1145/3445814.3446751

James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19, 7 (1976), 385–394. https://doi.org/10.
1145/360248.360252

Claude Kirchner and Hélène Kirchner. 2014. Equational logic and rewriting. In Handbook of the History of Logic, Dov M.
Gabbay, Jörg H. Siekmann, and John Woods (Eds.). History of Logic and Computation in the 20th Century, Vol. 9. Elsevier.
https://hal.inria.fr/hal-01183817

Jens Knoop, Oliver Ruthing, and Bernhard Steffen. 1995. Optimal Code Motion: Theory and Practice. ACM Transactions on
Programming Languages and Systems 16 (September 1995). https://doi.org/10.1145/183432.183443

Jens Knoop, Oliver Rüthing, and Bernhard Steffen. 1992. Lazy code motion. In Proceedings of the ACM SIGPLAN 1992
conference on Programming language design and implementation - PLDI ’92. ACM Press, San Francisco, California, United
States, 224–234. https://doi.org/10.1145/143095.143136

Jens Knoop, Oliver Rüthing, and Bernhard Steffen. 1993. Lazy Strength Reduction. Journal of Programming Languages 1
(1993), 71–91.

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: A Verified Implementation
of ML. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San
Diego, California, USA) (POPL ’14). Association for Computing Machinery, New York, NY, USA, 179–191. https:
//doi.org/10.1145/2535838.2535841

Monica S. Lam. 1988. Software Pipelining: An Effective Scheduling Technique for VLIWMachines. In Programming Language
Design and Implementation (PLDI). ACM Press.

Xavier Leroy. 2009a. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009). https://doi.org/10.1145/1538788.
1538814

Xavier Leroy. 2009b. A formally verified compiler back-end. Journal of Automated Reasoning 43, 4 (2009), 363–446.
http://xavierleroy.org/publi/compcert-backend.pdf

Xavier Leroy. 2011. Verified squared: does critical software deserve verified tools?. In POPL’11. ACM, Austin, TX, USA, 1–2.
https://doi.org/10.1145/1926385.1926387

Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random testing for C and C++ compilers with YARPGen. Proc.
ACM Program. Lang. 4, OOPSLA (2020), 196:1–196:25. https://doi.org/10.1145/3428264

DavidMonniaux and Sylvain Boulmé. 2022. The Trusted Computing Base of the CompCert Verified Compiler. In Programming
Languages and Systems (ESOP 2022) (LNCS, Vol. 13240), Ilya Sergey (Ed.). Springer, Munich, Germany, 204–233. https:
//doi.org/10.1007/978-3-030-99336-8_8

David Monniaux, Léo Gourdin, Sylvain Boulmé, and Olivier Lebeltel. 2023. Testing a Formally Verified Compiler. In Tests
and Proofs - 17th International Conference, TAP 2023, Held as Part of STAF 2023, July, 2023, Proceedings (LNCS, Vol. to
appear). Springer. https://hal.science/hal-04096390

David Monniaux and Cyril Six. 2021. Simple, light, yet formally verified, global common subexpression elimination and
loop-invariant code motion. In LCTES ’21: 22nd ACM SIGPLAN/SIGBED International Conference on Languages, Compilers,
and Tools for Embedded Systems, Virtual Event, Canada, 22 June, 2021, Jörg Henkel and Xu Liu (Eds.). ACM, 85–96.
https://doi.org/10.1145/3461648.3463850

David Monniaux and Cyril Six. 2022. Formally Verified Loop-Invariant Code Motion and Assorted Optimizations. ACM
Trans. Embed. Comput. Syst. (mar 2022). https://doi.org/10.1145/3529507

Eric Mullen, Daryl Zuniga, Zachary Tatlock, and Dan Grossman. 2016. Verified peephole optimizations for CompCert.
In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2016, Santa Barbara, CA, USA, June 13-17, 2016, Chandra Krintz and Emery Berger (Eds.). ACM, 448–461. https:
//doi.org/10.1145/2908080.2908109

Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F Sweeney. 2009. Producing Wrong Data Without Doing
Anything Obviously Wrong!. In ASPLOS’2009. ACM, 265–276. https://doi.org/10.1145/1508244.1508275

