Jean-Pierre Dussault
email: jean-pierre.dussault@usherbrooke.ca

Jean Charles Gilbert

Baptiste Plaquevent-Jourdain
email: baptiste.plaquevent-jourdain@usherbrooke.ca

the hyperplane arrangement and the computation of the B-differential of the componentwise minimum of two affine vector functions

Keywords:

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

This manual is dedicated to the description of the Matlab functions isf and bdiffmin and is a user-friendly introduction to their use.

Isf can solve diverse equivalent enumeration problems related to various areas of mathematics. These problems are described in section 2. One finds problems in linear algebra (sections 2.1 and 2.2), convex analysis (sections 2.3 and 2.4), computational discrete geometry (section 2.5) and nonsmooth analysis (section 2.6). These problems are all occasions where the function isf can be useful and there are others (see [START_REF] Winder | Partitions of N-space by hyperplanes[END_REF][START_REF] Avis | Reverse search for enumeration[END_REF][START_REF] Baldi | Polynomial threshold functions, hyperplane arrangements, and random tensors[END_REF] and the references therein). The right way of formulating a problem in the language understood by isf and of adapting the output of the function is not always straightforward; it is the main purpose of section 2 to explain how to make these problem formulation and output adaptation. The computer description of isf is made in section 3.

Bdiffmin focuses on the computation of the B-differential of the componentwise minimum of two affine vector functions, the problem described in section 2.6. This problem deserves a special function and section since the link between the problems in section 2.1 and 2.6 is probably the least trivial, while the user of bdiffmin may not want to understand this link. The computer description of bdiffmin is made in section 4.

If you find the functions isf and bdiffmin useful for your work and that this one is described in a report, you may want to cite [START_REF] Dussault | On the B-differential of the componentwise minimum of two affine vector functions[END_REF] (rather than just this manual), since that paper is at the root of the design of these functions. This reference [START_REF] Dussault | On the B-differential of the componentwise minimum of two affine vector functions[END_REF] completes the information given in the present manual.

Notation

We denote by |S| the number of elements of a set S (i.e., its cardinality). The power set of a set S is denoted by P(S). The sets of natural and real numbers are denoted by N and R, respectively, while N * := N \ {0} and R * := R \ {0}. For n and p ∈ N * , R n×p denotes the set of n × p real matrices. For p ∈ N * , [1 : p] := {1, . . . , p} is the set of the first p integers. For a subset S of a vector space, we denote by vect(S) the subspace spanned by S. The Hadamard product of u and v ∈ R n is the vector denoted by u q v ∈ R n , whose ith component is u i v i . The range space of an m × n matrix A is denoted by R(A), its null space by N (A), its rank is rank(A) := dim R(A) and its nullity is null(A) := dim N (A) = nrank(A) by the rank-nullity theorem. The ith row (resp. column) of a matrix A is denoted by A i, : (resp. A : ,i).

Solved problems

The Matlab functions isf and bdiffmin described in this manual can solve a number of equivalent enumeration problems, which include r the signed feasibility of strict inequality systems (section 2.1), r listing the orthants encountered by the null space of a matrix (section 2.2), r itemizing the pointed cones generated by a set of vectors and their inverses (section 2.3), r giving the bipartitions of a finite set of points that can be separated by an affine hyperplane (section 2.4), r determining the chambers of an arrangement of hyperplanes having a point in common (section 2.5) and r computing the B-differential of the componentwise minimum of two affine vector functions (section 2.6). The isf function deals with the first problem (the one in section 2.1), while the solutions to the other problems can be deduced from the sign vectors provided by isf and the transformation rules described in the next subsections. In particular, the bdiffmin function solves the last problem (the one in section 2.6), thanks to the use of isf.

Signed feasibility of strict inequality systems

The problem solved by isf is the following. A sign vector is a vector whose components are +1 or -1.

Problem 2.1 (signed feasibility of strict inequality systems) Let be given two integers n and p ∈ N * and a matrix V in R n×p with nonzero columns. It is requested to determine the following set of sign vectors

S := {s ∈ {±1} p : s q (V T d) > 0 is feasible for d ∈ R n }. (2.1) ✷ It is known that S = ∅. If s q (V T d) > 0 for some s ∈ S and d ∈ R n , then (-s) q (V T (-d)) > 0. Therefore, the set S is symmetric, in the sense that -S = S.
(2.2)

One has the following necessary and sufficient condition for the completeness of S (i.e., S = {±1} p):

S = {±1} p ⇐⇒ V is injective. (2.3)
The set S is potentially large. Its cardinality is given by Winder's formula [START_REF] Winder | Partitions of N-space by hyperplanes[END_REF]1966]:

|S| = I⊆[1 : p]
(-1) null(V : ,I) .

