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CompCert (ACM Software System Award 2021) is the first industrial-strength compiler with a mechanically

checked proof of correctness. Yet, CompCert remains a moderately optimizing C compiler. Indeed, some

optimizations of “gcc -O1” such as Lazy Code Motion (LCM) or Strength Reduction (SR) were still missing:

developing these efficient optimizations together with their formal proofs remained a challenge.

Cyril Six et al. have developed efficient formally verified translation validators for certifying the results of

superblock schedulers and peephole optimizations. We revisit and generalize their approach into a framework

(integrated into CompCert) able to validate many more optimizations: an enhanced superblock scheduler, but

also Dead Code Elimination (DCE), Constant Propagation (CP), and more noticeably, LCM and SR. In contrast

to other approaches to translation validation, we co-design our untrusted optimizations and their validators.

Our optimizations provide hints, in the forms of invariants or CFG morphisms, that help keep the formally

verified validators both simple and efficient. Such designs seem applicable beyond CompCert.

CCS Concepts: • Computer systems organization→ Reduced instruction set computing; • Software and
its engineering→ Compilers; Retargetable compilers; Semantics; • Theory of computation→ Logic and
verification; Automated reasoning; Higher order logic.

Additional Key Words and Phrases: Formal verification of compiler optimizations, the Coq proof assistant,

Translation validation, Symbolic execution.
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1 CONTEXT AND MOTIVATIONS
Compilers are complex pieces of software, and are thus likely to contain bugs. Some bugs result

in the compiler crashing or aborting, some in missed optimizations, and some, more annoyingly,

result in miscompilation: the generated code is incorrect. Many miscompilation bugs have been

found in the optimization phases of major compilers such as GCC and LLVM [Zhou et al. 2021].
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Translation validation, as coined and popularized by Pnueli et al. [1998], is a defensive approach

for ruling out miscompilation. It consists in validating, during or after compilation, that the target
code (of a single transformation or even for a whole compilation run) matches the source code. Hence,
the correctness of the compiler is reduced to that of the validators. This is likely simpler and more

maintainable than proving the correctness of each individual optimization, since a given validator

may be robust to optimization tuning, or may even validate a whole class of transformations.

Checking semantic equivalence between two code fragments is undecidable in general. Yet,

two major successes of software formal verification have leveraged translation validation. Comp-

Cert [Leroy 2009a] uses a specialized validator to check register allocation [Rideau and Leroy 2010].

The validator is specific to this compilation phase. In contrast, seL4 [Sewell et al. 2013] attempts to

automatically match the C source and object code of the seL4 kernel (itself proved correct w.r.t. a

high-level specification); the resulting verification conditions are discharged by an SMT solver.

These two projects had very different constraints. The seL4 validation team had to work with an

existing compiler, which was not to be modified; but they could write the software to be compiled in

a certain way that helped with the “matching”, and they could tune per-module optimization options

if needed. Their scheme is unlikely to work with other programs, or even with other compiler

versions, unless these programs or the matching scheme are manually modified.
1
In contrast,

CompCert was (informally) expected to compile arbitrary source programs without failure;
2
but

code transformations and validators were designed together. In such a context, it is possible to have

the code transformation leave hints to the validator. The validator is then likely to be more robust

(it need not guess how source and target match), simpler, and to perform fewer computations.

However, according to Leroy [2011], special-purpose translation validation is not a “silver bullet”
either. Indeed, developing specific validators is tedious and expensive: they should be formally

proved yet reasonably efficient, two characteristics that may be contradictory. Moreover, between

ultra-specialized validators and fully-general ones, there is a continuum that remains to be sys-

tematically explored. Paving this way, Necula [2000] proposed a general-purpose but predictable
translation validator (without a formal proof) combining symbolic execution [King 1976; Samet

1976] and normalized rewriting. Tristan and Leroy [2008] showed how to build a formally verified

instruction scheduler from formally verified symbolic execution. Yet, their validator did not scale.
3

Then, they proposed [Tristan and Leroy 2009, 2010] formally verified translation validations of

lazy code motion and other optimizations. None of their extensions were integrated into the public

releases of CompCert.
4
Tatlock and Lerner [2010] designed an extensible CompCert by translation

validation, but their validator was not formally verified, hence significantly augmenting the Trusted

Computing Base.
5
The register allocator introduced by Rideau and Leroy [2010] was the first

formally verified optimization by translation validation to be integrated into mainline CompCert.

Its validator uses a specialized formally verified data-flow analysis, still used in current releases.

Since these works, from more than a decade ago, the efficiency of formally verified translation

validation for advanced optimization, in particular in CompCert, did not progress a lot (see related

works in §9), despite the interest in improving the performance of the generated code—a sign of the

difficulty of the task. Recently, Boulmé, Monniaux and Six designed an efficient formally verified

1
According to [Sewell et al. 2013, §4.2], the translation validation of seL4 is very unstable w.r.t. the version of GCC.

2
This is another argument against general-purpose translation validation based on SMT-solving for compilation of many

different and evolving code bases: SMT solvers tend to be brittle, changes in solver version or minor changes in the source

program may result in the solver timing out on validation problems that it could previously discharge.

3
Source code for their extensions at https://github.com/jtristan/CompCert-Extensions. Tristan and Leroy [2008, §7] mention

two important algorithmic issues (including lack of hash-consing) that were solved in [Six et al. 2022].

4https://github.com/AbsInt/CompCert
5
See [Monniaux and Boulmé 2022] for an extensive discussion of CompCert’s TCB.
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translation validation by symbolic execution thanks to formally verified hash-consing [Boulmé 2021;

Six et al. 2020]. Then Six et al. [2022] extended the approach for validating an efficient superblock

scheduling with peephole optimizations in CompCert.
6

This paper generalizes the translation validation techniques of Six et al. [2022] to support a

larger class of optimizations, including Lazy Code Motion (LCM) [Knoop et al. 1995, 1992] and

Lazy Strength Reduction (LSR) [Knoop et al. 1993] which were not yet provided by CompCert.

First, §2 gives a high-level introduction to our translation validators. Second, §3 details our central

contribution: a new IR (Intermediate Representation) called BTL (Block Transfer Language), along

with a symbolic simulation validator, dedicated to “inter-block transformations”, a concept introduced
in §2.2.2. Then, three sections apply our validators to a distinct optimization: §4 to superblock

scheduling, §5 to LCM, and §6 to LSR. Last, §7 briefly discusses how the translations need to be

instrumented for being validated, §8 gives an experimental evaluation, §9 describes related works

and §10 concludes on our main insights. Our implementation, called Chamois CompCert (or simply

Chamois),
7
represents around 12Kloc of Coq and 5Kloc of OCaml oracles, without comments and

excluding the code that we directly reused from Six-et-al.

2 INTRODUCTION TO OUR VALIDATORS
We consider optimizations over RTL code [Leroy 2009b]. RTL (Register Transfer Language) is an IR

of CompCert’s backend representing each function as a CFG (Control Flow Graph) of instructions,

themselves operating over an unbounded set of pseudo-registers. These pseudo-registers are

allocated to the actual machine registers by a subsequent pass, called register allocation [Rideau

and Leroy 2010], to another IR called LTL. Hence, RTL is convenient for “middle-end” optimizations,

because they can easily introduce fresh (pseudo)registers for storing intermediate results.

We mainly combine two kinds of translation validators: the first one, described §2.1, targets

code duplications or factorizations; the second one, described §2.2, targets what we call inter-block
transformations. At high-level, each of our optimizations can be viewed as a composition of several

transformations on the RTL code, with generally “preprocessing passes” (e.g. loop-unrolling or

register renaming), the core of the optimization (e.g. superblock scheduling) and possibly some “post-

processing passes” (e.g. code factorization). Each transformation must be checked by a validator.

Distinct transformations may be checked by the same validator. If each transformation in a sequence

can be checked by the same validator, then the oracles performing them can sometimes be composed

into a single oracle requiring a single validator run at the end.

In CompCert, the correctness of a backend pass is established by a forward simulation proof
[Leroy 2009b]. Each of our validators is thus formally proved to establish a forward simulation of

the source code by the target code. Validation is helped by hints provided by oracles: information

easy for the oracle to yield, but that would be hard to have the validators reconstruct.

2.1 CFG Morphisms for Duplications or Factorizations
By specialization of the notion of graph homomorphism, we define a CFG morphism between two

RTL CFG as a mapping between the nodes of the CFG preserving the instruction contents with the

successor relationship (and the successor orders), and also preserving the CFG entry point. Almost

trivially, two CFG related by a CFG morphism are bisimulable (they are semantically equivalent).

6
Mullen et al. [2016] formally verified peephole optimizations for x86-32 within CompCert, based on the integer representa-

tion of pointers. Such low-level optimizations are out-of-scope of our work. In contrast, they do not support instruction

reordering, nor loop optimizations. Moreover, they introduced a peephole execution engine with formally verified rewriting

rules, but in a direct style, without translation validation.

7https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert
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Checking that a given function is a CFG morphism is also very easy. Hence, we reuse the CFG

morphism checker, initially introduced by [Six et al. 2022, §4.4].

𝐴

𝐵

𝐶 𝐷

𝐴 = before the loop

𝐵 = loop-condition

𝐶 = loop-body

𝐷 = after the loop

𝐴

𝐵1

𝐶

𝐵2 𝐷

rotate

(i.e. if-do-while)

𝐴

𝐵1

𝐶1

𝐵2

𝐶2 𝐷

unroll (peel)

1st iteration

𝐴

𝐵1

𝐶1

𝐵2

𝐶2 𝐷

unroll body

Fig. 1. Three loop-unrollings of a “while-do” loop

Indeed, Six noticed that many code dupli-

cations useful for superblock scheduling—e.g.

tail duplication, loop-unrollings—are CFG mor-

phisms: their mapping is the function associat-

ing each duplicated node in the target CFG to

its origin in the source CFG. Fig. 1 depicts var-

ious loop-unrollings on an abstract CFG: their

CFG morphism corresponds to the mapping

that forgets numeric indices on node contents.

Our first improvement is to notice that the re-

verse transformations, i.e. code factorizations,

can also be verified with the same validator

(thanks to the reverse simulation). In partic-

ular, we formally verify a CFG minimization

pass which mimics Moore’s algorithm for DFA

(deterministic finite automaton) minimization.

We have also generalized the notion of CFG

morphism for mappings from BTL—our new IR

detailed in §2.2—to RTL. Roughly speaking, in BTL, a CFG node syntactically corresponds to a

loop-free fragment of a RTL CFG: a BTL program partitions a RTL program into blocks. A variant of

Six’s CFG morphism checker [Six et al. 2022, §4.4]—called the BTL projection checker—validates the
selection of these blocks in the RTL code, modulo code duplication or insertion of synthetic nodes8.
While these transformations are validated during the RTL to BTL translation, the factorization

from our minimization oracle is validated on the way back to RTL.

2.2 Block-by-Block Symbolic Simulation Modulo Invariants
Given a RTL CFG, we characterize a block of this CFG as a loop-free sub-CFG that has a single

entry-point from the remainder of the surrounding CFG, and where only exit-points may emit

observational events.
9
Replacing a block by a semantically equivalent one does not change the global

CFG semantics. More generally, by partitioning the CFG into blocks, we decompose the “global”

simulation proof between two CFGs into a finite conjunction of “local” simulation proofs between

block pairs. Then, by means of invariant annotations, the “local” simulations are aggregated at the

global level, making sure that changes are consistent between blocks. Validation of these block

simulations is fully automated by comparing their symbolic executions [Six et al. 2020].

2.2.1 Intra-Block Transformations. Symbolic execution of both blocks amounts to computing the

final contents of registers and of the memory as symbolic expressions over their initial contents.

If these expressions are structurally equal, then these concrete executions are observationally

equivalent, assuming these executions do not trap. Since certain processor operations may trap (e.g.

reading from invalid memory locations, division by zero), the symbolic execution of each block

also computes a symbolic precondition (represented as a conjunction of symbolic clauses) such

that the concrete execution traps if and only if the precondition is not satisfied. We require that

the precondition of the source code implies the one of the target code. For compilation efficiency,

8 Synthetic nodes are “no-op” blocks inserted in the CFG in preprocessing of code motion [Knoop et al. 1992, §3.1].

9
In CompCert, certain actions, such as calls to external functions and volatile variable accesses, generate events. Global
correctness amounts to preserving observable event sequences. In contrast, registers etc. are internal affairs of the program.
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structural equivalence of expressions is reduced to pointer equality through hash-consing (i.e.

memoizing expressions such that two structurally equal expressions are uniquely allocated in each

compiler run). See Ex. 2.1.

Example 2.1 (Symbolic simulation of basic blocks). Consider two basic blocks 𝐵1 and 𝐵2:

(𝐵1) 𝑟1 B 𝑟1 + 𝑟2; 𝑟3 B load[𝑚, 𝑟1]; 𝑟3 B 𝑟1; 𝑟1 B 𝑟1 + 𝑟3
(𝐵2) 𝑟3 B 𝑟1 + 𝑟2; 𝑟1 B 𝑟3 + 𝑟3
Both 𝐵1 and 𝐵2 lead to the same parallel assignment:

𝑟1 B (𝑟1 + 𝑟2) + (𝑟1 + 𝑟2) ∥ 𝑟3 B 𝑟1 + 𝑟2.
𝐵1 is preconditioned by OK(Read, 𝑟1 + 𝑟2)—meaning “the location at address 𝑟1 + 𝑟2 is readable”—
whereas 𝐵2 has a true precondition. Hence, 𝐵2 simulates 𝐵1, but not the converse.

When applicable, this approach is very powerful, because it is simple, efficient and does not
require hints from oracles (after the CFG is partitioned into blocks). A typical application is

instruction scheduling, which reorders instructions to improve parallelism in the processor pipeline.