George C. Necula. 2000. Translation validation for an optimizing compiler. In Programming Language Design and Implemen-
tation (PLDI). ACM Press, 83–94. https://doi.org/10.1145/349299.349314

2023-05-22 18:22. Page 25 of 1–32.

https://www-verimag.imag.fr/~boulme/CPP_2022/FASSE-Justus-MSc-Thesis_2021.pdf
https://doi.org/10.1145/3192366.3192377
https://doi.org/10.1145/3192366.3192377
https://doi.org/10.1145/3445814.3446751
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://hal.inria.fr/hal-01183817
https://doi.org/10.1145/183432.183443
https://doi.org/10.1145/143095.143136
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
http://xavierleroy.org/publi/compcert-backend.pdf
https://doi.org/10.1145/1926385.1926387
https://doi.org/10.1145/3428264
https://doi.org/10.1007/978-3-030-99336-8_8
https://doi.org/10.1007/978-3-030-99336-8_8
https://hal.science/hal-04096390
https://doi.org/10.1145/3461648.3463850
https://doi.org/10.1145/3529507
https://doi.org/10.1145/2908080.2908109
https://doi.org/10.1145/2908080.2908109
https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1145/349299.349314

Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard

Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation Validation. In Tools and Algorihtms for the Construction
and Analysis of Systems (TACAS) (LNCS, Vol. 1384). Springer, 151–166. https://doi.org/10.1007/BFb0054170

Louis-Noël Pouchet. 2012. the Polyhedral Benchmark suite. http://web.cs.ucla.edu/~pouchet/software/polybench/
John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. 2012. Test-case reduction for C compiler

bugs. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’12, Beijing, China - June
11 - 16, 2012, Jan Vitek, Haibo Lin, and Frank Tip (Eds.). ACM, 335–346. https://doi.org/10.1145/2254064.2254104

Silvain Rideau and Xavier Leroy. 2010. Validating register allocation and spilling. In Compiler Construction (CC 2010) (LNCS,
Vol. 6011). Springer, 224–243. http://gallium.inria.fr/~xleroy/publi/validation-regalloc.pdf

Martin C. Rinard and Darko Marino. 1999. Credible Compilation with Pointers. In Proceedings of the FLoC Workshop on
Run-Time Result Verification. https://people.csail.mit.edu/rinard/paper/credibleCompilation.html

Valentin Robert and Xavier Leroy. 2012. A Formally-Verified Alias Analysis. In Certified Programs and Proofs - Second
International Conference, CPP 2012, Kyoto, Japan, December 13-15, 2012. Proceedings (Lecture Notes in Computer Science,
Vol. 7679), Chris Hawblitzel and Dale Miller (Eds.). Springer, 11–26. https://doi.org/10.1007/978-3-642-35308-6_5

Hanan Samet. 1976. Compiler testing via symbolic interpretation. In Proceedings of the 1976 Annual Conference, Houston, Texas,
USA, October 20-22, 1976, John A. Gosden andOlin G. Johnson (Eds.). ACM, 492–497. https://doi.org/10.1145/800191.805648

Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. 2013. Translation validation for a verified OS kernel. In
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013, Hans-Juergen Boehm and Cormac Flanagan (Eds.). ACM, 471–482. https://doi.org/10.1145/2491956.2462183

Cyril Six, Sylvain Boulmé, andDavidMonniaux. 2020. Certified and efficient instruction scheduling: application to interlocked
VLIW processors. Proc. ACM Program. Lang. 4, OOPSLA (2020), 129:1–129:29. https://hal.archives-ouvertes.fr/hal-
02185883

Cyril Six, Léo Gourdin, Sylvain Boulmé, David Monniaux, Justus Fasse, and Nicolas Nardino. 2022. Formally Verified
Superblock Scheduling. In Certified Programs and Proofs (CPP ’22). Philadelphia, United States. https://hal.archives-
ouvertes.fr/hal-03200774

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2011. Equality Saturation: A New Approach to Optimization.
Log. Methods Comput. Sci. 7, 1 (2011). https://doi.org/10.2168/LMCS-7(1:10)2011

Zachary Tatlock and Sorin Lerner. 2010. Bringing Extensibility to Verified Compilers. SIGPLAN Not. 45, 6 (jun 2010), 111–121.
https://doi.org/10.1145/1809028.1806611

Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. 2011. Evaluating value-graph translation validation for LLVM. In
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011, San
Jose, CA, USA, June 4-8, 2011. ACM, 295–305. https://doi.org/10.1145/1993498.1993533

Jean-Baptiste Tristan and Xavier Leroy. 2008. Formal Verification of Translation Validators: a Case Study on Instruction
Scheduling Optimizations. In Principles of Programming Languages (POPL). ACM Press, 17–27. https://doi.org/10.1145/
1328438.1328444

Jean-Baptiste Tristan and Xavier Leroy. 2009. Verified Validation of Lazy Code Motion. In Programming Language Design
and Implementation (PLDI). ACM Press, 316–326. http://gallium.inria.fr/~xleroy/publi/validation-LCM.pdf

Jean-Baptiste Tristan and Xavier Leroy. 2010. A simple, verified validator for software pipelining. In Principles of Programming
Languages (POPL). ACM Press, 83–92. http://gallium.inria.fr/~xleroy/publi/validation-softpipe.pdf

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In Programming
Language Design and Implementation (PLDI). ACM Press, 283–294. https://doi.org/10.1145/1993498.1993532

Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. 2012. Formalizing the LLVM Intermediate
Representation for Verified Program Transformations. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (Philadelphia, PA, USA) (POPL ’12). Association for Computing Machinery,
New York, NY, USA, 427–440. https://doi.org/10.1145/2103656.2103709

Zhide Zhou, Zhilei Ren, Guojun Gao, and He Jiang. 2021. An empirical study of optimization bugs in GCC and LLVM.
Journal of Systems and Software 174 (2021), 110884. https://doi.org/10.1016/j.jss.2020.110884

2023-05-22 18:22. Page 26 of 1–32.

https://doi.org/10.1007/BFb0054170
http://web.cs.ucla.edu/~pouchet/software/polybench/
https://doi.org/10.1145/2254064.2254104
http://gallium.inria.fr/~xleroy/publi/validation-regalloc.pdf
https://people.csail.mit.edu/rinard/paper/credibleCompilation.html
https://doi.org/10.1007/978-3-642-35308-6_5
https://doi.org/10.1145/800191.805648
https://doi.org/10.1145/2491956.2462183
https://hal.archives-ouvertes.fr/hal-02185883
https://hal.archives-ouvertes.fr/hal-02185883
https://hal.archives-ouvertes.fr/hal-03200774
https://hal.archives-ouvertes.fr/hal-03200774
https://doi.org/10.2168/LMCS-7(1:10)2011
https://doi.org/10.1145/1809028.1806611
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1145/1328438.1328444
https://doi.org/10.1145/1328438.1328444
http://gallium.inria.fr/~xleroy/publi/validation-LCM.pdf
http://gallium.inria.fr/~xleroy/publi/validation-softpipe.pdf
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/2103656.2103709
https://doi.org/10.1016/j.jss.2020.110884

Formally Verifying Optimizations with Block Simulations

These appendices cover implementation details or provide context about possible extensions to our
translation validation framework.

A COMPLEMENTARY DETAILS ON BTL
A.1 Overview of the Formal Proof of our Simulation Checker
Our symbolic simulation checker over BTL programs enables formally proving a generic pass
parametrized by an oracle. The oracle is declared as an OCaml function expecting as argument a
source BTL function f (as defined in Fig. 3), and returning a pair (cfg, gm) where cfg is the target
CFG and gm is a map—called the “glue map”—which associates to each block label pc a pair of
invariants previously written (H (pc),G(pc)). When the checker validates the oracle results on all
the functions of a source BTL program, the pass returns the target BTL program. Otherwise, the
pass fails.

𝑆1 𝑆 ′1

𝑆2 𝑆 ′2

R

𝑒 𝑒

R

Fig. 21. Lockstep Simu.