(2.4)

The right-hand side of (2.4) is usually not easy to evaluate numerically but the following lower and upper bounds are available:

max(2p, 2 r) 2 r + 2(p -r) |S| 2 i∈[0 : r-1] p -1 i 2 p , (2.5)
where r := rank(V). Equalities hold in the following cases (in (2.6a), it is assumed that p 2 and that V has no colinear columns)

|S| = 2p ⇐⇒ rank(V) = 2, (2.6a) |S| = 2 i∈[0 : r-1] p -1 i ⇐⇒ ∀ I ⊆ [1 : p] : rank(V : ,I) = min(|I|, r), (2.6b
)

|S| = 2 p ⇐⇒ V is injective. (2.6c)
The implication "⇐" in (2.6b), when r = n, was established by the Swiss mathematician Ludwig Schläfli [22, p. 174] before 1852; when the condition in the right-hand side of this equivalence holds, the columns of V are said to be in general position.

2.2 Orthants encountered by the null space of a matrix

O p I := {y ∈ R p : y I 0, y I c 0},
where

I c := [1 : p] \ I.
It is requested to determine the set The map ı defined by (2.7) is a bijection from S c onto I.

I := {I ⊆ [1 : p] : N (V) ∩ O p I = {0}}. ✷ Note that, if I ∈ I, then I c ∈ I (because y ∈ (N (V) ∩ O p I) \ {0} implies that -y ∈ (N (V) ∩ O p I c) \ {0}),
Therefore, to get I from the sign vector set S c computed by isf, it suffices to apply ı to the sign vectors s ∈ S c .

Stem vector

Recall that the nullity of a matrix A, denoted by null(A), is the dimension of its null space. Let us introduce the following collection of index sets:

C := {J ⊆ [1 : p] : J = ∅, null(V : ,J) = 1, V : ,J 0 is injective for all J 0 J}, (2.8)
where " " is used to denote strict inclusion. In the terminology of the vector matroid formed by the columns of V and its subsets made of linearly independent columns [15, proposition 1.1.1], the elements of C are called the circuits of the matroid [15, proposition 1.3.5(iii)]. The particular expression (2.8) of the circuit set is interesting in the present context, since it readily yields the following implication:

J ∈ C =⇒ any nonzero α ∈ N (V : ,J) has none zero component.

(2.9)

From (2.8) and (2.9), one can associate with J ∈ C a pair of sign vectors ±s ∈ {±1} J by s := sgn(α) for some nonzero α ∈ N (V : ,J); the sign vectors ±s do not depend on the chosen α ∈ N (V : ,J) \ {0} since null(V : ,J) = 1. We call such a sign vector a stem vector, because of [7, proposition 3.9], which shows that any s ∈ S c can be generated from such a stem vector, in the sense that s ∈ S c ⇐⇒ s J = s for some J ⊆ [1 : p] and some stem vector s.

Definition 2.3 (stem vector) A stem vector is a sign vector s = sgn(α), where α ∈ N (V : ,J) for some J ∈ C. ✷

Pointed cones by vector inversions

A convex cone K of R n is a convex set verifying R ++ K ⊆ K (or, more explicitly, tx ∈ K when t > 0 and x ∈ K). A closed convex cone K is said to be pointed if K ∩ (-K) = {0} [
cone{v i : i ∈ [1 : p]} is pointed ⇐⇒ ∃ d ∈ R n , ∀i ∈ [1 : p] : v T i d > 0. (2

Linearly separable bipartitions of a finite set

Below, a partition of a set S made of two parts is said to be a bipartition of S. It is therefore a pair (I, J) such that I ∪ J = S and I ∩ J = ∅. The bipartition (I, J) is said to be ordered if (I, J) is considered to be different from (J, I). The set of ordered bipartitions of S is denoted by B(S).

Problem 2.5 (linearly separable bipartitioning) Let be given n 2 in N, p ∈ N * and p vectors w 1 , . . . , w p ∈ R n-1 . It is requested to find all the (I, J) ∈ B([1 : p]), for which there exists a vector ξ ∈ R n-1 such that

∀ i ∈ I, ∀ j ∈ J : ξ T w i < ξ T w j . (2.12)
Such an ordered bipartition is said to a linearly separable bipartition of the set

{w i : i ∈ [1 : p]}. ✷
Like for problem 2.2, note that, if (I, J) is a linearly separable bipartition of {w i : i ∈ [1 : p]}, then (J, I) is also a linearly separable bipartition of {w i : i ∈ [1 : p]} (replace ξ by -ξ). Therefore, the number of linearly separable bipartitions is even, which refers to the symmetry of S in (2.2). The problem is illustrated by figure 2.1. p], ∅), so that the number of linearly separable bipartitions, which is also |S|, is 2(n s + 1), where n s is the number of represented separating lines. We have set r := rank(V) = dim(vect{w 1 , . . . , w p }) + 1 (the matrix V ∈ R 3×4 is defined by (2.13)).

r = 2, |S| = 8 r = 3, |S| = 12 r = 3, |S| = 14
Let us now see how the solution to this problem 2.5 can be deduced from the solution to problem 2.1 (the output of the function isf). This is done by the following algorithm.