In their first work on instruction scheduling, [Six et al. 2020] only considered basic blocks
(sequence of instructions with only one exit-point) of assembly code, and relied on a specific

DSL (Domain-Specific Language) for symbolic execution. They later generalized their symbolic

simulation validator to superblocks (sequence of instructions with intermediate conditional exit-

points plus a final exit-point) to validate superblock scheduling [Six et al. 2022]. In some further

improvements of their system, the source superblock may be transformed into an extended block (a

sequence of trees without internal joins) which is not a superblock. They overcame the limitation

of their symbolic simulation to superblocks with an intricate sequence of passes combining ad-hoc

validators [Justus Fasse 2021].

In contrast, one of our contributions is to define our symbolic simulation validator on a very

general syntax for blocks, even if its current applications only apply it to extended blocks. We have

introduced an IR called BTL (Block Transfer Language) for representing CFGs of RTL blocks: it

replaces the “RTLpath”—a decoration of RTL defining a block semantics—of [Six et al. 2022]. In

contrast to RTLpath, BTL represents the control-flow within each block structurally (with an usual

abstract syntax tree), instead of an explicit sub-CFG. This makes our symbolic simulation test both

simpler and more efficient.
10

Proving the passes between RTL and the CFG of blocks becomes

however less trivial: this leads us to generalize the notion of CFG morphism as sketched in §2.1.

2.2.2 Inter-Block Transformations. The simulation test sketched above is only applicable if the

transformation preserves the semantics of each block. Indeed, it uses the equality of the source and

target states (that is, the registers and memory) at the entry of each block as a simulation invariant.

Inter-block transformations cannot be validated using this invariant for two reasons. Firstly, a

transformation only needs to consider initial states at the block entry that are reachable by the

program, whereas the above simulation test requires proving the preservation for any values of

the registers and memory at the block entry. Secondly, the source and target states at the entry of

the block dot not need to be equal. For instance, Dead Code Elimination (DCE) only maintains the

equality of the live registers; some transformations use auxiliary registers, which hold meaningful

values only in the target program.

To validate such global transformations, we generalize the invariants relating the source and

target states at block entries. We progressively explain this idea, with the help of Fig. 2, providing a

transformation on C pseudocode.
11
Both the source and the target code are CFGs of two (extended)

10
Our representation also slightly generalizes the “tree-based representation” of [Tristan and Leroy 2008, §5.1], because in

ours, “sequences of trees” are blocks.

11
Implicitly, all arithmetic computations operate on unsigned long.

2023-09-21 13:19. Page 5 of 1–36.



Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard

blocks, labeled by Entry (their entry-point) and Loop. The target is obtained after a combination

of Constant Propagation (from a=7) and Strength Reduction: the multiplication originally within

Loop is moved to Entry and reduced in Loop to an addition on a fresh register i_a. The target also
benefits from DCE, since register a and its assignment are eliminated.

Source CFG
Entry:

s = 0;
a = 7;
goto Loop;

Loop:
if (i > n)

return s;
s += i*a;
i += 3;
goto Loop;

Target CFG
Entry:

// iT = iS ∧ nT = nS
s = 0;
i_a = i*7;
goto Loop;

Loop:
// aS = 7 ∧ iT = iS
// ∧ i_aT = iS ∗ 7
// ∧ nT = nS ∧ sT = sS
if (i > n)

return s;
s += i_a;
i += 3;
i_a += 21;
goto Loop;

Fig. 2. Simulation modulo invariants

To account for the differences between the source and

target registers at the beginning of the block, we allow

our symbolic expressions to mention the initial mem-

ory, the initial source registers (denoted with an “S” sub-

script) and the initial target registers (denoted with a “T”

subscript). An invariant is then the conjunction of the

equality of the source and target memories, a precondi-

tion expressed as a symbolic proposition, and equalities

between some registers and symbolic expressions. The

symbolic proposition and equalities are produced by our

untrusted oracles for each block. Fig. 2 represents the

equalities attached to each block of the target code, all

preconditions are trivially true in this example.

The simulation modulo invariants is validated by sym-

bolic execution. For each block, we use the invariant at the entry to build an initial symbolic value

for each register in the source and target programs. We then perform the symbolic execution of

both the source and target blocks, and we compare their respective results through the invariant

associated to every block exit. Let us detail this process for the Loop block of Fig. 2:

• For the source block, the symbolic execution starts from symbolic state “a B 7” itself deduced
from the invariant at the block entry. It thus computes the following symbolic assignments at the

“goto Loop” exit: “a B 7 ∥ i B iS + 3 ∥ s B sS + iS ∗ 7”.
• For the target block, the symbolic execution deduces from the invariant at block entry the fol-

lowing initial symbolic state : “i B iS ∥ i_a B iS ∗ 7 ∥ n B nS ∥ s B sS”. Then, it obtains for this
same exit: “i B iS + 3 ∥ i_a B iS ∗ 7 + 21 ∥ n B nS ∥ s B sS + iS ∗ 7”.
•We then compare those symbolic values according to the invariant at the exit point (here again,

the invariant at the Loop entry). After substituting the symbolic expressions of the source and

target registers within this invariant, we check the following syntactic equalities: (1) 7 = 7, for
equation aS = 7; (2) iS + 3 = iS + 3 for iT = iS; (3) iS ∗ 7 + 21 = (iS + 3) ∗ 7 for i_a

T
= iS ∗ 7;

(4) nS = nS for nT = nS; (5) sS + iS ∗ 7 = sS + iS ∗ 7 for sT = sS.
In order to prove equality (3), the symbolic execution is extended with rewriting rules normalizing

affine expressions (see §6.3). Expressions on both sides are normalized into “21 + 7 · iS”. The
rewriting engine within symbolic execution is similar to the one of [Six et al. 2022]: it is simply

defined more modularly. Now, each transformation may independently define its own rewriting

rules, over a common underlying architecture.

In contrast to [Six et al. 2022], we do not use an ad-hoc validation of register liveness. While

our oracles generate only invariants for live registers of the target program, the validation of this

liveness analysis implicitly results from the preservation of equational invariants between source

and target registers. An incorrect liveness analysis will result in an invariant that is invalid after

substitution of the target registers, because it will still involve a target register not itself bound to a

symbolic expression of source registers.

This implicit liveness validation is strictly more expressive than the explicit liveness validation of

[Six et al. 2022]: we express each register “r” considered live by Six-et-al as an equation “rT = rS”.
This enabled us to port their superblock scheduling to BTL (and even improve it) as detailed in

§4. Moreover, because they only validate a weak liveness analysis of the source program, their

2023-09-21 13:19. Page 6 of 1–36.
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f ::= (sig, #    »r𝑎𝑟𝑔, cfg, pc𝑒𝑛𝑡𝑟𝑦, · · · )
cfg ::= (pc ↦→ ib)
fi ::= Bgoto(pc)
| Breturn(𝜖 |r)
| Bcall(sig, (r |id), #    »r𝑎𝑟𝑔, r𝑑𝑠𝑡 , pc𝑟𝑒𝑡 )
· · ·

ib ::= Bnop
| Bop(op, #    »r𝑎𝑟𝑔, r𝑑𝑠𝑡 )
· · ·
| Bseq(ib1, ib2)
| Bcond(cond, #    »r𝑎𝑟𝑔, ib𝑡ℎ𝑒𝑛, ib𝑒𝑙𝑠𝑒 )
| BF(fi)

Fig. 3. Syntax of BTL internal functions

if (x >= y) goto L;
x = z << 2;
return x;

Bseq(Bcond(_>=_, [x;y], BF(Bgoto(L)), Bnop),
Bseq(Bop(_<<2, [z], x),

BF(Breturn(x))))

Fig. 4. A superblock in C syntax and its BTL representation

sv ::= Sinput((Src|Trg), r)
| Sop(op, #       »sv𝑎𝑟𝑔)
· · ·

sm ::= Sinit
| Sstore(sm, chunk, addr, #       »sv𝑎𝑟𝑔, sv𝑠𝑟𝑐 )

sis ::= (pre, (r ↦→ sv), sm)

sfv ::= Sgoto(pc)
| Sreturn(𝜖 |sv)
| Scall(sig, (sv |id), #       »sv𝑎𝑟𝑔, r𝑑𝑠𝑡 , pc𝑟𝑒𝑡 )
· · ·

ss ::= Scond(cond, #       »sv𝑎𝑟𝑔, ss𝑡ℎ𝑒𝑛, ss𝑒𝑙𝑠𝑒 )
| Sfinal(sis, sfv)

Fig. 5. Syntax of the symbolic representations

framework is unable to validate any kind of DCE. In contrast, as shown on Fig. 2, ours validates

some DCE “for free” (i.e. just from liveness equations as above).

3 BTL AND ITS SYMBOLIC SIMULATION
The abstract syntax of BTL functions—given Fig. 3—is largely inspired by the one of RTL [Leroy

2009b]. Each (internal) function f is associated to a CFG cfg and an entry-point pc𝑒𝑛𝑡𝑟𝑦 in this

CFG. Such a CFG is a map from labels pc to instruction blocks ib. Syntactically, a block ib may

be composed of two sub-blocks, either sequentially with Bseq or through a kind of “if-then-else”

written Bcond. A block may be reduced to a basic instruction: either Bnop that skips, or Bop that
assigns the result of “op( #   »r𝑎𝑟𝑔)” to register r𝑑𝑠𝑡 , or a few others. Last, it may also be a final instruction
named fi that stops the current block execution, such as Bgoto that enters another block of label pc
and Breturn that returns from the current function. In order to cope with CompCert simulation

proofs, we impose that function call—written Bcall—is a final instruction, branching to pc𝑟𝑒𝑡 after
the call. See Fig. 4 for an example in BTL syntax.

Similarly to RTL, the formal semantics of BTL programs and functions is a small-step operational

semantics, where each step emits at most one single event. In contrast to RTL where a step runs at

most one single instruction, each BTL block is run in one big-step. By construction, such a block

big-step necessarily ends just after the RTL-style small-step of a final instruction.
12

3.1 Symbolic Representations
Symbolic execution operates on symbolic representations of the dynamic values involved in the

semantics of BTL. Fig. 5 presents the syntax of the main symbolic representations. They express

the dynamic values as functions of the context, which fixes the values of the source and target

registers at the entry of the block, represented by Sinput, and the common memory at the entry,

12
If no final instruction is present, the block cannot step. See our source code online for the Coq definitions.
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represented by Sinit. An internal symbolic state sis represents the pair of a register state and a

memory, using a symbolic memory sm and by associating a symbolic value sv to each register.

It also contains a symbolic proposition pre (such as the OK precondition of Ex. 2.1), so that the

symbolic state does not represent any concrete state if this proposition is not satisfied. Our paper

often writes internal symbolic states as parallel assignments such as the one of Ex. 2.1.

3.2 Compact Invariants
A symbolic value represents the value of a register r after a sequence of concrete BTL assignments.

As introduced in §2.2.2, our invariants themselves contains symbolic values. However, Ex. 2.1

illustrates on block (𝐵2) that the symbolic values may contain (exponential) term duplications

w.r.t. a sequential representation. Because invariants are syntactically provided by the oracle under

validation, we design a compact syntax which represents them as sequences of assignments from

the source state. A first sequence, the history invariant H , provides symbolic expressions for the

source registers. A second sequence, the gluing invariant G, provides symbolic expressions for

the target registers.
13
The preconditions of the operations of the sequences are used to define the

precondition of the invariant.

ci ::= ( #                 »r𝑑𝑠𝑡 B iv, #            »r𝑜𝑢𝑡𝑝𝑢𝑡 )
iv ::= input? r

| Iop(op, #               »
input? r)

| Iload(chunk, addr, #               »
input? r)

Fig. 6. Syntax of compact invariants

Fig. 6 provides our abstract syntax for compact invari-

ants. A compact invariant ci is a sequence of assignments

of invariant values iv to registers r𝑑𝑠𝑡 together with a

set of output registers. An invariant value iv may read

a register r , optionally with a prefix “input” indicating
that the input value is considered instead of the current

one (within the assignment sequence). It may also represent an operation involving current or

input registers, or a load from the current memory. Initially, current and input registers are

the registers of the source. In the rest of this document, we will note sequential invariants as

“([a1:=v1;a2:=v2;...;aK:=vK], {o1,o2,...,oN})”, where the “ai:=vi” are the assignments and

where the set of output registers is between braces.

Example 3.1. Interpreted as gluing invariants, the two following compact invariants

“([a:=y[5]; z:=a+input x; x:=a+input z], {x,z,t})”

and “([z:=y[5]; x:=z+input z; z:=z+input x], {x,z,t})”

both represent the equations “xT = yS [5] + zS ∧ zT = yS [5] + xS ∧ tT = tS” with precondition

“OK(Read, y[5])”.

Given a symbolic internal state representing the source state, the simulation checker performs

a hash-consed symbolic execution of a compact invariant to obtain symbolic representations of

the right-hand side expressions of the invariant and its precondition. At the entry of the block, we

complete the result of this execution using trivial equalities rS = rS or rT = rT to obtain a symbolic

value for each register.

The symbolic validation exploits two properties of those invariants: (1) Given some invariants

H and G, we build symbolic internal states representing any pair of concrete states related by

those invariants and reflecting the properties they enforce. We start with an empty symbolic state

representing trivially the source state (using 𝑟 ↦→ 𝑟S for the registers). We executeH to obtain a

new representation of the source state that enforces the equalities and the precondition ofH . Then

we execute G from this new symbolic state to obtain a state representing the target state. Finally,

we refine the source symbolic state by adding the precondition of G. (2) Given a pair of source and

13
The term “gluing invariant” is inspired by Abrial [1996]. Our “gluing invariants” have also similarities with “simulation

invariants” of Rinard and Marino [1999], and our “history invariants” with their “standard invariants”.
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Fixpoint sexec_rec ib sis (k: sistate → sstate ): sstate B
match ib with
(** basic instructions *)
| Bnop ⇒ k sis
| Bop op args dst ⇒ k (set_sreg dst (Sop op (lmap_sv sis args)) sis)
| . . .