The pass is formally proved to perform a lockstep forward simulation,
partly inspired by the proof on RTLpath performed by Six et al. [2022]. It
is pictured in Fig. 21: for any blockstep on source concrete states 𝑆1 →𝑒 𝑆2
(emitting a possible observational event 𝑒), for any target state 𝑆 ′1 related
to 𝑆1 by the glue maps, relation written 𝑆1 ∼R 𝑆 ′1, there exists a blockstep
on target concrete states 𝑆 ′1 →𝑒 𝑆 ′2 such that 𝑆2 ∼R 𝑆 ′2.28

Defining the “R” relation is not completely straightforward because we
need to express that the source call-stack is simulated by the target call-stack through the glue map
of each caller function. This is necessary even if the analysis and the transformation are performed
separately for each function: this simulation invariant on stackframes is needed to establish that
the invariant is still true when returning from a function call. In the Coq code Fig. 22, this relation
is formalized as match_states. Let us sketch the idea.
(1) The match_function relation between a source BTL function f and a target one f ' expresses that

f ' is a symbolic simulation of f. In other words, the CFG entry-points are identical (condition
preserv_entrypoint); the invariants at this entry-point only contain liveness equations of the
form “𝑥T = 𝑥S”; and, as expressed by condition match_sexec_ok, for any source block ib at
label pc, there is a target block ib ' at label pc such that the symbolic simulation condition
depicted by Fig. 8 is satisfied.

(2) The match_stackframes predicate relates a source and a target stackframe (under a global
environment ge). Like in RTL, such a stackframe “ (Stackframe res f sp pc rs)” saves the
execution context of the caller—f—in the state of the callee execution: res is the register to
which the result should be assigned, pc is the returning address after the call, rs saves the
state of the caller registers and sp is its stack pointer. Hence, match_stackframes describes
how the source stackframe is simulated by a target stackframe: the target caller is a symbolic
simulation of the source one (condition TRANSF); and, condition MATCHI, for any returned value
v and memory m at the end of the call, the source state and target states after the call are
related by the invariants at pc.

(3) The match_states predicate relates a source and a target (concrete) state. Like in RTL, there
are three kinds of states. The kind State indicates a normal blockstep, whereas special kind
Callstate (resp. Returnstate) indicates a context switch: entering into (resp. returning from)
a function call. In these states, the source (resp. target) stack is written stk (resp. stk ').
Such a stack is list of stackframes. Condition STACKS expresses that each stackframe of stk is
simulated by the corresponding one in stk ' . The MATCHI condition of the match_states_intro

case expresses that normal states are related by the invariants at their common label pc. Note
28This diagram follows the usual convention: solid lines are hypotheses of the theorem, dashed lines are conclusions.

2023-05-22 18:22. Page 27 of 1–32.

Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard

Record match_function (f f': BTL.function) : Prop B {
(* f and f' have also the same signature . . . *)
preserv_entrypoint: fn_entrypoint f = fn_entrypoint f';
trivial_histinv_entrypoint: only_liveness (history (f'.(fn_gm) (fn_entrypoint f)));
trivial_glueinv_entrypoint: only_liveness (glue (f'.(fn_gm) (fn_entrypoint f)));
match_sexec_ok: ∀ pc ib, (fn_code f)!pc = Some ib →

∃ ib', (fn_code f')!pc = Some ib '
∧ ∀ ctx , match_sexec_si ctx f'.(fn_gm) (entry ib) (entry ib ') pc;

}

Inductive match_stackframes (ge: genv): stackframe → stackframe → Prop B
| match_stackframe_intro

sp res f pc rs rs ' f'
(TRANSF: match_function f f')
(MATCHI: ∀ v m, match_invs (Bcctx ge sp (rs#res ← v) m) (f'.(fn_gm) pc) (rs '#res ← v))
: match_stackframes ge (Stackframe res f sp pc rs) (Stackframe res f' sp pc rs ')

Inductive match_states (ge: genv): state → state → Prop B
| match_states_intro

stk f pc sp rs rs ' m stk ' f'
(TRANSF: match_function f f')
(MATCHI: match_invs (Bcctx ge sp rs m) (f'.(fn_gm) pc) rs ')
(STACKS: list_forall2 (match_stackframes ge) stk stk ')
: match_states ge (State stk f sp pc rs m) (State stk ' f' sp pc rs ' m)

| match_states_call
stk stk ' f f' args m
(STACKS: list_forall2 (match_stackframes ge) stk stk ')
(TRANSF: match_fundef f f')
: match_states ge (Callstate stk f args m) (Callstate stk ' f' args m)

| match_states_return
stk stk ' v m
(STACKS: list_forall2 (match_stackframes ge) stk stk ')
: match_states ge (Returnstate stk v m) (Returnstate stk ' v m)

Fig. 22. Simulation of Concrete BTL States - Induced by Symbolic Simulation

that because our invariants require the equality of memories at BTL block boundaries, the
target and the source memories are identical (both written m).