Algorithm 2.6 (linearly separable bipartitioning)

Let be given n 2 in N, p ∈ N * and p nonzero vectors w 1 , . . . ,

w p in R n-1 . 1. For i ∈ [1 : p], define v i := (w i , 1) ∈ R n . Form V ∈ R n×p by V = v 1 • • • v p . (2.13)
2. Compute S defined by (2.1) (this set can be computed by the function isf).

3. For each s ∈ S, define

I := {i ∈ [1 : p] : s i = -1} and J := {i ∈ [1 : p] : s i = +1}.
Then, (I, J) is a linearly separable bipartition of

{w i : i ∈ [1 : p]}.
The claim made in step 3 of algorithm 2.6 is justified by two facts. First, note that cone{v

i : i ∈ [1 : p]} is pointed (use d = (0, . . . , 0, 1) in (2.10)). Next, it follows that, for the bipartition (I, J) of [1 : p] defined in step 3, one has (I, J) is a linearly separable bipartition ⇐⇒ cone{s i v i : i ∈ [1 : p]} is pointed ⇐⇒ s ∈ S.
The first equivalence is justified by [6, proposition 3.16], while the second equivalence is (2.11). Therefore, algorithm 2.6 computes all the linearly separable bipartitions of the set

{w i : i ∈ [1 : p]}.

Hyperplane arrangements

The problem examined in this section has a long history, going back at least to the XIXth century [START_REF] Steiner | Einige Gesetze über die Theilung der Ebene und des Raumes[END_REF]20]. More recently, it appears in computational discrete geometry (the discipline has many other names), under the name of hyperplane arrangements. Contributions to this problem, or more general versions of it, with a discrete mathematics point of view, has been reviewed in [START_REF] Grünbaum | Arrangements and Spreads[END_REF][START_REF] Edelsbrunner | Algorithms in Combinatorial Geometry[END_REF][START_REF] Stanley | An introduction to hyperplane arrangements[END_REF][START_REF] Aguiar | Topics in hyperplane Arrangements[END_REF][START_REF] Halperin | Arrangements[END_REF]. It has many applications [START_REF] Edelsbrunner | Constructing arrangements of lines and hyperplanes with applications[END_REF][START_REF] Helena | Hyperplane arrangements -Construction, visualization and application[END_REF][START_REF] Černý | A class of optimization problems motivated by rank estimators in robust regression[END_REF].

Problem 2.7 (arrangement of hyperplanes containing the origin) Let be given two integers n and p ∈ N * and p nonzero vectors v 1 , . . . , v p ∈ R n . Consider the hyperplanes containing the origin:

H i := {d ∈ R n : v T i d = 0}. (2.14)
It is requested to list the regions of R n that are separated by these hyperplanes. Such a region is called a sector or a cell or a chamber , depending on the authors [2, 23, 1]. More specifically, let us define the half-spaces

H + i := {d ∈ R n : v T i d > 0} and H - i := {d ∈ R n : v T i d < 0}.
The problem is to determine the following set of open sectors of R n , indexed by the ordered bipartitions (I + , I -) of [1 : p]:

C := (I + , I -) ∈ B([1 : p]) : (∩ i∈I + H + i) ∩ (∩ i∈I -H - i) = ∅ , (2.15)
where B([1 : p]) denotes the set of ordered bipartitions of [1 : p]. ✷

Let us now show how to get C from S, the latter set being given by the function isf, for instance. Observe that, for V given by (2.13), (I + , I -) ∈ B([1 : p]) and s ∈ {±1} p linked by s i = +1 for i ∈ I + and s i = -1 for I ∈ I -, one has

(I + , I -) ∈ C ⇐⇒ ∃ d ∈ R n : v T i d > 0 for i ∈ I + v T i d < 0 for i ∈ I - ⇐⇒ ∃ d ∈ R n : s q (V T d) > 0 ⇐⇒ s ∈ S.
Therefore, for s ∈ S given by the function isf, (I + , I -) ∈ B([1 : p]) defined by

I + := {i ∈ [1 : p] : s i = +1} and I -:= {i ∈ [1 : p] : s i = -1} is in C.