(** others *)
| Bseq ib1 ib2 ⇒ sexec_rec ib1 sis (fun sis2 ⇒ sexec_rec ib2 sis2 k)
| Bcond cond args ifso ifnot ⇒

Scond cond (lmap_sv sis args) (sexec_rec ifso sis k) (sexec_rec ifnot sis k)
| BF fi ⇒ Sfinal sis (sexec_final_sfv fi sis)
end

Fig. 7. Symbolic execution in CPS

target symbolic internal states, we check that an invariantH (resp. G) holds by executing it from

the source state and comparing the symbolic values obtained for the right-hand sides with those

associated to the same register by the source (resp. target) symbolic states. We also check that the

precondition of the invariant is implied by the precondition of the source symbolic state.

3.3 Symbolic Execution with Trace-Partitioning By Continuation-Passing
Our theory of symbolic execution improves upon Six et al. [2022]’s with mainly two features.

First, as explained in §2.2.2, the oracle provides invariants that allow the validation of inter-block

transformations. Second, BTL symbolic execution supports arbitrary nested sequences of “if-then-

else” instead of superblocks only. This required both a more general representation of the symbolic
states generated by symbolic execution and a kind of trace-partitioning within it.

A symbolic state represents all possible block steps of given BTL block. Fig. 5 defines a symbolic
state ss as a binary decision tree, where each branch represents one possible execution path of the

block. A “Scond” node represents the choice between two branches. Leaves are “Sfinal(sis, sfv)”
where sis—a symbolic internal state—represents the state of the program when it reaches the exit

of the block, and sfv—a symbolic final-value—represents the final instruction of the exit (where

registers have been substituted by their final symbolic values).

Fig. 7 sketches the Coq code of the symbolic execution. Here, sstate and sistate are respectively
the types of symbolic state ss and symbolic internal state sis. Function set_sreg updates the current
sis by assigning a new symbolic value to register dst. The symbolic execution of the register list

args into a symbolic value list is delegated to function lmap_sv.
The symbolic execution—named sexec_rec—computes over block ib recursively. The initial

(internal) state is sis. The trace partitioning is here realized in Continuation Passing Style (CPS).

Continuation k represents how symbolic execution should continue on updates of internal state. It

is initialized as “error_sstate”, which returns a state with a false precondition, reflecting the

fact that each BTL block step must reach a final instruction.

3.4 Symbolic Simulation Modulo Invariants
The blue subdiagram in Fig 8 represents the computations performed by our symbolic simulation

validator. The surrounding diagram (in black color) represents its correctness proof wrt concrete

executions. Hence, we deduce the lock-step forward simulation
14
of the source BTL code by the

target one from their simulation block-by-block, and check the latter by comparing the symbolic

states produced by the symbolic execution of each block. Our simulation relation R relates pairs of

14
Thanks to deterministic target languages, the correctness of CompCert’s backend passes reduces to a forward simula-

tion [Leroy 2009b].
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states at the same program location, using the invariants provided by the oracle for this location.

In the formal proof, we also need to relate the call stacks of the two programs (see Appendix A.1).

csS,0 csT,0

csT,1, fiT

sisS sisT

ssS ssTcsS,1, fiS

csS,2 csT,2

R

R

ibS

fi
S

ibT

fi
T

ibS ibT

init from

invariant

comparison

wrt invariants

Fig. 8. Simulation step using symbolic simulation

Since we prove a forward simulation,

we consider a pair of source and target

states csS,0 and csT,0 at the entry of the

block and related by the invariant defined

by the oracle for the block. We assume

that the source program take a step to

csS,2, and we have to prove that the target

program can take a corresponding step to

some state csT,2 related to csS,2.
Because csS,0 and csT,0 are related by the

invariant of the block, we can build from it

two symbolic internal states sisS and sisT
representing the source and target initial

states. The validator perform the symbolic

execution of the blocks to obtain two symbolic states ssS and ssT representing the outcomes of

the executions of the blocks. It then performs a comparison of those two decision trees. It checks

that they have the same structure with the same conditions. For each corresponding leaves, it

checks that (1) the symbolic final values and symbolic memories are identical; (2) the symbolic

precondition of the source outcome implies the one of the target; (3) the simulation relation is

satisfied after an execution of the common final instruction. For this last condition, it checks the

invariants associated to all the blocks the final instruction can jump to. In the case of a final value

“Scall(sig, (sv |id), #      »sv𝑎𝑟𝑔, 𝑜, pc𝑟𝑒𝑡 )”, it also checks that those invariants do not constrain the memory

and the output register 𝑜 , possibly modified by the call: it only allows “liveness” equation oT = oS.
The step of the source block can be decomposed into an execution up to a final instruction fi

S

followed by an execution of this final instruction. By the correctness of sexec , ssS represents the
state of the source program before the execution of fi

S
. In particular, its precondition is satisfied. The

comparison ensures that the precondition of ssT is also satisfied, hence by the correctness of sexec ,

the target program can take a step-up to a final instruction fi
T
. Since fi

S
and fi

T
are represented by

the same symbolic final value, we can simulate the execution of fi
S
by an execution of fi

T
to a state

csT,2. Because of the comparison performed between the symbolic states, the simulation relation

holds between csS,2 and csT,2.
Besides this block-to-block simulation, we also need to ensure that invariants at the CFG entry do

not constrain any register, except by liveness equations. Indeed, in our intra-procedural verification,

the value of parameters must be considered as unknown.

3.5 Refinement with Hash-Consing and Normalized Rewriting
In our Coq development, the code in Fig. 7 specifies the symbolic state that the symbolic execution

should produce modulo semantic equivalence. This specification is refined with normalized rewrit-

ing and hash-consing in the impure monad of Boulmé [2021]. Rewriting reduces comparisons (of

symbolic values) modulo a set of equations to structural equalities [Kirchner and Kirchner 2014].

Hash-consing reduces these structural equalities to pointer equalities. Hence, §3.4 gives itself a

specification of our validator which compares symbolic values using pointer equality of OCaml.

Here, we adapt the technique of Six et al. [2022] with much more complex rewriting rules. See §6.3.

BTL may be annotated with results of verified static analyses. See Appendix A.3. These annota-

tions are taken into account in the semantics and used to justify some rewritings. In particular, we
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rely on a non-alias analysis to overcome our symbolic representation of the memory as a single

variable (see Appendix B), and an interval analysis enables an integer promotion pass (see §6.5).

3.6 Limitations of our Simulation Checker
Our simulation checker has two kinds of limitations: performance ones (impacting CompCert

running times) and expressivity ones (restricting the class of simulations that can be validated).

Performance. While in theory, any piece of code without loops may be represented as a BTL

block, in practice our symbolic execution performs a naive trace partitioning: it is thus exponential

over the number of internal joins of the input block (i.e. such that two branches of a given block join

at a point which is not a block entry). Because we currently only apply our checker to extended

blocks, which, by definition, do not have such joins, this is not an issue. Furthermore, for blocks

with a bounded number of internal joins, and without rewriting rules, our symbolic execution is

linear in the size of invariants and blocks (see §8.3). In the general case, its cost depends on the

normalization system. For example, for the normalization of affine forms (for SR), it is expected

to be quadratic in the worst case. Lastly, the comparison of symbolic states costs O((𝑙 + 𝑡) × 𝑒)
where 𝑙 (resp., 𝑡 ) is the maximal number, by execution path, of live-out registers (resp., trapping

instructions) and 𝑒 is the number of execution paths (coinciding with the number of exits for blocks

without internal joins). Block selection is a way to finely control 𝑒 , and thus checker performance.

Expressivity. The relative simplicity and efficiency of our checker comes at a price: its expressive

power is limited. (1) Our invariants only support equations of the form “𝑟 = sv” but not the
more general “sv1 = sv2”: this limitation avoids the need of costly saturation techniques. (2) Our

simulation checker performs no reasoning on conditions. It simply checks that the two symbolic

states under comparison have the same binary decision tree structure, with syntactically equals

conditions on nodes. Future works include supporting conditions within invariants with a more

expressive comparison of decision trees and preconditioned rewriting rules. (3) Our invariants

implicitly express that their trapping expressions are actually safe in the execution context. This

forbids the target to anticipate traps with respect to the source. Avoiding this restriction would

require prophecies [Abadi and Lamport 1991] ensuring that these traps will eventually be observed
on the source before any subsequent observable event. Besides generalizing the semantics of our

invariants, this would need introducing a notion of “decreasing variant” forbidding never-realized

prophecies. Currently, we partly overcome this restriction with the help of CFGmorphisms. See §5.1.

(4) The invariants presented here require the source and target memories to be equal at BTL block

boundaries. We can however generalize the invariants while keeping the formalism of §3.4. This

enables for example validating the loop invariant code motion of a memory update after a loop.

4 APPLICATION TO SUPERBLOCK SCHEDULING
In-order processor cores execute assembly instructions in their syntactic order. If one instruction

computes a register used by the next one, then the core stalls until the value computed becomes

available, which may take several clock cycles. Optimizing compilers thus reorder instructions

to minimize stalling: e.g. prioritizing instructions with high latencies and impacting many other

instructions. For example, the superblock scheduler of Six et al. [2022, §6] attempts to minimize

the running times of the execution path covering the whole superblock, even if it may increase

running times of early exiting paths, but without increasing register usage beyond the point where

the subsequent register allocation would be forced to spill registers to memory. This scheduler is

based on a solver that reorders the superblock without code duplication.

We ported the Six et al.’s superblock scheduler from RTLpath to BTL. We now explain, on a

variant of their example [Six et al. 2022, Fig. 10], how the design of BTL makes the implementation
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much easier. This example applies a weak form of software pipelining, that they call if-lifting, and
targets ARM Cortex-A53 (AArch64), a dual-issue in-order processor with two ALUs. In Fig. 9, we

optimize the top source C code by parallelizing computations between two successive iterations

of the loop body. The left-hand side represents the BTL code of the loop body, after a loop-rotate

and unroll-body (see Fig. 1). Hence, the “Loop” superblock (which is a loop body containing two

iterations of the original loop) is scheduled as the BTL block represented on the right-hand side:

the two floating-point computations of the first iteration (in violet color) have been moved below

the intermediate exit in order to be interleaved with those of the second iteration. The scheduler

predicts
15
that the target loop body will run in at most 22 cycles instead of 32 cycles for the original

one (e.g. more than 30% gain of running time). However, preserving the semantics requires register
renamings with fresh registers (in red color) and insertion of compensation code (in blue color) at

the intermediate exit. Because of this insertion, the target block is an extended block.

double sumsq(double *x, unsigned long len) {
double s = 0.0;
for (unsigned long i=0; i<len; i++) s+=x[i]*x[i];
return s;

}

Loop:

x7 = float64[x2+x3 <<3]

x6 = x7 *f x7

x4 = x4 +f x6

x3 = x3 +l 1

if (x3 >=lu x1)

goto Exit

// start second iteration

x7 = float64[x2+x3 <<3]

x6 = x7 *f x7

x4 = x4 +f x6

x3 = x3 +l 1

if (x3 >=lu x1)

goto Exit

goto Loop

Exit:

return x4

Loop: // live: x1, x2, x3, x4

x11 = float64[x2+x3 <<3]

x8 = x3 +l 1

if (x8 >=lu x1) {

x10= x11 *f x11

x9 = x4 +f x10

x4 = x9

goto Exit // live: x4

}

x3 = x8 +l 1

x7 = float64[x2+x8<<3]

x10 = x11 *f x11

x6 = x7 *f x7

x9 = x4 +f x10

x4 = x9 +f x6

if (x3 >=lu x1)

goto Exit // live: x4

goto Loop

Fig. 9. Interleaving of unrolled loop-bodies on AArch64.

This whole transformation is directly

validated by our simulation checker, with

gluing invariants reduced to a conjunction

of liveness equations “rT = rS”, over all
registers r of the live sets given on the

right-hand side (in yellow color). On the

contrary, because RTLpath can only rep-

resent superblocks, validating this trans-

formation with Six’s design required an

“intricate combination of passes” [Six et al.
2022, Footnote 10].

Our implementation of the oracle is also

quite simple. First, register renamings are

performed backward in a preliminary pass

(we avoid forward renamings of [Six et al.

2022, §5.3] because they tend to pollute the

superblock under scheduling with com-

pensation renamings). Then, we invoke

the scheduling solver on a fake superblock,
with an empty live set on intermediate side

exits. Last, we insert the necessary com-

pensation code in the side exits, following Justus Fasse [2021]’s heuristic. We then compare the

makespan (total estimated time) of this scheduling to the standard one (computed on the original
superblock with correct liveness and without compensation code). If the ratio of the size of the

compensation code over the makespan gain is greater than a given threshold, we keep the standard

one instead. Hence, compiler users may control this scheduling heuristic by tuning the threshold

on the command line.

We have also refined this formally verified scheduler with reordering of non-interfering load or

store w.r.t store for some non-alias analyses (see Appendix B). Yet, we measured a gain only on a

few benchmarks.

15
This estimation occurs at an abstract level and thus cannot be precise. First, the subsequent register allocation could

introduce unexpected spills. Second, this estimation assumes that there is no cache miss. Third, the pipeline model is inexact.
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5 APPLICATION TO LAZY CODE MOTION
Code motion consists in anticipating some instructions in order to remove redundant computations.

For example, by data-flow analysis, we may detect expressions remaining constant within a loop

and anticipate their computation before the loop: this is LICM (Loop Invariant Code Motion).
However, if done carelessly, this transformation may anticipate a loop-invariant expression that

traps (e.g. a memory load from a potentially invalid pointer, or a division operation on some

architectures), whereas this computation is unreachable in the original loop. Safe elimination of

such computations—that are redundant on some but not all program paths—is called PRE (Partial
Redundancy Elimination). According to Bodík et al. [1998], “to achieve a complete PRE, control flow
restructuring must be applied. However, the resulting code duplication may cause code size explosion.”
They propose to guide these CFG restructuring with path-profiling and data-flow frequency analysis.

1double approx(double *a) {
2double r = 2;
3if (a[0] < 2) return 2;
4while (r < a[1])
5if (r >= a[2]) r -= a[0];
6else r *= 7;
7return r;
8}

Fig. 10. Four candidates for LICM

Lazy Code Motion [Knoop et al. 1995, 1992] performs safe

and optimal PRE without CFG unrolling, while limiting the

register pressure induced by code motion. Instructions are

safely anticipated but not earlier than the minimum necessary

to reach computational optimality (i.e. with a minimal aver-

age running time for PRE without CFG unrolling). In other

words, among computationally optimal code motions, LCM

selects those that minimize register pressure. Below, we present
our formally verified PRE within the CompCert compiler: §5.1 combines LCM with simple CFG

unrollings on the example in Fig. 10; §5.2 details the validation of our LCM oracle on this example.