Fig 8 proves the simulation pictured by Fig 21 when the source state 𝑆1 is a normal state. Note
that in BTL, the observational events 𝑒 can only be emitted by final instructions. Thus, we only
have to make sure that the final step of the target (the execution of fiT) has the same observational
behavior as the final step of the source (the execution of fiS). In the case of a function call, we use
the match_states_call case for the states after the final instruction. We use the assumption that the
symbolic checker accepted all functions to prove the TRANSF condition for the callee. The simulation
of the two other kinds of steps (entering into or returning from a call) follows from the definition
of match_states.

A.2 Formally Verified Normalization over our (Pseudo) Affine Forms
In order to normalize an affine operation “𝑐 · sv” or “sv1 + sv2”, we first define a function A, which
maps any symbolic value sv to an affine form and satisfying the equations below (where “J.K” is the
evaluation function from symbolic to concrete values).

J𝑐 · svK = J𝑐 · A(sv)K Jsv1 + sv2K = JA(sv1) + A(sv2)K

In other words, within the context of an affine operation, the normal forms returned byA preserve
the semantics.29 In practice, since the normalization is applied after each assignment (see §6.3), A

29Because of the invalid equations in Fig. 18, it would be too strong to simply require “JA(sv)K = JsvK”.

2023-05-22 18:22. Page 28 of 1–32.

Formally Verifying Optimizations with Block Simulations

only needs to perform a simple case analysis on the root of its argument. It is simply defined by:

A(sv) =


sv if sv matches Sfoldr(+, _, _)
Sfoldr(+, [], 𝑐) if sv matches Sop(𝑐, []) where c is a 64-bits integer
Sfoldr(+, [sv], 0) otherwise

Then, the normalization of “𝑐 · A(sv)” (resp. “A(sv1) + A(sv2)”) reduces to a computation of the
form “𝑐 · Sfoldr(+, #»𝜋 , 𝑐0)” (resp. “Sfoldr(+, #»𝜋1, 𝑐1) + Sfoldr(+, #»𝜋2, 𝑐2)”).
The computation of “𝑐 · Sfoldr(+, #»𝜋 , 𝑐0)” returns “Sfoldr(+, 𝑐 · #»𝜋 , 𝑐 𝑐0)” where “𝑐 · #»𝜋 ” is an

instance of a “list-map” operation over pseudo-product list #»𝜋 (and is verified by applying the three
equalities at the top line in Fig. 17).
The computation of “Sfoldr(+, #»𝜋1, 𝑐1) + Sfoldr(+, #»𝜋2, 𝑐2)” returns “Sfoldr(+, #»𝜋1 + #»𝜋2, 𝑐1 + 𝑐2)”,

where “ #»𝜋1 + #»𝜋2” is very similar to the merge of sorted lists #»𝜋1 and #»𝜋2 for the pseudo-product
preorder, except that when two compared pseudo-products are equivalent for the preorder, they are
themselves merged by an operation described just below. The equivalence test on pseudo-products,
described in Figure 23, uses pointer equality “==” to validate that two pseudo-products can be
merged. In Figure 17, the three equations on the bottom line (from left to right) correspond to the
three cases of equiv (from top to bottom). Each of this case in equiv is thus associated to a rewrite
rule that merge the pseudo-products by applying the corresponding equation from left to right. For
instance, supposing we have equiv(𝜋1, 𝜋2) = true for the third case, then the merge of this two
pseudo-products is 2 · 𝜋1, because then we know that 𝜋1 = 𝜋2 and that 𝜋1 is a “reified” symbolic
value (i.e. not having an affine computation at its root).

equiv(𝜋1, 𝜋2)
def
=


sv′1 == sv′2 if (𝜋1, 𝜋2) matches (𝑐1 · sv′1, 𝑐2 · sv′2)
sv == sv′ else if (𝜋1, 𝜋2) matches (sv, 𝑐 · sv′) or (𝑐 · sv, sv′)
𝜋1 == 𝜋2 otherwise

Fig. 23. Testing the Equivalence Induced by the Preorder over Pseudo-Products

A.3 Limitations of our Formally Verified Strength-Reduction
As detailed in §6.3, we do not fully support the standard affine arithmetic. It seems that we could
recover more powerful equations by considering amulti-sorted equational theory. But, BTL, inspired
by RTL, is an untyped language which makes this way difficult. Let us now discuss other limitations
of our SR.