B-differential of the minimum of two affine functions

Problem definition

The B-differential at x ∈ R n of a function H : R n → R m is the set denoted and defined by

∂ B H(x) := {J ∈ L(R n , R m) : H ′ (x k) → J for {x k } ⊆ D H converging to x}, (2.16)
where L(R n , R m) is the set of linear (continuous) maps from R n to R m , {x k } denotes a sequence and D H is the set of points at which H is (Fréchet) differentiable (its derivative at x is denoted by H ′ (x), an element of L(R n , R m)). Hence, when H is continuously differentiable at x, ∂ B H(x) = {H ′ (x)}, indicating that this notion is rather adapted to nonsmooth functions. Recall that a locally Lipschitz continuous function is differentiable almost everywhere in the sense of the Lebesgue measure (Rademacher's theorem [START_REF] Rademacher | Über partielle und totale differenzierbarkeit[END_REF]) and this property has the consequence that the B-differential of a locally Lipschitz function is nonempty and bounded everywhere [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]. The B-differential is an intermediate set used to define the C-differential (C for Clarke [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]) of H at x, which is denoted and defined at

x ∈ R n by ∂ C H(x) := co ∂ B H(x), (2.17)
where co S denotes the convex hull of a set S [START_REF] Rockafellar | Convex Analysis[END_REF][START_REF] Hiriart-Urruty | Fundamentals of Convex Analysis[END_REF][START_REF] Borwein | Convex Analysis and Nonlinear Optimization -Theory and Examples[END_REF]. Both intervene in the specification of conditions ensuring the local convergence of the semismooth Newton algorithm [START_REF] Qi | Convergence analysis of some algorithms for solving nonsmooth equations[END_REF][START_REF] Qi | A nonsmooth version of Newton's method[END_REF][START_REF] Marek | On a new exponential iterative method for solving nonsmooth equations[END_REF], which can be a motivation for being interested in that concept.

where the minimum operator "min" acts componentwise (for two vectors

u, v ∈ R m and i ∈ [1 : m]: [min(u, v)] i := min(u i , v i))
∂ B H(x) ⊆ ∂ B H 1 (x) × • • • × ∂ B H m (x) =: ∂ B H(x), (2.19)
but that equality in this inclusion may not hold (see [10,

∂ B H i (x) =    {A i : } if (Ax + a) i < (Bx + b) i , {A i : , B i : } if (Ax + a) i = (Bx + b) i , {B i : } if (Ax + a) i > (Bx + b) i .
(2.20)

In view of these cases, it is useful to introduce the following index sets:

A(x) := {i ∈ [1 : m] : (Ax + a) i < (Bx + b) i }, B(x) := {i ∈ [1 : m] : (Ax + a) i > (Bx + b) i }, E(x) := {i ∈ [1 : m] : (Ax + a) i = (Bx + b) i }, E = (x) := {i ∈ E(x) : A i, : = B i, : }, E = (x) := {i ∈ E(x) : A i, : = B i, : }.
The identities (2. [START_REF] Rademacher | Über partielle und totale differenzierbarkeit[END_REF]) and (2.20) readily imply that, a Jacobian J ∈ ∂ B H(x) satisfies

J i, : = A i : if i ∈ A(x) ∪ E = (x), B i : if i ∈ B(x) ∪ E = (x) (2.22)
and that

∂ B H(x) := {J ∈ L(R n , R m) : J i, : = A i, : , if i ∈ A(x), J i, : = A i, : = B i, : , if i ∈ E = (x), J i, : ∈ {A i, : , B i, : }, if i ∈ E = (x), J i, : = B i, : , if i ∈ B(x)}.
(2.23)

The values that J i, : can take for i ∈ E = (x) are more tricky to determine. In some places below, our reasoning is expeditious, but it follows rather closely the meticulous treatment made in [6, section 3.2.1]. To simplify the presentation, we assume in the sequel that

E = (x) = [1 : p],
for some p ∈ [1 : m] (actually, p = 0 if and only if E = (x) = ∅, in which case ∂ B H(x) is determined by (2.22)). For the rest of the discussion, assume that J ∈ ∂ B H(x). Then, by (2.20):

∀ i ∈ [1 : p] : J i, : ∈ {A i : , B i : }.
However, as said above, the values of J i, : cannot be determined componentwise, but all the components J [1 : p], : must be considered simultaneously. To do so, one has to go back to the definition (2.16) of the B-differential and consider a sequence

{x k } ⊆ D H such that x k → x and H ′ (x k) → J. Since {x k } ⊆ D H and A i, : = B i, : , one cannot have (Ax k +a) i = (Bx k +b) i for i ∈ [1 : p] [6, lemma 2.1]
. Therefore, one can find a subsequence K of indices k and a partition (A 0 , B 0) of E = (x) such that for all k ∈ K:

(Ax k + a) A 0 < (Bx k + b) A 0 and (Ax k + a) B 0 > (Bx k + b) B 0 . (2.24)
Therefore, for k ∈ K, By these inequalities, we see that what matters here is the matrix

H ′ i (x k) = A i, : if i ∈ A 0 and H ′ i (x k) = B i, : if i ∈ B 0 . Since H ′ (x k) → J, it follows that J i, : = A i, : if i ∈ A 0 , B i, : if i ∈ B 0 . (2
V := (B -A) T E = (x), : ∈ R n×p . (2
s i = +1 if i ∈ A 0 or J i, : = A i, : -1 if i ∈ B 0 or J i, : = B i, : (2.28)
and a direction d ∈ R n such that s q (V T d) > 0.