5.1 Performing LICM by PRE on an Example

fld f3 ,0(x10)

fld f10 ,.L100 ,x31

flt.d x31 ,f3,f10

bne x31 ,x0 ,.L101

.L102: # Loop Entry

fld f0,8(x10)

flt.d x31 ,f10 ,f0

beq x31 ,x0 ,.L101

fld f2,16(x10)

fle.d x31 ,f2,f10

bne x31 ,x0 ,.L103

fld f1,.L104,x31

fmul.d f10 ,f10 ,f1

j .L102

.L103:

fsub.d f10 ,f10 ,f3

j .L102

.L104: ...# 7.0 in hexa

.L100: ...# 2.0 in hexa

Fig. 11. CSE3 alone

... # Same prolog

fld f0,8(x10)

flt.d x31 ,f10 ,f0

beq x31 ,x0 ,.L101

fld f2,16(x10)

fle.d x31 ,f2,f10

bne x31 ,x0 ,.L103

fld f10 ,.L105 ,x31

j .L102

.L103:

fsub.d f10 ,f10 ,f3

.L102:

fld f1,.L104,x31

.L106: # Loop Entry

flt.d x31 ,f10 ,f0

beq x31 ,x0 ,.L101

fle.d x31 ,f2,f10

bne x31 ,x0 ,.L107

fmul.d f10 ,f10 ,f1

j .L106

.L107:

fsub.d f10 ,f10 ,f3

j .L106

.L105: ...# 14.0 in hexa

.L104: ...# 7.0 in hexa

Fig. 12. Unroll+LCM

Figure 11 presents an extract of the RISC-

V code produced by CompCert with CSE3

of [Monniaux and Six 2021, 2022] activated

for the source C code in Fig. 10. The com-

putation of a[0] has been factorized in f3
register over the whole program. But, com-

putations (in violet color) of a[1] in f0 and
a[2] in f2, and loading of floating-point 7 in

f1 is performed at each iteration of the loop

of label .L102.
In contrast, in Fig. 12 (the four first lines

are omitted because identical), after unrolling

the first iteration (see Fig. 1) our LCM moves

all these computations before the loop, start-

ing now at label .L106. Remark that if the

condition of the loop is initially false, a[2] is

not computed by the original loop, but may

trap if the address is invalid. Thus, simply an-

ticipating the computation of a[2] before the
loop is incorrect: unrolling the first iteration

gives a simple workaround.

However, it may not suffice. For example, in Fig. 10, if the test on line 3 was omitted, then simply

unrolling the first iteration would not suffice to allow a[0] to be moved before the loop. Indeed, if

r < a[2] at the first iteration, then a[0] is not computed and may still trap afterward. Actually,
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following [Bodík et al. 1998], we may find an unrolling (validated by Six’s CFG morphism checker)

that enables it. But this would cost even more code duplications than those of Fig. 12.

Let us now explain why LCM is more powerful than CSE. Applying CSE3 after unrolling produces

almost the same code as the one of Fig. 12 except that the load of floating-point 7 is not factorized.
16

This is due to the fact that some execution path of the first iteration does not load floating-point 7

into f1. Indeed, CSE3 can only eliminate computations that are available on all incoming paths.

Thus, CSE3 only performs some FRE (Full Redundancy Elimination): it misses FRE if the same

value is available on different incoming paths, but in different registers. In contrast, LCM is able to

perform any FRE and even non-trapping PRE without unrolling. On Fig. 10 example, the load of

floating-point 7 is anticipated even without any loop unrolling. In the original version of [Knoop

et al. 1995], LCM also safely moves a[1] out of the loop without any loop transformation: this is a

FRE, since a[1] is present in the condition of the loop, which is at least run once. Nevertheless,

due to the current design of our simulation checker (see §3.6), anticipating trapping code w.r.t. the

original program does not pass validation: our LCM can only eliminate a[1] within the loop, after

at least a loop-rotation (see Fig. 1). This is not an issue on this very simple example: after applying

our CFG minimization, we still finally achieve the FRE of a[1] without any code duplication.

5.2 Formally Validated LCM

x2 = 2f
x9 = ld[x1+0]
x8 = x9
x8 <f? x2

x10 = ld[x1+8]
x7 = x10
x2 not(<f)? x7

x11 = ld[x1+16]
x6 = x11
x2 >=f? x6

x2 = 14f

x12 = 7f

x2 = x2 -f x8

x12 = 7f

x7 = x10
x2 not(<f)? x7

x6 = x11
x2 >=f? x6

x2 = x2 *f x12

gotox2 = x2 -f x9

goto

goto

goto

x3 = x2

goto

x3 = x2

goto

ret x31

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

Fig. 13. Full BTL CFG of Fig. 12

Code motion moves computations from one block to an-

other, and is thus global over the CFG. Figure 2 illustrates

how invariants propagate information between blocks. Our

simulation modulo invariants also validates our LCM, as

now detailed on the previous example.

Our LCM oracle optimizes a BTL CFG of basic blocks.

The CFG of the example is represented in Fig. 13, where

each node is identified by a unique number (in yellow),

and where synthetic nodes (explained in Footnote 8) are

denoted with a violet border. The four candidates detected

by the oracle have been inserted at their optimal points, by

assigning them to a fresh variable (in red).

For instance, the load of floating-point 7 illustrates this
“lazy” behavior of LCM as it is inserted in two different

blocks (14 and 16) to minimize the live range. The calcu-

lation is therefore duplicated on two branches, and both

chosen blocks are the last possible ones before the loop.

However, this code duplication does not appear in the final

assembly code of Fig. 12, because it is factorized by our

subsequent CFG minimization pass. In Fig. 13, it also ap-

pears that some fresh variables, such as x10 and x11, are
duplicated through a compensation move (in blue). This be-

havior will be explained §6. Note that these pseudo-register

duplications do not increase the actual live range since they

will be removed by the subsequent register allocator.

16
The original CSE of CompCert does not even eliminate the redundant “a[0]”. This contrast with gcc -O1 (version 9.4.0)

which performs a PRE with slightly less code duplications than ours on this example. However, the original CSE of CompCert

factorizes the load of floating-point 2 into register “f10”. Such a “trivial” CSE is required by the LCM algorithm: block-based

LCM cannot exempt from, at least, an intra-block CSE. See [Knoop et al. 1995].
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Now let us detail how the invariants are generated by our LCM oracle before sending the

whole result to the verifier. Our LCM only requires gluing invariants: thus, history invariants

remain trivially empty here. Invariants are generated in the sequential representation of §3.2. As

explained at the end of §3.4, the invariant of the entry block (here block 20) is always reduced

to a liveness set. Besides liveness sets, invariants are updated for each candidate just after they

appear in code: at the entry of block 19, we have “([x9:=ld[x1+0]], {x1,x2,x8,x9})” to remember

the load, and because these four variables are live. The second (resp. third) load is added to the

gluing invariant at block 18 (resp. blocks 15 and 17). Thus, for all blocks with a label in 14 . . . 17, the

invariant contains the same sequence of assignments (but the sets of live variables are different):

“x9:=ld[x1+0]; x10:=ld[x1+8]; x11:=ld[x1+16]”. From block 13 and up to block 8 (included), we

append to this list the assignment “x12:=7f”. Finally, blocks 1 to 7 only contain pure-liveness

invariants, as the verification need not remember the values of candidates anymore.

Example 5.1. Validating symbolic simulation for block 14 (with the validator described in §3.4).

G(14) = ([x9:=ld[x1+0]; x10:=ld[x1+8]; x11:=ld[x1+16]], {x2,x9,x10,x11})

This leads to the following initial states:

sisS = (pre, 𝜖)
sisT = (pre, x2 B x2S∥x9 B ldS [x1S + 0] ∥x10 B ldS [x1S + 8] ∥x11 B ldS [x1S + 16])

where pre = OK(Read, ldS [x1S + 0]) ∧ OK(Read, ldS [x1S + 8]) ∧ OK(Read, ldS [x1S + 16])
After the symbolic execution of the blocks:

ib𝑠 = BF(Bgoto(13)) and ib𝑡 = Bseq(Bop(7f, [], x12), BF(Bgoto(13)))
we obtain:

ssS = Sfinal(sis𝑠 , Sgoto(13))
ssT = Sfinal((pre, x2 B x2S∥x9 B ldS [x1S + 0] ∥ . . . ∥x12 B 7f), Sgoto(13))

The two decision trees have the same structure and their unique leaves match. In particular, the

gluing invariant of the successor block 13 is satisfied:

G(13) = ([x9:=ld[x1+0]; x10:=ld[x1+8]; x11:=ld[x1+16]; x12:=7f], {x2,x9,x10,x11,x12})

For instance, the right-hand side expression for x9 evaluates to ldS [x1S + 0] in ssS, whichmatches

the value of x9 in ssT.

We further detail in §10 the comparison of our formally verified LCM w.r.t. [Monniaux and Six

2021, 2022; Tristan and Leroy 2009].

6 APPLICATION TO LAZY STRENGTH REDUCTION

ldr x0 ,[x0,w1,sxtw #3]

slli x6,x11 ,3

add x6,x10 ,x6

ld x6 ,0(x6)

Fig. 14. AArch64 (top) vs.
RISC-V (bottom) addressing

Strength-reduction (SR) consists in replacing (sequences of) compu-

tations by semantically equivalent—but more efficient—ones. Simple

forms of strength reduction, for instance replacing a multiplication

by a power of two with a left shift, are already implemented in Comp-

Cert. Here we tackle a much more advanced approach: Lazy Strength
Reduction [Knoop et al. 1993], a generalization of LCM that reduces

computations while moving them. For instance, an expensive multipli-

cation𝐶 × 𝑖 within a loop with loop index 𝑖 may be replaced by accumulation (𝐶 × (𝑖 +1) = 𝐶 × 𝑖 +𝐶).

6.1 Motivations for RISC-V
Some architectures provide instructions or addressing modes for commonly found patterns, such

as array addressing. In truly reduced instructions sets, such as RISC-V, these patterns instead result

in a multi-cycle sequence of instructions, amenable to SR. Figure 14 shows the single AArch64 load

generated for array access “x = a[i]” (with an addressing mode that shifts an index by three bits
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and adds it to a base address) compared to the succession of RISC-V instructions that shift, add,

then load. The lack of SR for such sequences may explain why CompCert performs more poorly

compared to GCC on RISC-V than on other architectures.

6.2 SR on a Realistic Example
We specialized and extended our LCM algorithm in order to strength-reduce multiplicative and addi-

tive computations on the RISC-V (64 bits) backend. Our contribution generalizes the LSR algorithm

of [Knoop et al. 1993] to operate over basic blocks, and is also validated via our general-purpose

framework. Note that for LSR, both types of invariants are exploited, because the simulation have

to remember the value of constants when verifying the correctness of newly inserted instructions.

Since the feasibility of SR for a given candidate is conditioned by the existing dependencies on its

variables, we apply a pass of move forwarding in the first place. The latter removes read-after-write

dependencies coming from move instructions, that might be obstacles to the LSR.

1void init_slice(long *x, long n, long i) {
2long l = 10;
3for(; i < n; i++) x[i] = l * i;
4}

Fig. 15. Two candidates for LSR
Variables:

x1 = i; x2 = n;

x3 = x; x4 = l

14: x4 = 10L

goto 12

12: goto 11

11: if (x1 >=ls x2)

goto 1

goto 9

9: x8 = x1 <<l 3

x6 = x3 +l x8

x7 = x1 *l x4

int64[x6 + 0] = x7

x1 = x1 +l 1

goto 3

3: goto 11

1: return

H : ([x4B10], {x4})

G : ([], {x1,x2,x3,x4})

12: x9 = x1 <<l 3

x10 = x3 +l x9

x11 = x1 *l x4

goto 11

H : ([x4B10], {x4})

G : ([x9Bx1 <<3; x10Bx3+x9;

x11Bx1*x4],

{x1,x2,x3,x10 ,x11})

11: if (x1 >=ls x2) goto 1

goto 9

H&G : see block 11

9: int64[x10 + 0] = x11

x10 = x10 +l 8

x11 = x11 +l 10

x1 = x1 +l 1

goto 3

H&G : see block 11

3: goto 11

Fig. 16. Original (left) and reduced (right) BTL

The C code of Figure 15 multiplies a

slice [i, n) of a vector x by a scalar l, and

contains two candidates to be reduced. In-

deed, in addition to the product itself, the

addressing computation to access x[i] can

be rewritten as well. The original and op-

timized BTL codes are set side-by-side in

Figure 16. The yellow comment on the left

gives the correspondence between regis-

ters and variables from the source C pro-

gram. The multiplication “l * i” corre-

sponds to “x1 *l x4” in both codes, and, on

the left code, the sequence “x8 = x1 <<l 3;

x6 = x3 +l x8” calculates into x6 the ad-

dress of x[i]. Synthetic nodes are still de-

noted in violet, fresh variables in red, and

compensation code in blue. We omitted

blocks 14 and 1 in the optimized BTL code,

as they are identical.

Our oracle significantly improves the

original LSR algorithm of Knoop et al.

[1993] by (1) sorting (and processing)

candidates according to their topologi-

cal order of appearance
17
; (2) substituting

freshly introduced variables; (3) inferring the history (H ) and gluing (G) invariants required for

validation (in the Figure, those for block 9 and 3 have been omitted, because they are identical to

those of block 11). Applied to our example after moving the left shift instruction from block 9 to

block 12, the old destination (here x8) is replaced in the instructions following the original position

of the candidate (in block 9) with the newly allocated variable (x9)18. This enables then to also

strength-reduce the addition originally assigning to x6 in block 9 (it is moved to block 12 as the

assignment to x10). Note that the substitution of x8 by x9 is fundamental here: if we had simply

17
Sorting is made possible thanks to a prior post-order CFG renumbering, which also accelerates fixed point calculations.