Targeting 32-bits architecture. §6.4 explained that our SR is currently limited to 64 bits architecture.
Porting it to a 32-bits architecture seems rather straightforward. Actually, combining 32-bits and
64-bits arithmetic on a 32-bits architecture seems easier than the opposite (described in §6.4) because
truncation commutes with most long operations (in modular arithmetic). It would only require a
little generalization of the syntax of our history invariants for allowing the source registers to be
defined as symbolic expressions of target registers. But, this generalization does not seem difficult
because our semantics of invariants already enables it.

Eliminating/reducing loop counters. Let us consider the code generated by “gcc -O1” for RISC-V
64 bits on the source in Fig. 15. It is quite similar to the reduced code generated by our CompCert
version, represented at Fig. 16 except that the loop is rotated (see Fig. 1; Six et al.’s version of
CompCert also optionally rotates loops) and the increment “x1=x1+1” is eliminated from the loop.
GCC compensates for this elimination by replacing the loop condition “(x1 >=ls x2)” by condition

2023-05-22 18:22. Page 29 of 1–32.

Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard

“(x10 =l x12)” where x12 is a fresh variable initialized by “x12 = x2 «l 3; x12 = x3 +l x12”, before
the loop. In other words, GCC replaces the source condition “i < n” by “x+i != x+n”.

We cannot prove such a transformation with our validator. Indeed, such a transformation seems
difficult to verify in CompCert. First, note that the replacement of condition “i < n” by “x+i < x+n”
would be incorrect because of possible overflows (but “!=” is preserved in modular arithmetic).
Second, justifying the replacement of condition “i < n” by “i != n” requires inferring the loop
invariant “i <= n”: proving such an invariant, and allowing to rewrite—under this invariant—the
condition “i < n” into “i != n” require non-trivial extensions of our validator. Last, in the CompCert
memory model (as in the C standard), the comparison “x+i != x+n” is only well-defined if “x+i”
and “x+n” are valid and point within the same allocated block (or just after the end of the block).
Hence, it is highly non-trivial to prove that if the source program has no undefined behavior then
“x+i != x+n” is also well-defined. See related discussion at item (3) in §3.6.

This example illustrates that some seemingly simple optimizations of “gcc -O1” are still difficult
to formally justify within CompCert.30

A.4 Porting Static Analyses from RTL to BTL
Official releases of CompCert run multiple analyses over the RTL intermediate representation.
Since BTL has almost the same vision of the execution state (pseudo-registers and memory) as RTL,
the same abstract transfer functions can be used. We defined an interface (as a Coq module type)
that provides the abstract states and transfer functions of an analysis (as well as proofs of their
correctness). Given an implementation of this interface, one obtain a proven abstract analysis that
can be run both on RTL and BTL.
We ported into this framework the existing value analysis31 of Robert and Leroy [2012], which

includes an alias analysis. This analysis abstracts values within an (infinite) lattice of finite height,
and also abstracts the contents of memory blocks. One important difference is that the original
abstract execution of a single instruction in RTL produces one single abstract state (made of an
abstract register state and an abstract memory state), which is propagated to all successors of the
instruction (only branching instructions have multiple successors), whereas our framework allows
the branching instructions to provide a different abstract state for each successor. We took this
opportunity to slightly improve on the approach implemented in the original analysis, which did
not implement transfer functions for conditions (thus, for instance, it did not track that 𝑖 = 0 after
a branch with condition 𝑖 = 0 is taken). We added transfer functions to conditions (only, so far, for
equality tests), and we also added propagation of the value of the branching variable through jump
table instructions.