(2.29)

In conclusion, for the matrix V given by (2.27), (2.28) and (2.29) show that we have found an s ∈ S associated with the given J ∈ ∂ B H(x).

The established link between J ∈ ∂ B H(x) and s ∈ S can be formalized by the following map

σ : J ∈ ∂ B H(x) → s ∈ S, where s i = +1 if J i, : = A i, : -1 if J i, : = B i, : (2.30)
and the following inclusion σ(∂ B H(x)) ⊆ S.

(2.31)

An illustration of the problem when n = 2 and p = 3 is given in figure 2.2. Then,

v1 v2 v3   A 1, : A 2, : A 3, :     B 1, : B 2, : B 3, :     A 1, : A 2, : B 3, :     B 1, : B 2, : A 3, :     A 1, : B 2, : A 3, :     B 1, : A 2, : B 3, :   ⊆ D c H -x Figure 2.2:
The vectors v i 's are given by v i = (B-A) T i, : . The red lines are the "hyperplanes"

H i := {d ∈ R n : v T i d = 0}.
Translated by x, these form the points where H, given by (2.18), is nondifferentiable. The function H has a constant Jacobian in each of the 6 sectors (translated by x), which is the one that is indicated in the figure . rank(V) = 2 (if the columns of V are not all colinear) and |S| = 2p by (2.6a). The situation is usually much more complex when n > 2 and p is larger.

From S to ∂ B H(x)

In this section, we do the reverse operation of the one that was done in section 2.6.2 and show how a Jacobian J ∈ ∂ B H(x)) can be associated with a given sign vector s ∈ S. We actually show that equality holds in (2.31). This will result from the inversion of the bijective map σ:

σ -1 : s ∈ S → J ∈ ∂ B H(x), where J i, : = A i, : if i ∈ [1 : p] and s i = +1, B i, : if i ∈ [1 : p] and s i = -1. (2.32)
In (2.32), we have not specified the value of J i, : for i / ∈ [1 : p], which are actually given by (2.22). It is this association that is used by bdiffmin, to compute the B-differential ∂ B H(x) from the set S computed by isf.

Let V be given by (2.27) and s ∈ S (this sign vector set is associated with the given V). By (2.1), (2.29) holds for some d ∈ R n . Introducing

A 0 := {i ∈ [1 : p] : s i = +1} and B 0 := {i ∈ [1 : p] : s i = -1},
we get (2.26). Now, defining x k := x+t k d, for some {t k } ↓ 0, and using (Ax+a) i = (Bx+b) i for i ∈ [1 : p], one deduces (2.24), which shows that x k ∈ D H and H ′ (x k) is independent of k and has the value H ′ i (x k) = A i, : for i ∈ A 0 and H ′ i (x k) = B i, : for i ∈ B 0 . Therefore J defined by (2.22) and

J i, : := A i : if i ∈ [1 : p] and s i = +1 B i : if i ∈ [1 : p] and s i = -1 is in ∂ B H(x).
3 The isf function

The Matlab function isf solves problem 2.1: for a given matrix V ∈ R n×p , it computes the sign vector set S given by (2.1); see section 2.1. The selected sign vectors are the leaves of a tree of sign vectors of increasing size, called the S-tree below. The binary representation of a sign vector s ∈ {±1} p is (s + 1)/2, which is indeed only formed of elements in {0, 1}. This binary representation is useful, in particular, for printing s in a compact manner. The name of the isf function stands for Incremental Sign Feasibility (not Impôt Sur la Fortune). The term Incremental refers to the fact that the algorithm constructs the S-tree of the sign vectors incrementally (and recursively). The term Sign refers to the sign vectors computed by the function. The term Feasibility refers to the fact that the feasibility of s q (V T d) > 0 in d ∈ R n is used to select the appropriate sign vectors. Finally, the juxtaposition of terms that is Incremental Sign Feasibility has a weak meaning, which has the merit of bringing together the key concepts that characterize the function.

Specifications function [info] = isf(V,options)

A description of the function can be obtained by entering "help isf" in Matlab. We only describe here the main structure fields of input and output variable.