18
When the original variable is live in successors or read in the final instruction, the oracle inserts a move before the last

read (or the end of the block) to compensate.
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𝑐 · (𝑣1 + 𝑣2) = (𝑐 · 𝑣1) + (𝑐 · 𝑣2) 𝑐1 · (𝑐2 · 𝑣) = (𝑐1𝑐2) · 𝑣 𝑐1 · 𝑐2 = 𝑐1𝑐2

𝑣1 + 𝑣2 = 𝑣2 + 𝑣1 (𝑣1 + 𝑣2) + 𝑣3 = 𝑣1 + (𝑣2 + 𝑣3) 0 + (𝑣1 + 𝑣2) = 𝑣1 + 𝑣2 0 + (𝑐 · 𝑣) = 𝑐 · 𝑣

(𝑐1 · 𝑣) + (𝑐2 · 𝑣) = (𝑐1 + 𝑐2) · 𝑣 (𝑐 · 𝑣) + 𝑣 = (𝑐 + 1) · 𝑣 𝑣 + 𝑣 = 2 · 𝑣

Fig. 17. Affine arithmetic of CompCert 64-bit integer operators on values

0 + 𝑣 = 𝑣 0 · 𝑣 = 0 1 · 𝑣 = 𝑣 (𝑣 + 𝑣) − 𝑣 = 𝑣 + (𝑣 − 𝑣)

Fig. 18. Examples of invalid equalities for CompCert 64-bit integer operators

𝜋 ::= 𝑣 | 𝑐 · 𝑣 𝜙 ::= 𝑣 | 𝑐 + Σ𝑛𝑖=1𝜋𝑖 where 𝑛 ≥ 0 and (𝜋𝑖 )𝑖≥1 is strictly increasing

Fig. 19. Representation of our affine forms

inserted a move directly in place of the shift instruction, the data-flow analysis over the addition

would have been blocked because of the write access to one of the arguments within the block.

The multiplication originally in block 9 is moved out as in the standard way of Knoop et al. [1993].

Of course, it is necessary to update the registers of all these anticipated computations as the

x1 argument is incremented inside the loop. To handle this, we keep a map from registers to

affine forms which is updated during the candidates’ detection phase. For example, the left shift

operation associates x9 (formerly x8) to affine form “8 · x1” (knowing that 𝑥«𝑛 = 2
𝑛 · 𝑥 ). When the

subsequent addition is selected as a candidate, a new affine form for x10 (formerly x6) is created,

and by substitution of existing affine forms, its value is “x3 + 8 · x1”. The normalization of affine

forms in the oracle follows the theory given §6.3.

Finally, every affine form “injured” within the loop needs to be incremented (resp. decremented)

by the product of the constant factor—within the form—of the concerned variable by its increment

(resp. decrement) step in the “injuring” operation (e.g. the loop induction variable). In this specific

example, incrementing x1 by one corresponds to increment the affine forms of x9 and x10 by 8.

Thus, the oracle inserts assignments “x9 = x9 +l 8” and “x10 = x10 +l 8” in the loop, before the

injuring operation. The exact same method applies to the affine form “10 · x1” associated to x11

(formerly x7).

For the sake of simplicity, this updating phase of our LSR oracle does not track whether the x9

variable is read afterward (either in the current block or in a successor). At the end, after having

updated the liveness information to complete the invariant mapping with a set of “output” variables,

the LSR oracle eliminates the dead assignments previously generated through an untrusted DCE

pass, local to the block. In this example, the update “x9 = x9 +l 8” is safely removed.

6.3 Overview of our Formally Verified Rewriting on (Pseudo) Affine Forms
Equational Theory. Our SR is validated in the variant of affine arithmetic given in Fig. 17, where

𝑐 represents a 64-bit integer constant and 𝑣 is a CompCert value. Actually, we consider this theory

extended with specific operators such as 𝑣«𝑐 = 2
𝑐 ·𝑣 . However, note that some usual equations—such

as those given in Fig. 18—do not hold. For example, if one of their argument is not a long integer or

not a pointer—e.g. a float—64-bit integer operations return the absorbing Vundef value.19 Moreover,

operation “+” also performs pointer arithmetic in the abstract CompCert model of pointers (and

our LSR leverages this opportunity). In this model, on a 64-bit architecture, if 𝑣 is a pointer, then

19Vundef represents an undefined value (e.g. of an uninitialized register) that is not a failure unless it is observable.
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𝑣 + 𝑣 ′ ≠ Vundef if and only if 𝑣 ′ is a 64-bit integer (in this case, 𝑣 ′ is seen as a relative offset w.r.t 𝑣).

And 𝑐 · 𝑣 = Vundef if 𝑣 is a pointer. This explains why we never identify 𝑣 and 1 · 𝑣 . But, if 𝑣 is a
pointer, then 𝑣 + 𝑣 = Vundef and we still have 𝑣 + 𝑣 = 2 · 𝑣 .20

Normal Forms. Since our symbolic values are evaluated to CompCert values (for a given block

execution context), Fig. 17 also induces semantic equalities about symbolic values. As noticed

in §3.5, normalized rewriting (when applicable) reduces such semantic equalities to structural

equalities. Our representation of normal (i.e. canonical) forms is given in Fig. 19, where 𝑣 represents

now a variable (representing itself a symbolic value). Due to the commutativity of “+”, normal

forms depend on a total order over variables. Let us assume such an order. Because 1 · 𝑣 may not

be 𝑣 , we introduce a notion of pseudo-product, written 𝜋 (see Fig. 19). We then lift the total order
over variables to a total preorder over pseudo-products. We then define a normal form, written 𝜙 ,

as either a variable 𝑣 or as the sum of a scalar 𝑐 (possibly null) with a strictly increasing sequence

(possibly empty) of pseudo-products (see Fig. 19). Last, the affine normalization is mainly reduced

to two operations “𝑐 ·𝜙” and “𝜙1 +𝜙2” (detailed in §6.4 below) preserving normal forms by applying

Fig. 17 equations.

Implementation. Following the principles described in Six et al. [2022, §7.6], rewritings are

handled during both symbolic executions of source and target blocks: we apply a normalization

procedure to every right hand-side of an assignment. Its formal correctness expresses that given a

symbolic value sv1, it returns a symbolic value sv2 such that for all register and memory states,

if evaluation of sv1 does not fail, then sv2 evaluates to the same value as sv1. Its implementation

depends on the architecture. Currently, our affine normalization procedure is only implemented for

RISC-V. Moreover, our framework has several—potentially overlapping—sets of rewriting rules, so

each instantiation of the symbolic execution is parametrized with one of these sets: the scheduling

pass does not need any rule, while the SR is configured with our affine normalization procedure.

Selecting rules according to oracles avoids slowing down the verifier with useless rewritings.

Our affine normalization needs to integrate affine forms with symbolic values that do not

represent pure affine computations. In particular, affine variables in Fig. 19 actually reify symbolic

values whose root is not an affine computation (i.e. neither a 64-bit immediate, nor a “·”, nor a
“+”). In practice, we do not introduce explicit affine variables, but rather define a total order on the

reified symbolic values. Thanks to hash-consing, each symbolic value stores in its root an integer

that is expected to uniquely identify it [Boulmé 2021, §3.3.2]. This identifier gives a simple and

efficient total order over symbolic values that we do not even need to prove correct. Similarly to

[Boulmé 2021; Six et al. 2022], the correctness of our normalization modulo hash-consing is only

derived from a sound Coq model of OCaml pointer equality.
21

To facilitate the proof of recursive operations over affine forms and future extensions, we

extend the representation sv of symbolic values (sketched Fig. 5) with a dedicated constructor,

written “Sfoldr(op, #  »sv𝑖 , sv0)”, and semantically equivalent to “Sop(op, [sv0, Sop(op, [sv1, . . .])])”.
This enables us to represent affine forms written “𝑐 + Σ #»𝜋 ” in Fig. 19 as “Sfoldr(+, #»𝜋 , 𝑐)” in our

implementation, as explained just below.

6.4 Formally Verified Normalization over our (Pseudo) Affine Forms
In order to normalize an affine operation “𝑐 · sv” or “sv1 + sv2”, we first define a function A, which

maps any symbolic value sv to an affine form and satisfying the equations below (where “J.K” is the
20
Last, if 𝑣 and 𝑣′ are two pointers in the same block, then 𝑣 − 𝑣′ computes their relative offset. Thus, if 𝑣 is a pointer, then

𝑣 + (𝑣 − 𝑣) = 𝑣 but (𝑣 + 𝑣) − 𝑣 = Vundef. This lack of associativity of operator “−” within sums explains why it is not yet

supported in our LSR.

21
A bug in the hash-consing mechanism makes—at worse—the verifier fail to prove some expected equalities.
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evaluation function from symbolic to concrete values).

J𝑐 · svK = J𝑐 · A(sv)K Jsv1 + sv2K = JA(sv1) + A(sv2)K
In other words, within the context of an affine operation, the normal forms returned byA preserve

the semantics.
22
In practice, since the normalization is applied after each assignment (see §6.3), A

only needs to perform a simple case analysis on the root of its argument. It is simply defined by:

A(sv) =


sv if sv matches Sfoldr(+, _, _)
Sfoldr(+, [], 𝑐) if sv matches Sop(𝑐, []) where c is a 64-bit integer
Sfoldr(+, [sv], 0) otherwise

Then, the normalization of “𝑐 · A(sv)” (resp. “A(sv1) + A(sv2)”) reduces to a computation of the

form “𝑐 · Sfoldr(+, #»𝜋 , 𝑐0)” (resp. “Sfoldr(+, #»𝜋1, 𝑐1) + Sfoldr(+, #»𝜋2, 𝑐2)”).
The computation of “𝑐 · Sfoldr(+, #»𝜋 , 𝑐0)” returns “Sfoldr(+, 𝑐 · #»𝜋 , 𝑐 𝑐0)” where “𝑐 · #»𝜋 ” is an

instance of a “list-map” operation over pseudo-product list
#»𝜋 (and is verified by applying the three

equalities at the top line in Fig. 17).

The computation of “Sfoldr(+, #»𝜋1, 𝑐1) + Sfoldr(+, #»𝜋2, 𝑐2)” returns “Sfoldr(+, #»𝜋1 + #»𝜋2, 𝑐1 + 𝑐2)”,
where “

#»𝜋1 + #»𝜋2” is very similar to the merge of sorted lists
#»𝜋1 and

#»𝜋2 for the pseudo-product

preorder, except that when two compared pseudo-products are equivalent for the preorder, they are

themselves merged by an operation described just below. The equivalence test on pseudo-products,

described in Figure 20, uses pointer equality “==” to validate that two pseudo-products can be

merged. In Figure 17, the three equations on the bottom line (from left to right) correspond to the

three cases of equiv (from top to bottom). Each of this case in equiv is thus associated to a rewrite

rule that merge the pseudo-products by applying the corresponding equation from left to right. For

instance, supposing we have equiv(𝜋1, 𝜋2) = true for the third case, then the merge of this two

pseudo-products is 2 · 𝜋1, because then we know that 𝜋1 = 𝜋2 and that 𝜋1 is a “reified” symbolic

value (i.e. not having an affine computation at its root).

equiv(𝜋1, 𝜋2)
def
=


sv′

1
== sv′

2
if (𝜋1, 𝜋2) matches (𝑐1 · sv′1, 𝑐2 · sv′2)

sv == sv′ else if (𝜋1, 𝜋2) matches (sv, 𝑐 · sv′) or (𝑐 · sv, sv′)
𝜋1 == 𝜋2 otherwise

Fig. 20. Testing the equivalence induced by the preorder over pseudo-products

6.5 Strengthening our Strength-Reduction with a Prior Integer Promotion
Currently, our formally-verified strength-reduction is still embryonic. Its scope is limited to affine

arithmetic on long (signed and unsigned ones) for RISC-V 64 bits architectures. We now sketch

how we mitigate this limitation (Appendix A.2 describes other obstacles to generalizing our SR).

On 64-bit architectures, a 32-bit index (int) must be cast to 64 bits before being scaled and added

to the base address. Due to overflows, it can be wrong to strength-reduce the scaling. We overcame

this limitation of our SR by combining a preliminary pass that combines two techniques: (1) a

formally verified interval analysis able to justify the absence of overflow—for instance, under a loop

condition of the form “𝑖 < 𝑛” for some 𝑛, then we know that the increment of 𝑖 cannot overflow23

(2) the use of the intervals found by this static analysis within an oracle in order to validate the

22
Because of the invalid equations in Fig. 18, it would be too strong to simply require “JA(sv)K = JsvK”.

23
In C, overflow has undefined behavior in signed arithmetic, so if the loop index is signed (int), as it often is, we could

simply assume overflow does not occur. Signedness information is however not available at that stage in CompCert (this is

explained in the penultimate paragraph of §10).
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“promotion” of int variables as long: if there are no overflows, sign-extension (or zero-extension)

and addition commute. The transformation performed by this oracle is itself validated by our

symbolic simulation test modulo appropriate invariants. The intervals found by the static analysis

are themselves integrated within the symbolic simulation, as explained in §3.5.

7 ADAPTING THE LAZY TRANSFORMATION ALGORITHMS OF KNOOP-ET-AL
The previous sections present LCM and LSR as two distinct optimizations, but in our implementation,

they are achieved within a single pass, from a single oracle. This oracle actually combines the LCM

& LSR algorithms of Knoop et al. [1995, 1992, 1993] and adapts them for our validator by symbolic

simulation. Our main contribution consists in a generalization of their LSR: (1) that operates over

basic blocks by adapting the analysis of Knoop et al. [1993], in the same fashion as it was done

in [Knoop et al. 1995] for LCM; (2) which integrates a rewriting procedure to widen the scope of SR

over sequences of operations, rather than on each instruction independently; (3) capable of inferring

invariants from data-flow equations (including liveness analysis) for the translation validation. We

also improve LCM to infer invariants, although we had to restrict the original algorithm because

our validator forbids anticipating potentially trapping operations (e.g. loads).
24

The framework introduced by [Knoop et al. 1995, 1993] combines several advanced data-flow

analyses, and its full description requires dozens of pages. The precise description of our algorithms

is thus provided in a dedicated “companion” paper [Gourdin 2023]. Below, we simply give a

high-level overview of our adaptations to the original LCM & LSR.