We used the same framework to implement the interval analysis needed for the integer promotion
pass (see §6.4).

After a run of an analysis, we use some annotations to add assertions in the semantics of BTL in
order to propagate its results. Those annotations are used both by the oracles and by the symbolic
validation (see §3.5).

B EXTENDING SUPERBLOCK SCHEDULINGWITH NON-ALIAS ANALYSES
We investigated the benefits of alias analyses for our superblock scheduler. Such analyses allow
swapping stores with other non overlapping memory accesses. For this, we implemented another
version of the system of constraints for the scheduling problem. We run some alias analyses on

30This limitation of CompCert’s memory model may seem overly stringent, but it is difficult to relax while preserving the
many necessary properties of the memory model.
31https://compcert.org/doc/html/compcert.backend.ValueAnalysis.html

2023-05-22 18:22. Page 30 of 1–32.

https://compcert.org/doc/html/compcert.backend.ValueAnalysis.html

Formally Verifying Optimizations with Block Simulations

extern void foo(int *u);

void bar(int *t) {
int u[3];
u[0] = t[0]+1;
u[1] = t[1]+1;
u[2] = t[2]+1;
foo(u);

}

ldr w2, [x0, #0]
add w2, w2, #1
str w2, [sp, #16]
ldr w4, [x0, #4]
add w6, w4, #1
str w6, [sp, #20]
ldr w3, [x0, #8]
add w5, w3, #1
str w5, [sp, #24]

ldr w2, [x0, #0]
ldp w3, w4, [x0, #4]
add w6, w2, #1
add w5, w3, #1
add w4, w4, #1
stp w6, w5, [sp, #16]
str w4, [sp, #24]

Fig. 24. AArch64 Scheduling with Robert and Leroy [2012] Analysis (Right Frame)

void incr3(int *x) {
x[0] ++;
x[1] ++;
x[2] ++;

}

ldr w1, [x0, #0]
add w5, w1, #1
str w5, [x0, #0]
ldr w4, [x0, #4]
add w1, w4, #1
str w1, [x0, #4]
ldr w3, [x0, #8]
add w2, w3, #1
str w2, [x0, #8]

ldp w1, w5, [x0, #0]
ldr w3, [x0, #8]
add w4, w1, #1
add w1, w5, #1
stp w4, w1, [x0, #0]
add w2, w3, #1
str w2, [x0, #8]

Fig. 25. AArch64 Scheduling with Relative Addressing Analysis (Right Frame)

memory accesses. A dependency is inserted between a read and a subsequent write (write-after-read
dependency), a write and a subsequent write (write-after-write), a write and a subsequent read
(read-after-write) only if according to our analyses, they may interfere. It is sufficient that one
analysis proves noninterference for the dependency not to be inserted. We used two alias analyses.
The first alias analysis runs the per-function value analysis discussed in Sec. A.4, and uses the

noninterference predicate provided by the value domain in official CompCert releases. For instance,
if a pointer is proved to always point inside some global variable, and another pointer to always
point inside some other global variable, then they cannot interfere—recall that attempting to move,
through pointer arithmetic, between different variables has undefined behavior in C, and this is
reflected by CompCert’s memory model that each variable lives in a distinct memory block. This is
a direct port of an existing analysis in CompCert [Robert and Leroy 2012].
In practice, the most useful noninterference case seems to be between contents of the current

stack frame (Stack in the value domain), and anything outside the current stack frame (Nonstack
in the value domain), such as anything pointed to by function parameters—indeed, a parameter
pointer cannot point into the current stack frame, because the block of the current stack frame
does not exist yet when the pointer is created. Consider the source code in Fig. 24 left frame.
Without alias analysis, the AArch64 code produced appears in the Fig. 24 middle frame. The three
memory assignments are not reordered by the scheduler because of a potential interference. They
are carefully preserved in sequence, each as load (ldr), addition (add), store(str). This sequence will
result in pipeline stalls, since every load takes multiple cycles even if available in the first level
cache. With alias analysis, it is known that t[.] and u[.] cannot alias, because the former is outside
the current stack frame and the latter is inside. Thus, the scheduler can first perform the three
loads, then the three additions, then the three stores. Furthermore, noninterfering load and store to
consecutive addresses are fused (into ldp and stp) by the postpass instruction rewriter of Six et al.
[2022, §2]. This gives the assembly code in Fig. 24 right frame.