Input variables

V: This is the matrix V ∈ R n×p from which the set S of sign vectors given by (2.1) is computed. The dimensions n and p are deduced from the size of V . The matrix cannot have a zero column; in this case S = ∅ and isf returns with info.flag = 3.

options: Structure array allowing the user to tune the behavior of isf. All options have default values, so that the options argument can be omitted or set to []. The following options are available (they are given in alphabetic order of the field names).

options.bestv: integer in {0, 3} (default 0 if options.sv == 3, default 3 if options.sv < 3; ignored if options.rc2018 == true or if options.withd == false). This option can be used to modify the order in which the vectors v i 's (i.e., the columns of V) are considered for constructing the S-tree. By default, this order is that imposed by the QR factorization of V . When options.bestv > 0, a reordering is performed following a heuristics whose aim is to decrease the number of nodes of the S-tree, which has an impact on the number of linear optimization problems (LOP) that must be solved. Only the values 0 and 3 are actually evaluated in [START_REF] Dussault | On the B-differential of the componentwise minimum of two affine vector functions[END_REF].

= 0: no modification of the order, except that imposed by the QR factorization; = 3: a reordering of the vectors is made so that the number of nodes of the S-tree decreases (and therefore the number of LOP to solve).

options.dvnear0: logical (default true; ignored if options.rc2018 == true or if options.withd == false). If true, the S-tree algorithm constructs two descendants when v T d is in a specific computed interval surrounding zero, without having to solve a LOP or to use stem vectors if any (v is here the new considered vector and d is the direction intervening in (2.1) at the current node of the S-tree).

options.fout: integer, default 1. First output channel containing all but the printing made during the generation of the S-tree. Set 1 (default) for the standard output (screen). For a specific file, use "options.fout = fopen(...)" before calling isf.

options.fout2: integer, default 1. Second output channel containing the printing made during the generation of the S-tree. Set 1 (default) for the standard output (screen). For a specific file, use "options.fout2 = fopen(...)" before calling isf.

options.rc2018: logical (default false). If true, the simulated Rada and Černý algorithm of [START_REF] Rada | A new algorithm for enumeration of cells of hyperplane arrangements and a comparison with Avis and Fukuda's reverse search[END_REF] is run, ignoring most other options. options.sv: integer in [0 : 3] (default 3; ignored if options.rc2018 == true). Determine whether and how many stem vectors (definition 2.3) must be used (the i of option D i in [6, section 5.2.5(D)]).

= 0: do not compute/use stem vectors; = 1: use the pr stem vectors that can be computed thanks to the QR factorization of V (r denotes the rank of V); this is not many, but it is inexpensive to compute; = 2: in addition to the pr stem vectors obtained with "options.sv = 1", use the dual solution to each linear optimization problem having no solution to add a stem vector to the list (see [6, prosition 5.9]); this improves significantly the speed of the algorithm, but requires to solve the LOP with the dual simplex method; = 3: compute all the stem vectors at the beginning of the run (time consuming operation when p is large).

options.verb: integer in [0 : ∞] (default 1). Verbosity level of the output channel options. fout.

= 0: isf works silently on channel options.fout;

1: isf prints error messages, initial setting, final status on channel options.fout; 2: isf also prints more information on channel options.fout.

options.verb2: integer in [0 : ∞] (default 1). Verbosity level of the output channel options.fout2.

= 0: isf works silently on channel options.fout2; 1: isf also prints error messages and the binary representation of the sign vectors; 2: isf also prints the feasible directions d intervening in (2.1); 3: isf also prints some information at the intermediate steps of the recursivity process; 4: isf also checks that the directions d intervening in (2.1) verify indeed s q (V T d) > 0, which is a certificate on the correctness of the computation.

options.withd: logical; default true if options.sv < 3; default false if options.sv == 3. If true, isf is required to compute a direction d (the one intervening in (2.1)) at each node of the S-tree; this requires more computation, in particular for solving LOPs.

The table 3.1 below gives the combinations of options used in [START_REF] Dussault | On the B-differential of the componentwise minimum of two affine vector functions[END_REF] to get the algorithms named there "simulated rc" (Rada and Černý [START_REF] Rada | A new algorithm for enumeration of cells of hyperplane arrangements and a comparison with Avis and Fukuda's reverse search[END_REF] simulated algorithm), isf(A), isf(AB), isf(ABC), isf(ABCD 1), isf(ABCD 2), isf(ABCD 3) and isf(AD 4). As one can see in

options Simulated rc isf(A) isf(AB) isf(ABC) isf(ABCD 1) isf(ABCD 2) isf(ABCD 3) isf(AD 4) rc2018 true dvnear0 - false bestv - 0 0 3 3 3 3 sv - 0 0 0 1 2 3 withd - true
Table 3.1: Options to specify to get the algorithms used in [START_REF] Dussault | On the B-differential of the componentwise minimum of two affine vector functions[END_REF]. Default values apply for the unspecified options (these default values can depend on the values of other options).