7.1 A Brief Overview of the LCM & LSR Analyses
Roughly speaking, the LCM algorithm of Knoop et al. [1995] consists in analyzing which “candidate

instructions” can be “moved”, and then, where it is “the best place” to move them. This analysis

results from the computation of a dozen of predicates by candidates. For example, a predicate called

transparency is satisfied by blocks that do not erase the candidate’s dependencies. Computing this

simple predicate only requires a local analysis of each block. In more complex cases, predicates are

computed as greatest fixed points of data-flow equations. Operating over basic blocks makes these

computations more efficient, but also more complex.
25

Extending the LCM process sketched above to LSR is mainly about merging the candidate

detection phases of both algorithms, and interleaving the LSR specific predicates with those of

LCM. A naive generalization of the LCM into LSR would only require a new local predicate (that

we call pseudo-transparency, as it is a weaker version of it), and a new data-flow one for computing

points where an update compensation addition must be inserted. Nonetheless, this naive approach

would still generate some redundant computations. In contrast, our implementation reproduces the

three refinements steps described in [Knoop et al. 1993], and thus adds three data-flow predicates

and one global, non data-flow intermediate predicate.

After having detected candidates, our combination of LCM & LSR (that we named “LCT”, for Lazy

Code Transformations) sort candidates topologically, and iterates over them. Each time, it starts

by calculating local and global (including data-flow) predicates, and it rewrites the CFG for the

current candidate, while substituting the freshly allocated variable locally in basic-blocks. Thanks

to this enhancement, our LCT is capable of reducing instructions sequences, as illustrated in §6.2.

24
We partially mitigate this limitation thanks to control-flow graph restructurings (duplications and factorization) in

pre-/post-processing of our oracle, as previously described.

25
For each candidate, basic blocks are split in two parts: an entry part containing all the instructions until (and including)

the first modification of the candidate’s dependencies, and an exit part with all the remaining statements. All predicates,

except transparency, apply to block parts.
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7.2 Co-design for Validation and Invariant Inference
A strong advantage of using such data-flow based algorithms is that we can reuse the computed

predicates in order to infer the hints needed by our validation mechanism. By combining a liveness

analysis (which is in any case required for the symbolic simulation validator) with the data-flow

information from LCM, we designed a generic method inferring the exact set of nodes where (for

each moved or reduced candidate) a gluing or history invariant must be inserted. Our method

to determine the invariants’ insertion points is executed after the main loop that iterates over

candidates of §7.1. Internally, the LCT oracle represents predicates as bit vectors: each bit is the value

of the predicate (true or false) for a given basic block. Hence, the invariant generation efficiently

computes a vector 𝑉𝑝 of preservation points that contains “true” when a gluing invariant must be

annotated.

For a non-trapping candidate, 𝑉𝑝 is the disjunction of two situations. First, if the candidate was

replaced and not inserted in the block (we compute this for all blocks at once using a bitwise “and”

on the insertion and replacement predicates); and second, if it is neither marked as isolated nor

delayed (those two information are also encoded in specific predicates, and correspond, resp., to

cases where an insertion would be either useless because isolated, or delayable later). When the

candidate may trap, we reuse 𝑉𝑝 in conjunction with an anticipability constraint, so that we only

insert gluing invariants from the first apparition point of the candidate in the source. This constraint

enforces the anticipability limitation of trapping instructions previously mentioned.

Finally, and in contrast with gluing invariants’ preservation points which only rely on bitwise

operations, the places where a history invariant must be inserted are slightly more complex to infer.

Roughly, a history invariant is mandatory in a block if the candidate depends on a constant defined

before in the CFG, stored in a fresh variable, and when either the block is a gluing preservation

point (in 𝑉𝑝 ), or the constant’s fresh variable is live in the block.

8 EXPERIMENTAL EVALUATION
We report here on experiments testing our Chamois CompCert on a variety of benchmarks.

8.1 Successful Validation of Oracles
CompCert’s formal proof ensures partial correctness: if compilation succeeds, then it is correct,

but there is no formal proof that it succeeds. In particular, there is no formal guarantee that our

checkers will succeed in validating our untrusted oracles. We checked that Chamois successfully

compiled a test suite of thousands of C programs, some from non-regression tests, some from real

applications (including large programs such as GCC and OCaml themselves), and others generated

from fuzzers (CSmith [Yang et al. 2011], YarpGen [Livinskii et al. 2020], and CCG).
26
When the

oracle terminated with an internal error, or when the checker refused the transformation, we

reduced the test case using C-Reduce [Regehr et al. 2012] and fixed the oracle and/or the checker.

See details on our test methodology in [Monniaux et al. 2023].

8.2 Performance Benchmarks
We evaluated the performance improvements of our optimizations over two architectures: for

AArch64, a Cortex-A53 in-order dual-issue core (Raspberry Pi 3 Model B+ Rev 1.3); for RISC-V, a

SiFive in-order dual-issue U740 core (HiFive Unmatched).

8.2.1 Architectural Peculiarities. As pointed in §6.1, RISC-V is a prime target for strength reduction,

since some common programming idioms result in somewhat expensive code sequences in its

26https://github.com/intel/yarpgen https://github.com/Mrktn/ccg
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very reduced core instruction set. For instance, on most architectures, extending a 32-bit unsigned

integer value to 64 bits takes one instruction; but on RISC-V it takes two instructions (shift left by

32 bits followed logical shift right by 32 bits).
27
Load or store instructions on architectures such

as KVX, AArch64, x86. . . have addressing modes that directly implement array accesses: given a

base pointer 𝑡 and index 𝑖 , load or store 𝑡 [𝑖], which is at address 𝑡 + 𝑠𝑖 where 𝑠 , also known as the

stride, is the size of the data type (1, 2, 4, 8); they may even perform a signed or unsigned extension

over 𝑖 , since 𝑖 is typically a 32-bit integer while 𝑡 is 64-bit on architectures with 64-bit pointers. On

RISC-V, one needs 3 instructions: a shift to perform the multiplication, an addition, then a load or

store (or even 5 instructions if unsigned extension is needed). If load from L1 cache takes 3 cycles,

and each preliminary arithmetic instruction takes 1 cycle, this means the sequence may take 5 or

even 7 cycles whereas on other architectures it would take 1. Instruction scheduling [Six et al. 2020,

2022] may often “hide” these instructions, but can do little about tight loops such as those scanning

arrays, performing dot products, etc.; strength reduction of multiplication addresses these loops.

void init42(double *t, int n) {
for(int i=0; i<n; i++) t[i]=42;

}

In addition, RISC architectures often cannot load long con-

stants, such as floating-point numbers, directly from code, due

to fixed instruction width; these constants have to be loaded

from constant pools, and it is interesting to move such load instructions out of loops. Considering

the above init42 function, lazy code motion (middle column in Fig. 21) hoists the loading of the

floating-point constant 42 out of the loop, whereas the naive version (left column in Fig. 21) does

it at every iteration. This code still fully recomputes the address at every loop iteration; strength

reduction replaces this by addition of a constant (right column in Fig. 21). We measured on the

Berkeley Rocket core (on a FPGA) respectively 11 cycles, 5.4 and 4.5 cycle per iteration; on the

U740, respectively 6, 3 and 3.

.L101:
slli x12, x7, 3
mv x5, x11
fld f1, .L102, x31 # 42
add x12, x10, x12
fsd f1, 0(x12)
addi x7, x7, 1
blt x7, x5, .L101

fld f1, .L101, x31 # 42
.L102:

slli x7, x12, 3
add x6, x10, x7
fsd f1, 0(x6)
addi x12, x12, 1
blt x12, x5, .L102

slli x7, x12, 3
add x6, x10, x7
fld f0, .L101, x31 # 42

.L102:
fsd f0, 0(x6)
addi x12, x12, 1
addi x6, x6, 8
blt x12, x5, .L102

Fig. 21. Combining effects of LCM and LSR on RISC-V

8.2.2 Measurements. We measured the performance over four suites of benchmarks (distinct from

our suite testing the “functional correctness”): (1) a subset of the LLVM test suite
28
; these are

intended to exercise compiler optimizations; (2) a subset of MiBench [Guthaus et al. 2001]; these

benchmarks are supposedly representative of computations found in embedded applications such

as automative, telecommunication, networking. . . ; (3) PolyBench [Pouchet 2012]; these contain

numerical kernels, matrix operations, and thus loop nests over floating-point operations (often

with array traversal eligible for strength reduction of address computations, assuming the stride

is a compile-time constant); (4) TACLeBench [Falk et al. 2016]; these benchmarks, intended for

research on bounding worst-case execution time, cover various kinds of computations (Fast Fourier

transform, quicksort. . . ). To obtain reliable results and avoid common measurement bias [Curtsinger

and Berger 2013; Mytkowicz et al. 2009], we always performmultiple runs (between five and twenty)

and filter them by setting a threshold on the relative standard derivation (here 2%).

27
We implemented a pass, not described in this paper, that performs range analysis and then replaces unsigned conversions

over numbers that anyways are always nonnegative with signed conversions, which have null cost on RISC-V since 32-bit

operations after the upper bits as though their results were signed.

28
Accessible at https://github.com/lac-dcc/Benchmarks. We use a subset only; some benchmarks in the suite are C++, some

use extensions not supported by CompCert, etc.
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Table 1. Sample of results for GCC, our fork Base1=(scheduling+CSE3+unroll single), and Base1+LCT
vs. mainline CompCert on RISC-V

Setup GCC-O1 Base1 Base1 + LCT
LLVMtest/fpconvert +24.22% +7.9% +17.15%

LLVMtest/matmul +15.9% +115.05% +144.11%

LLVMtest/nbench_bf +74.58% +11.84% +24.51%

MiBench/jpeg +27.75% +20.62% +24.75%

MiBench/sha +92.43% +45.68% +51.73%

MiBench/stringsearch +133.34% +40.28% -10.15%

PolyBench/* +64.05% +38.06% +46.23%

TACLeBench/bsort +49.04% +9% +33.16%

TACLeBench/deg2rad +56.75% +41.5% +50.28%

TACLeBench/md5 +42.18% +18.59% +47.93%

Table 2. Base2=(scheduling+CSE3+unrollings), If-lifting (§4), LCM (§5) & LSR (§6)
vs. mainline CompCert on RISC-V & AArch64

LLVM tests MiBench PolyBench TACLeBench

Setup RV A64 RV A64 RV A64 RV A64

Base2 +19.9% +23.6% +19.0% +19.2% +38.2% +68.9% +19.4% +25.7%

+If-lifting +27.4% +31.5% +24.2% +21.5% +40.7% +69.1% +22.0% +28.5%

+LCM +27.8% +31.0% +24.7% +25.6% +43.8% +84.2% +24.1% +33.4%

+LSR +29.4% - +26.4% - +55.1% - +26.2% -

All our results are the average execution time (i.e., number of cycles) gain in percentage w.r.t.

the base version. A lower number indicates slower execution, and vice versa. The execution time

gain for a configuration 𝐶 w.r.t. a reference version 𝑅 is computed using the formula: 𝑔𝑎𝑖𝑛(𝐶) =
((𝑅 −𝐶)/𝐶) × 100. The latter gives the evolution rate relatively to 𝑅. For instance, if 𝑅 = 1000 and

𝐶 = 500 cycles—so 𝐶 is twice faster—then 𝑔𝑎𝑖𝑛(𝐶) = 100%; in contrast, if 𝑅 = 500 and 𝐶 = 1000—so

𝐶 is twice slower—we have 𝑔𝑎𝑖𝑛(𝐶) = −50%. Our benchmark evaluation toolkit, with our exhaustive

list of tests, is available online.
29

We measure the performances of our optimizations within Chamois CompCert: our port of the

superblock scheduling and CSE3 [Monniaux and Six 2021, 2022] are always enabled; and the com-

parison is always done w.r.t. the mainline version of CompCert (3.12). Ideally, it would be interesting

to lead an experimental comparison with the LCM implementation of Tristan and Leroy [2009];

this would however be very difficult, since their framework is unmaintained, undocumented and

designed for a much earlier version of CompCert (e.g. before the integration of 64-bit architectures

that we target).

First, Table 1 shows a sample of results on various benchmarks, and focuses on evaluating

the performance of the whole LCT algorithm (LCM + LSR) on the U740 core. We propose this

individual view to highlight the variability of results according to the input benchmark: the sample

includes benchmarks from all suites, and the whole PolyBench suite (at line “PolyBench/*”). The

table compares GCC -01 (11.3.0), a “Base1” version of our fork (with scheduling, CSE3, and loop

peeling to facilitate LICM), and “Base1”+LCT versus the mainline CompCert. On average, we

are still slower than GCC -O1; nevertheless, the LCT implementation closes the gap and even

exceeds GCC’s performance in some cases. On the other hand, there are still benchmarks where our

optimizations are not perfectly tuned: for instance, on “MiBench/stringsearch” in Table 1, enabling

the LCT dramatically decreases timings. This comes from a register pressure issue: without loop

peeling, LCT improves the time by nearly 40% on the latter benchmark; but with the unrolling, the

number of live registers becomes too high and makes the allocator spill. Such a situation remains,

fortunately, quite rare.

29https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/chamois-benchs
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Second, another set of results is provided in Table 2 which contains results for both the AArch64

and RISC-V backends, and distinguishes the four suites of benchmarks. This time, we compared

a “Base2” version of our fork (still with scheduling and CSE3, but with loop rotate and loop body

unrollings instead of peeling, since they help in lifting conditionals), and we incrementally added

if-lifting (which includes register renaming), LCM, and LSR (for RISC-V only). The mean gain

observed on our if-lifting implementation is far more interesting than the one observed by Six et al.

[2022, §9].

In conclusion, observing that SR has the ability to significantly reduce execution time, we are

encouraged to broaden its application scope in the future.