The second alias analysis addresses the cases where noninterference can be established because
two pointers point to non-overlapping data chunks within the same object, for instance different
fields inside the same structure. It performs a local abstract interpretation within the superblock.
Abstract values for pointers are of the form 𝑣𝑖 + 𝑜 , where 𝑖 is an integer index, 𝑣𝑖 designates a

2023-05-22 18:22. Page 31 of 1–32.

Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard

“symbolic value”, and 𝑜 is a constant integer offset; we also have abstract values consisting only of a
constant integer. When a value comes from the starting point of the superblock, or is computed
by an operation inside the superblock that is not handled by the abstraction (e.g., multiplication),
that value is abstracted by 𝑣𝑖 + 0 where 𝑣𝑖 is fresh (the index 𝑖 has never been used so far). When
a value is computed by adding a pointer abstracted by 𝑣𝑖 + 𝑜 to an integer constant 𝑐 , the result
is abstracted by 𝑣𝑖 + (𝑜 + 𝑐). Chunks of size 𝑠1 and 𝑠2 pointed to by pointers abstracted by 𝑣𝑖 + 𝑜1
and 𝑣𝑖 + 𝑜2 (note the same base pointer 𝑣𝑖) respectively are deemed not to interfere if the intervals
[𝑜1, 𝑜1 + 𝑠1) and [𝑜2, 𝑜2 + 𝑠2) do not overlap.
Consider the source program of Fig. 25 left frame. Without alias analysis—see Fig. 25 middle

frame—the scheduler is faced with the same issue as in the previous example: the three memory
increments are kept in sequence, and the pipeline stalls. With alias analysis, like in the previous
example, the scheduler can swap and group loads and stores. See Fig. 25 right frame. The only
difference comes from the criteria to ensure nonaliasing. In Fig. 25, we consider offset relatively to
the same base, whereas in Fig. 24, we consider the allocation class of the pointers.
While both analyses are appealing, and indeed improve code on examples such as the above,

experiments showed that, often, the improvement is not noticeable even on examples where the
schedule is altered by activating these analyses. Performance is improved markedly only in specific
benchmarks. Our symbolic validator fully support the first analysis but only a restricted version
of the second analysis. Since the latter is only used by the scheduler and for marginal gains, we
postponed its complete integration in the checker.

2023-05-22 18:22. Page 32 of 1–32.

	Abstract
	1 Context and Motivations
	2 Introduction to our Validators
	2.1 CFG Morphisms for Duplications or Factorizations
	2.2 Block-by-block Symbolic Simulation Modulo Invariants

	3 BTL and its Symbolic Simulation
	3.1 Symbolic representations
	3.2 Compact Invariants
	3.3 Symbolic Execution with Trace-Partitioning By Continuation-Passing
	3.4 Symbolic Simulation Modulo Invariants
	3.5 Refinement with Hash-Consing and Normalized Rewriting
	3.6 Limitations of our Simulation Checker

	4 Application to Superblock Scheduling
	5 Application to Lazy Code Motion
	5.1 Performing LICM by PRE on an Example
	5.2 Formally Validated LCM

	6 Application to Lazy Strength Reduction
	6.1 Motivations for RISC-V
	6.2 SR on a realistic example
	6.3 Formally-Verified Normalized Rewriting on Affine Forms
	6.4 Strengthening our Strength-Reduction with a Prior Integer Promotion

	7 Adapting the Lazy Transformation Algorithms of Knoop-et-al
	7.1 A Brief Overview of the LCM & LSR Analyses
	7.2 Co-design for Validation and Invariant Inference

	8 Experimental Evaluation
	8.1 Compilation Time Measurements
	8.2 Performance Benchmarks

	9 Related and Future Works
	References
	A Complementary details on BTL
	A.1 Overview of the Formal Proof of our Simulation Checker
	A.2 Formally Verified Normalization over our (Pseudo) Affine Forms
	A.3 Limitations of our Formally Verified Strength-Reduction
	A.4 Porting Static Analyses from RTL to BTL

	B Extending Superblock Scheduling with Non-Alias Analyses