The symbol "-" in the "simulated rc" column means that the option is not used in that algorithm. table 3.1, the default algorithm is isf(AD 4), since this one is obtained by the default values of the options rc2018, dvnear0, bestv, sv and withd. This does not mean, however, that isf(AD 4) is always the best (fastest) algorithm. This one actually depends on the problem data. To this respect, one can give the following guidelines.

G 1 . The best (fastest) algorithm is always among the three following ones (those in the blue columns of table 3.1) isf(ABCD 2), isf(ABCD 3) and isf(AD 4).

According to the tests realized in [START_REF] Dussault | On the B-differential of the componentwise minimum of two affine vector functions[END_REF], the others are always worse in terms of the number of linear optimization problems to solve and of the computing time (there are reasons for this, see [START_REF] Dussault | On the B-differential of the componentwise minimum of two affine vector functions[END_REF]). We mention them to make the link with the algorithms benchmarked in [START_REF] Dussault | On the B-differential of the componentwise minimum of two affine vector functions[END_REF], not to recommand their use. G 2 . The algorithm isf(AD 4) is particularly efficient when there is not too many stem vectors. The reason is that in the current versioin of isf, it is time consuming to detect the stem vectors and to use them. Since the number of stem vectors rapidly increases with p, the number p of columns of V should not be too large for algorithm isf(AD 4) to be efficient. G 3 . When p becomes large, the algorithm isf(ABCD 2) usually becomes faster than isf (AD 4). G 4 . The algorithm isf(ABCD 3) is somehow intermediate between isf(ABCD 2) and isf (AD 4). It can be faster than isf(ABCD 2), but then isf(AD 4) is usually even much faster. It can be faster than isf(AD 4), but then isf(ABCD 2) is usually even much faster. Therefore, algorithm isf(ABCD 3) could be chosen if one has no information on what means a large p for the type of matrix V that one has to deal with.

Output variable

info: Structure array giving the output of isf, as well as information in the run. The following fields are available.

info.flag: integer in [0 : 9] giving the diagnosis of the run.

= 0: the required job has been realized; = 1: an input argument is wrong; = 2: nothing to do since V has no column (p = 0); = 3: one of the vectors V : ,i vanishes, implying that S = ∅; = 4: when a direction d intervening in (2.1) is computed (options.withd == true) and that the checking of s q (V T d) > 0 is asked (options.verb2 >= 4), this diagnosis flag means that the checking failed; this should be due to rounding error; = 5: one vector is opposite to another one, in which case S = ∅; = 6: the linear optimization solver failed; = 9: a "technical" problem has been encountered, which requires improvements of the code.

info

Example of use

Consider the example specified by the matrix

V =   1 0 0 1 0 1 0 1 0 1 1 0 0 0 1 0 1 1   .
Hence n = 3 and p = 6. Even though V is "simple", determining S is not trivial. For this, run isf with the given options (for example):

options.verb = 0; options.verb2 = 0; options.sv = 2; options.sc = true; % requires options.sv < 3 [info] = isf(V,options);

Then, isf prints nothing on the standard output. At the end of the run, one can explore the output structure info to have information on the run and on the computed values.

r Since info.flag is 0, the run is successful.

r Half the number of sign vectors in S is info.ns = 13 and half the number of sign vectors in S c is info.nsc = 19. Observe that 13 + 19 = 2 p-1 .

r In info.s, one finds the binary representation of half of the 26 sign vectors in S:

1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0
The other half of S can be obtained by symmetry (ones(size(info.s))-info.s):

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 1 1
r Since options.sc == true and options.sv < 3, one finds in info.sc the binary representation of half of the 38 sign vectors in S c :

1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1
The other half of S c can be obtained by symmetry (ones(size(info.sc))-info.sc):

0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0

The bdiffmin function

As already mentioned in section 2.6, bdiffmin computes the B-differential of the componentwise minimum of two affine vector functions, which is the function H in (2.18). As explained in section 2.6.3, bdiffmin computes ∂ B H(x) from the sign vector set S in (2.1), obtained by running isf. A description of the function can be obtained by entering "help bdiffmin" in Matlab. We only describe here the main structure fields of input and output variable. options.fout: integer, default 1. Output channel containing all the printings made during the run of bdiffmin (nothing is printed from isf). Set 1 (default) for the standard output (screen). For a specific file, use options.fout = fopen(...) before calling bdiffmin;

options.verb: integer in [0 : ∞] (default 1). Verbosity level of the output channel options. fout.

= 0: bdiffmin works silently; 1: bdiffmin prints error messages, initial setting, final status on the channel options. fout.