8.3 Compilation Time Measurements

Fig. 22. Oracle and validator times w.r.t. the num-
ber of instructions (logarithmic scale)

Translation validators of complex optimizationsmay

not scale up on large programs. To ensure that our

formally verified LCT was efficient even on heavy

applications, we instrumented the code to time both

the LCT oracle and the validator by Symbolic Execu-

tions (SE). The correlation between their execution

times is near 99%, considering the four benchmark

suites of §8.2.2. Fig. 22 plots those timings w.r.t. the

total number of BTL instructions for every bench-

mark listed in §8.2.2. Each point in the figure cor-

respond to a single benchmark whose timings and

number of instructions were summed for all its BTL

functions. The oracle seems linear in the number of

instructions, perhaps due to the fixed maximum of the number of candidates (currently 64). The

validator is a bit faster than the oracle for a given benchmark size.

9 RELATED AND FUTUREWORKS
Besides CompCert, Vellvm [Zhao et al. 2012] and CakeML [Kumar et al. 2014] are two other

compilers, formally verified with an interactive proof assistant (resp. Coq and HOL4). To our

knowledge, none of them attempts to leverage translation validation as we do. They do not integrate

the kind of formally verified optimizations that we support. Our translation validation framework—

within the CompCert compiler—formally verifies various intra-procedural optimizations: superblock

scheduling [Hwu et al. 1993], lazy code motion [Knoop et al. 1992] and strength-reduction [Knoop

et al. 1993]. It extends the translation validation techniques of Tristan and Leroy [2008] and Six

et al. [2022], which were themselves inspired by King [1976]; Necula [2000]; Samet [1976].

Since Pnueli et al. [1998], translation validation has become a quite intensive research area.

For example, Churchill et al. [2019] and Kasampalis et al. [2021] propose equivalence checkers

for translation validations of compiler optimizations, based on SMT-solving. As explained in

introduction, our approach induces very different concerns than such classical approaches of

translation validation. In our work, “synchronization points” and “invariants” between source and

target code (aka “program alignment”) are directly given by the oracles that actually perform the

translations. Generating this information inside the transformation phase is not very difficult: it

requires quite simple refinements of translation algorithms; in contrast, reconstructing them from

compiler output is hard. We thus do not really experience “false alarms”, because our translations
are designed with the validator limitations in mind. In addition, the design of our validators is

very constrained, because we want them to be formally verified, lightweight at compile-time (i.e.

quasi-linear in practice), and predictable on “false alarms”. This prevents us from using SMT-solvers
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in the current state of the art. Below, we only focus on the most related works in translation

validation, while attempting to sketch some future works. See [Clément 2022, §8.1] for a recent

and complementary bibliography.

General-Purpose Predictable Validators. Tate et al. [2011] generalized the notion of symbolic value
with e-graphs (or expression graphs): such an e-graph represents the contents of a single variable

after any arbitrary computations, even including loops. This enables reasoning on loop transforma-

tions only by rewritings these e-graphs (e.g. without explicit invariant inference). Moreover, in

order to “simultaneously explore all possible sequences of optimizations”, they applied a saturation

technique over their e-graphs. Noticing that saturation does not scale well on large programs,

Tristan et al. [2011] experimented with normalized rewriting instead, arguing it is sufficient for

translation validation. Indeed, they succeeded to validate many existing LLVM optimizations,

without instrumentation nor hints from these transformations. However, they acknowledged that

the algorithmics of their translation validator is complex (and thus probably difficult to formally

verify). Moreover, they did not attempt to be sound w.r.t undefined or diverging behaviors, whereas

these cases are often complex to handle in CompCert correctness proofs.

Kang et al. [2018] have proposed a variant of formally verified translation validation, called

“Verified Credible Compilation” (inspired by Rinard and Marino [1999]). They validate the results

of two existing optimizations of LLVM (register promotion and global value numbering) with a

dedicated oracle that generates proofs in a Relational Hoare Logic (inspired by Benton [2004]), itself

formalized in Coq. Their tool helped to find several new miscompilation bugs in these optimizations.

However, it remains unclear what guarantees are provided to final users of the whole compiler.

Loop Optimizations. Tristan and Leroy [2009] proposed a Coq-verified translation validator for

LCM, based on two formally-verified data-flow analyses, availability and anticipability. These anal-
yses have quite high algorithmic complexity (cubic for availability). In contrast, our validator does

not use them. The availability analysis is replaced by our gluing invariants which are themselves

provided “for free” by the oracle: we hence avoid to replay a data-flow analysis already performed

by the oracle (see [Gourdin 2023]). Hence, from the analysis of §3.6 over the case of our LCM

(with a bounded number of candidates in invariants, without rewriting rules and working on basic

blocks—ie, with a bounded number of block exits), our validator is quasi-linear in practice: its

worst-case complexity is O(𝑛 × 𝑙) where 𝑛 is the size of the code and 𝑙 the number of maximal

simultaneously live registers.

Moreover, we combine LCM with CFG restructuring, which validates some PRE of trapping

instructions (a feature that they did not provide). Our CFG restructurings also partly compensate

the lack of anticipability checking that is necessary to validate FRE of trapping instructions. In

future works, our symbolic simulations might check the anticipability of trapping instructions,

with a dedicated notion of prophecy (see item (3) in §3.6).

Another difference between our setting for loop optimizations and theirs is that we operate at

the level of large blocks while they operate at instruction granularity. Technically, their validator

expects that any anticipated instruction is assigned with a fresh auxiliary register. When comparing

the source and the target, a target instruction assigning a register that is dead for the source code

can be skipped. But a source instruction assigning a register 𝑟 can only be changed for a move

instruction to 𝑟 (from an appropriate auxiliary register). Thus, their validator seems less general

purpose than ours. In particular, it would neither support the reduction of instruction sequences

(second contribution of §7), nor instruction reordering modulo code compensation (§4); while our

validator does.

Monniaux and Six [2021, 2022] proposed three dedicated and formally-verified passes to produce

an efficient CSE optimization with LICM integrated into CompCert. After loop unrolling (as we
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do), they run an untrusted analysis to collect inductive invariants in hash-consed sets, whose

inductiveness is checked by a proven verifier, before eliminating redundant computations. This last

phase actually consists of three sub-steps: replacing computations by move operations; and replacing
moves from a variable to itself by “no-op”; then apply an existing DCE pass. On the one hand,

their decomposition simplifies the formal proofs of each single pass. On the other hand, it can only

validate some FRE. In contrast, our approach aims to validate a wider class of transformations, e.g.

including scheduling and strength-reduction. However, their optimization includes an elimination

of redundant conditions, a feature we leave to future work.

Our framework validates superblock scheduling which interleaves the computations of successive

iterations within a loop. Tristan and Leroy [2010] showed that symbolic simulation is able to validate

even more advanced scheduling techniques, such as software pipelining [Lam 1988]. It remains

however to understand how their technique could be integrated to our framework.

Validating optimizations in the polyhedral model, Clément and Cohen [2022] support much more

advanced loop transformations than we do; but we support a much wider class of input programs

within a general-purpose compiler. While special-purpose translation validation is in the spirit

of CompCert design, it seems very challenging (but very interesting) to integrate such advanced

techniques within a formally verified general-purpose compiler.

Formally Verified SSA Optimizations. Demange [2012]; Demange and Fernandez de Retana [2016];

Demange et al. [2015] propose Coq-verified translation validators for SSA optimizations within

CompCert. In their approach, validators rely on strong SSA invariants (e.g. dominator sets). In

an alternative design, we could imagine extending BTL with optional parallel moves of register

at exit points. This would allow representing (partial) SSA forms within BTL using Appel [1998]

representation: without explicit 𝜙-nodes, but rather by encoding them with explicit parallel moves

on joining edges. The validator would completely ignore SSA-invariants, but would be able to

compare SSA forms with non-SSA ones. Moreover, only SSA oracles would have to maintain

SSA-invariants, without need of formal proof of this.

Register Pressure. On a few benchmarks, some of our optimizations decrease performance by

increasing register pressure (see Table 1). Future work should include making the LCT oracle

sensitive to an estimation of register usage, as was done previously for prepass scheduling [Nicolas

Nardino 2021; Six et al. 2022]. Such an improvement would not require any change in the formal

verification.

10 CONCLUSION: OUR MAIN INSIGHTS FOR FORMALLY VERIFIED COMPILERS
With this paper and our previous works [Boulmé 2021; Monniaux and Six 2022; Six 2021; Six et al.

2020, 2022], we argue that advanced compiler optimizations can be implemented with a formal

proof of correctness by:

• splitting them into individual phases with well-defined, easy to understand functionality and

independent correctness proofs (e.g., one phase that reorganizes code followed by one phase

that leverages this reorganization to perform simplifications);

• splitting complex phases into

– an untrusted oracle, which computes the transformed code, or at least some mapping

between the original and transformed code, and possibly some extra annotations such as

invariants;

– a formally verified interpreter, which uses and checks these mappings and annotations to

establish simulation between the original and transformed code (the oracle must be designed

so that everything it does is understood by the interpreter).
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By construction, this interpreter needs to redo some computations of the oracle. “Only do simple
computations in the formally verified interpreter” is our motto. In particular, complex computations

should be avoided by appropriate hints from oracles. This is indeed much easier and more efficient

to directly extract correctness arguments from the existing computations of the oracle, than to

rediscover them a posteriori from scratch in the interpreter. The LCT oracle of §7 is a perfect

example. See [Gourdin 2023] for details. In summary, this motto leads us to design interpreters that

are efficient while keeping a manageable proof of correctness. Moreover, such simple designs often

lead to interpreters that are appliable to various kinds of transformations, and not just a single one.

In order to formally prove the transformations, the semantic arguments used for correctness

must be precisely identified. They will be turned into invariants and “match” relations used for

simulation proofs. This remains nontrivial work. Some unexpected semantic issues may arise about

seemingly trivial matters. For instance, one may think that (𝑎 + 𝑏) − 𝑏 = 𝑎; but this is incorrect

in pointer arithmetic: if 𝑎 + 𝑏 exceeds the bounds of the block to which 𝑎 points, then 𝑎 + 𝑏 is

undefined, and thus (𝑎 + 𝑏) − 𝑏 = 𝑎 too is undefined; what is true is that if the left hand side

of this equation has defined value, then it is equal to the right hand side. This makes seemingly

trivial computations on linear expressions actually tricky. One could argue that such complexity is

unneeded since anyways all pointers are integers at the machine level, but this may be wrong in

some contexts (pointers with capabilities) and anyway involves changing the semantics to reflect

this, as in CompCertS [Besson et al. 2019].

Certain optimizations may be impossible inside a verified compiler that cannot change one

well-defined value into another. For instance, the C standard [C99 1999, §6.5.8] allows x*y+z to be

replaced by fma(x, y, z), despite the two expressions possibly yielding different results (the former

computes 𝑟 (𝑟 (𝑥𝑦) + 𝑧), the latter 𝑟 (𝑥𝑦 + 𝑧) where 𝑟 is the current floating-point rounding function).
This has to be taken into account when benchmarking.

Certain assumptions made by compilers may have unsuspected importance. For instance, GCC

by default assumes, as the C standard allows it to do, that signed integer arithmetic does not

overflow. This, in turn, allows it to easily promote 32-bit integers to 64 bits. CompCert does not

make this assumption: its designers preferred to err on the side of caution, because many industrial

embedded programs contain old code, and some programmers used to assume the compiler would

not take advantage of signed arithmetic having undefined behavior and integer arithmetic was

thus just modular arithmetic. Our version of CompCert partially compensates this by running a

static analysis for ranges, but there are cases in which it cannot perform optimizations that GCC

does, because they would be incorrect in its semantic model.

Information needed for optimizations must be formally available in the semantics of the inter-

mediate representation. Contrary to an unverified compiler, we cannot assume that if we are at a

certain optimization pass, then certain things cannot happen because they are ruled out by the

way the preceding optimization passes work. (We can, however, run a procedure to check that the

code fed to the pass satisfies certain properties and refuse to run the optimization if it does not.)
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These appendices cover implementation details or provide context about possible extensions to our
translation validation framework.

A COMPLEMENTARY DETAILS ON BTL
A.1 Overview of the Formal Proof of our Simulation Checker
Our symbolic simulation checker over BTL programs enables formally proving a generic pass

parametrized by an oracle. The oracle is declared as an OCaml function expecting as argument a

source BTL function f (as defined in Fig. 3), and returning a pair (cfg, gm) where cfg is the target

CFG and gm is a map—called the “glue map”—which associates to each block label pc a pair of
invariants previously written (H (pc),G(pc)). When the checker validates the oracle results on all

the functions of a source BTL program, the pass returns the target BTL program. Otherwise, the

pass fails.

𝑆1 𝑆 ′
1

𝑆2 𝑆 ′
2

R

𝑒 𝑒

R

Fig. 23. Lockstep simu.

The pass is formally proved to perform a lockstep forward simulation,

partly inspired by the proof on RTLpath performed by Six et al. [2022]. It

is pictured in Fig. 23: for any blockstep on source concrete states 𝑆1 →𝑒 𝑆2
(emitting a possible observational event 𝑒), for any target state 𝑆 ′

1
related

to 𝑆1 by the glue maps, relation written 𝑆1 ∼R 𝑆 ′
1
, there exists a blockstep

on target concrete states 𝑆 ′
1
→𝑒 𝑆 ′

2
such that 𝑆2 ∼R 𝑆 ′

2
.
30

Defining the “R” relation is not completely straightforward because we

need to express that the source call-stack is simulated by the target call-stack through the glue map

of each caller function. This is necessary even if the analysis and the transformation are performed

separately for each function: this simulation invariant on stackframes is needed to establish that

the invariant is still true when returning from a function call. In the Coq code Fig. 24, this relation

is formalized as match_states. Let us sketch the idea.

(1) The match_function relation between a source BTL function f and a target one f ' expresses that

f ' is a symbolic simulation of f. In other words, the CFG entry-points are identical (condition

preserv_entrypoint); the invariants at this entry-point only contain liveness equations of the

form “𝑥T = 𝑥S”; and, as expressed by condition match_sexec_ok, for any source block ib at

label pc, there is a target block ib ' at label pc such that the symbolic simulation condition

depicted by Fig. 8 is satisfied.

(2) The match_stackframes predicate relates a source and a target stackframe (under a global

environment ge). Like in RTL, such a stackframe “ ( Stackframe res f sp pc rs )” saves the

execution context of the caller—f—in the state of the callee execution: res is the register to

which the result should be assigned, pc is the returning address after the call, rs saves the

state of the caller registers and sp is its stack pointer. Hence, match_stackframes describes

how the source stackframe is simulated by a target stackframe: the target caller is a symbolic
simulation of the source one (condition TRANSF); and, condition MATCHI, for any returned value

v and memory m at the end of the call, the source state and target states after the call are

related by the invariants at pc.

(3) The match_states predicate relates a source and a target (concrete) state. Like in RTL, there

are three kinds of states. The kind State indicates a normal blockstep, whereas special kind

Callstate (resp. Returnstate) indicates a context switch: entering into (resp. returning from)

a function call. In these states, the source (resp. target) stack is written stk (resp. stk ' ).

Such a stack is list of stackframes. Condition STACKS expresses that each stackframe of stk is

simulated by the corresponding one in stk ' . The MATCHI condition of the match_states_intro

case expresses that normal states are related by the invariants at their common label pc. Note

30
This diagram follows the usual convention: solid lines are hypotheses of the theorem, dashed lines are conclusions.

2023-09-21 13:19. Page 32 of 1–36.



Formally Verifying Optimizations with Block Simulations

Record match_function (f f': BTL.function) : Prop B {
(* f and f' have also the same signature . . . *)
preserv_entrypoint: fn_entrypoint f = fn_entrypoint f';
trivial_histinv_entrypoint: only_liveness (history (f'.(fn_gm) (fn_entrypoint f)));
trivial_glueinv_entrypoint: only_liveness (glue (f'.(fn_gm) (fn_entrypoint f)));
match_sexec_ok: ∀ pc ib, (fn_code f)!pc = Some ib →

∃ ib', (fn_code f')!pc = Some ib '
∧ ∀ ctx , match_sexec_si ctx f'.(fn_gm) (entry ib) (entry ib ') pc;

}

Inductive match_stackframes (ge: genv): stackframe → stackframe → Prop B
| match_stackframe_intro

sp res f pc rs rs ' f'
(TRANSF: match_function f f')
(MATCHI: ∀ v m, match_invs (Bcctx ge sp (rs#res ← v) m) (f'.(fn_gm) pc) (rs '#res ← v))
: match_stackframes ge (Stackframe res f sp pc rs) (Stackframe res f' sp pc rs ')

Inductive match_states (ge: genv): state → state → Prop B
| match_states_intro

stk f pc sp rs rs ' m stk ' f'
(TRANSF: match_function f f')
(MATCHI: match_invs (Bcctx ge sp rs m) (f'.(fn_gm) pc) rs ')
(STACKS: list_forall2 (match_stackframes ge) stk stk ')
: match_states ge (State stk f sp pc rs m) (State stk ' f' sp pc rs ' m)

| match_states_call
stk stk ' f f' args m
(STACKS: list_forall2 (match_stackframes ge) stk stk ')
(TRANSF: match_fundef f f')
: match_states ge (Callstate stk f args m) (Callstate stk ' f' args m)

| match_states_return
stk stk ' v m
(STACKS: list_forall2 (match_stackframes ge) stk stk ')
: match_states ge (Returnstate stk v m) (Returnstate stk ' v m)

Fig. 24. Simulation of concrete BTL states - induced by symbolic simulation

that because our invariants require the equality of memories at BTL block boundaries, the

target and the source memories are identical (both written m).

Fig 8 proves the simulation pictured by Fig 23 when the source state 𝑆1 is a normal state. Note

that in BTL, the observational events 𝑒 can only be emitted by final instructions. Thus, we only

have to make sure that the final step of the target (the execution of fi
T
) has the same observational

behavior as the final step of the source (the execution of fi
S
). In the case of a function call, we use

the match_states_call case for the states after the final instruction. We use the assumption that the

symbolic checker accepted all functions to prove the TRANSF condition for the callee. The simulation

of the two other kinds of steps (entering into or returning from a call) follows from the definition

of match_states.

A.2 Limitations of our Formally Verified Strength-Reduction
As detailed in §6.3, we do not fully support the standard affine arithmetic. It seems that we could

recover more powerful equations by considering amulti-sorted equational theory. But, BTL, inspired
by RTL, is an untyped language which makes this way difficult. Let us now discuss other limitations

of our SR.

Targeting 32-bit architectures. §6.5 explained that our SR is currently limited to 64-bit architectures.

Porting it to a 32-bit architecture seems rather straightforward. Actually, combining 32-bit and

64-bit arithmetic on a 32-bit architecture seems easier than the opposite (described in §6.5) because

truncation commutes with most long operations (in modular arithmetic). It would only require a

little generalization of the syntax of our history invariants for allowing the source registers to be
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defined as symbolic expressions of target registers. But, this generalization does not seem difficult

because our semantics of invariants already enables it.

Eliminating/reducing loop counters. Let us consider the code generated by “gcc -O1” for RISC-V
64 bits on the source in Fig. 15. It is quite similar to the reduced code generated by our CompCert

version, represented at Fig. 16 except that the loop is rotated (see Fig. 1; Six et al.’s version of

CompCert also optionally rotates loops) and the increment “x1=x1+1” is eliminated from the loop.

GCC compensates for this elimination by replacing the loop condition “(x1 >=ls x2)” by condition

“(x10 =l x12)” where x12 is a fresh variable initialized by “x12 = x2 «l 3; x12 = x3 +l x12”, before

the loop. In other words, GCC replaces the source condition “i < n” by “x+i != x+n”.

We cannot prove such a transformation with our validator. Indeed, such a transformation seems

difficult to verify in CompCert. First, note that the replacement of condition “i < n” by “x+i < x+n”

would be incorrect because of possible overflows (but “!=” is preserved in modular arithmetic).

Second, justifying the replacement of condition “i < n” by “i != n” requires inferring the loop

invariant “i <= n”: proving such an invariant, and allowing to rewrite—under this invariant—the

condition “i < n” into “i != n” require non-trivial extensions of our validator. Last, in the CompCert

memory model (as in the C standard), the comparison “x+i != x+n” is only well-defined if “x+i”

and “x+n” are valid and point within the same allocated block (or just after the end of the block).

Hence, it is highly non-trivial to prove that if the source program has no undefined behavior then

“x+i != x+n” is also well-defined. See related discussion at item (3) in §3.6.

This example illustrates that some seemingly simple optimizations of “gcc -O1” are still difficult

to formally justify within CompCert.
31

A.3 Porting Static Analyses from RTL to BTL
Official releases of CompCert run multiple analyses over the RTL intermediate representation.

Since BTL has almost the same vision of the execution state (pseudo-registers and memory) as RTL,

the same abstract transfer functions can be used. We defined an interface (as a Coq module type)

that provides the abstract states and transfer functions of an analysis (as well as proofs of their

correctness). Given an implementation of this interface, one obtain a proven abstract analysis that

can be run both on RTL and BTL.

We ported into this framework the existing value analysis32 of Robert and Leroy [2012], which

includes an alias analysis. This analysis abstracts values within an (infinite) lattice of finite height,

and also abstracts the contents of memory blocks. One important difference is that the original

abstract execution of a single instruction in RTL produces one single abstract state (made of an

abstract register state and an abstract memory state), which is propagated to all successors of the

instruction (only branching instructions have multiple successors), whereas our framework allows

the branching instructions to provide a different abstract state for each successor. We took this

opportunity to slightly improve on the approach implemented in the original analysis, which did

not implement transfer functions for conditions (thus, for instance, it did not track that 𝑖 = 0 after

a branch with condition 𝑖 = 0 is taken). We added transfer functions to conditions (only, so far, for

equality tests), and we also added propagation of the value of the branching variable through jump

table instructions.

We used the same framework to implement the interval analysis needed for the integer promotion

pass (see §6.5).

31
This limitation of CompCert’s memory model may seem overly stringent, but it is difficult to relax while preserving the

many necessary properties of the memory model.

32https://compcert.org/doc/html/compcert.backend.ValueAnalysis.html
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After a run of an analysis, we use some annotations to add assertions in the semantics of BTL in

order to propagate its results. Those annotations are used both by the oracles and by the symbolic

validation (see §3.5).

B EXTENDING SUPERBLOCK SCHEDULINGWITH NON-ALIAS ANALYSES
We investigated the benefits of alias analyses for our superblock scheduler. Such analyses allow

swapping stores with other non overlapping memory accesses. For this, we implemented another

version of the system of constraints for the scheduling problem. We run some alias analyses on

memory accesses. A dependency is inserted between a read and a subsequent write (write-after-read

dependency), a write and a subsequent write (write-after-write), a write and a subsequent read

(read-after-write) only if according to our analyses, they may interfere. It is sufficient that one

analysis proves noninterference for the dependency not to be inserted. We used two alias analyses.

The first alias analysis runs the per-function value analysis discussed in Appendix A.3, and uses

the noninterference predicate provided by the value domain in official CompCert releases. For

instance, if a pointer is proved to always point inside some global variable, and another pointer to

always point inside some other global variable, then they cannot interfere—recall that attempting

to move, through pointer arithmetic, between different variables has undefined behavior in C, and

this is reflected by CompCert’s memory model that each variable lives in a distinct memory block.

This is a direct port of an existing analysis in CompCert [Robert and Leroy 2012].

In practice, the most useful noninterference case seems to be between contents of the current

stack frame (Stack in the value domain), and anything outside the current stack frame (Nonstack
in the value domain), such as anything pointed to by function parameters—indeed, a parameter

pointer cannot point into the current stack frame, because the block of the current stack frame

does not exist yet when the pointer is created. Consider the source code in Fig. 25 left frame.

Without alias analysis, the AArch64 code produced appears in the Fig. 25 middle frame. The three

memory assignments are not reordered by the scheduler because of a potential interference. They

are carefully preserved in sequence, each as load (ldr), addition (add), store(str). This sequence will

result in pipeline stalls, since every load takes multiple cycles even if available in the first level

cache. With alias analysis, it is known that t[.] and u[.] cannot alias, because the former is outside

the current stack frame and the latter is inside. Thus, the scheduler can first perform the three

loads, then the three additions, then the three stores. Furthermore, noninterfering load and store to

consecutive addresses are fused (into ldp and stp) by the postpass instruction rewriter of Six et al.

[2022, §2]. This gives the assembly code in Fig. 25 right frame.

The second alias analysis addresses the cases where noninterference can be established because

two pointers point to non-overlapping data chunks within the same object, for instance different

fields inside the same structure. It performs a local abstract interpretation within the superblock.

Abstract values for pointers are of the form 𝑣𝑖 + 𝑜 , where 𝑖 is an integer index, 𝑣𝑖 designates a

“symbolic value”, and 𝑜 is a constant integer offset; we also have abstract values consisting only of a

constant integer. When a value comes from the starting point of the superblock, or is computed

by an operation inside the superblock that is not handled by the abstraction (e.g., multiplication),

that value is abstracted by 𝑣𝑖 + 0 where 𝑣𝑖 is fresh (the index 𝑖 has never been used so far). When

a value is computed by adding a pointer abstracted by 𝑣𝑖 + 𝑜 to an integer constant 𝑐 , the result

is abstracted by 𝑣𝑖 + (𝑜 + 𝑐). Chunks of size 𝑠1 and 𝑠2 pointed to by pointers abstracted by 𝑣𝑖 + 𝑜1
and 𝑣𝑖 + 𝑜2 (note the same base pointer 𝑣𝑖 ) respectively are deemed not to interfere if the intervals

[𝑜1, 𝑜1 + 𝑠1) and [𝑜2, 𝑜2 + 𝑠2) do not overlap.

Consider the source program of Fig. 26 left frame. Without alias analysis—see Fig. 26 middle

frame—the scheduler is faced with the same issue as in the previous example: the three memory

increments are kept in sequence, and the pipeline stalls. With alias analysis, like in the previous
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extern void foo(int *u);

void bar(int *t) {
int u[3];
u[0] = t[0]+1;
u[1] = t[1]+1;
u[2] = t[2]+1;
foo(u);

}

ldr w2, [x0, #0]
add w2, w2, #1
str w2, [sp, #16]
ldr w4, [x0, #4]
add w6, w4, #1
str w6, [sp, #20]
ldr w3, [x0, #8]
add w5, w3, #1
str w5, [sp, #24]

ldr w2, [x0, #0]
ldp w3, w4, [x0, #4]
add w6, w2, #1
add w5, w3, #1
add w4, w4, #1
stp w6, w5, [sp, #16]
str w4, [sp, #24]

Fig. 25. AArch64 Scheduling with Robert and Leroy [2012] analysis (right frame)

void incr3(int *x) {
x[0] ++;
x[1] ++;
x[2] ++;

}

ldr w1, [x0, #0]
add w5, w1, #1
str w5, [x0, #0]
ldr w4, [x0, #4]
add w1, w4, #1
str w1, [x0, #4]
ldr w3, [x0, #8]
add w2, w3, #1
str w2, [x0, #8]

ldp w1, w5, [x0, #0]
ldr w3, [x0, #8]
add w4, w1, #1
add w1, w5, #1
stp w4, w1, [x0, #0]
add w2, w3, #1
str w2, [x0, #8]

Fig. 26. AArch64 Scheduling with relative addressing analysis (right frame)

example, the scheduler can swap and group loads and stores. See Fig. 26 right frame. The only

difference comes from the criteria to ensure nonaliasing. In Fig. 26, we consider offset relatively to

the same base, whereas in Fig. 25, we consider the allocation class of the pointers.

While both analyses are appealing, and indeed improve code on examples such as the above,

experiments showed that, often, the improvement is not noticeable even on examples where the

schedule is altered by activating these analyses. Performance is improved markedly only in specific

benchmarks. Our symbolic validator fully support the first analysis but only a restricted version

of the second analysis. Since the latter is only used by the scheduler and for marginal gains, we

postponed its complete integration in the checker.
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