Output variable

info: Structure array giving the output of bdiffmin, as well as information on the run.

The following fields are specific to bdiffmin; other fields are inherited from isf.

info.bdiff: cell array containing all the Jacobians in ∂ B H(x) ⊆ R m×n .

info.bdiffc: (if options.bdiffc is true) cell array containing all the matrices in

∂ B H 1 (x) × • • • × ∂ B H m (x) \ ∂ B H(x).

Figure 2 . 1 :

 21 Figure 2.1: Linearly separable bipartitions of a set of p = 4 points w i in R 2 (the dots in the figure). Possible separating hyperplanes are the drawn lines. We have not represented any separating line associated with the bipartition (∅, [1 : p]) or ([1 : p], ∅), so that the number of linearly separable bipartitions, which is also |S|, is 2(n s + 1), where n s is the number of represented separating lines. We have set r := rank(V) = dim(vect{w 1 , . . . , w p }) + 1 (the matrix V ∈ R 3×4 is defined by (2.13)).

Problem 2 .

 2 8 (B-differential of the minimum of two affine functions) Let be given two integers n and m ∈ N * , two matrices A, B ∈ R m×n and two vectors a, b ∈ R m . It is requested to compute the B-differential at some x ∈ R n of the function H : R n → R m defined at x ∈ R n by H(x) = min(Ax + a, Bx + b),

. 25)

 25 Now, fixing k ∈ K, setting d := x kx and using (Ax + a) i = (Bx + b) i for i ∈ [1 : p], one deduces from (2.24) that (B -A) A 0 , : d > 0 and (B -A) B 0 , : d < 0. (2.26)

 options.s: logical (default true). If true, half the sign vectors s ∈ S are stored in info.s, in binary representation. The other half can be obtained by symmetry: ones(size(info.s))-info.s. options.sc: logical (default false). If true and if options.sv < 3, half the sign vectors s ∈ S c are stored in info.sc, in binary representation. The other half can be obtained by symmetry: ones(size(info.sc))-info.sc.

4. 1

 1 Specifications function [info] = bdiffmin(A,a,B,b,x,options)

4. 1 . 1

 11 Input variablesA, a, B, b: these are the matrix A and B ∈ R m×n and the vectors a and b ∈ R m defining the function H in(2.18). The dimensions m and n of the problem are deduced from the size of these variables.x: the point x ∈ R n at which the B-differential must be computed.options: structure array allowing the user to tune the behavior of bdiffmin. All options have default values, so that the options argument can be omitted or set to []. The following options are available (they are given in alphabetic order of the field names). options.bdiffc: logical, default false. If true the matrices that are in the set (4.1), defined below, are listed in info.bdiffc. options.eqtol: positive real number, default 1.e-8. Small value used to detect equality of the components of Ax + a and Bx + b. If |(Ax + a) i -(Bx + b) i | options.eqtol, the ith components of Ax + a and Bx + b are considered to be equal.

(4. 1)

 1 info.flag: integer in [0 : 11] giving the diagnosis of the run. = 0: the required job has been realized; = 11: an input argument of bdiffmin is wrong. The other values of info.flag are inherited from those of the function isf.

Index

 The equivalent form of problem 2.1 introduced in this section is based on a bijection between the complementary set of S in {±1} p , denoted S c := {±1} p \S, and a collection I of subsets of [1 : p] (i.e., I ⊆ P([1 : p])), which refers to a collection of orthants of R p , those encountered by the null space of V . Problem 2.2 (orthants encountered by the null space of a matrix) Let be given two integers n and p ∈ N

	2.2.1 Problem definition

* and a matrix V in R n×p with nonzero columns. Associate with I ⊆ [1 : p] the following orthant of R p :

 4, p. 54], which amounts to saying that K does not contain a line (i.e., an affine subspace of dimension one) or that K has no nonzero direction z such that -z ∈ K. For P ⊆ R n , we also denote by "cone P " the smallest convex cone containing P . Let be given two integers n and p ∈ N * and p vectors v 1 , . . . , v p ∈ R n \ {0}. It is requested to determine all the sign vectors s ∈ {±1} p such that cone{s i v i : i ∈ [1 : p]} is pointed. ✷

	Problem 2.4 (pointed cones by vector inversions) The equivalence between the original problem 2.1 and this problem 2.4 is obtained
	thanks to the next equivalence ([11, theorem 2.3.29], [4, theorem 3.3.15], [7, proposition 3.12]
	and many other contributions):

 .sc: if options.sc is true and options.sv < 3 (otherwise the field does not exist), it is a matrix of size (info.nsc) × p, whose rows give half the infeasible sign vectors s in S c , in binary representation. The other half can be obtained by symmetry: ones(size(info.sc))-info.sc.

.ns: = |S|/2, half the number of sign vectors in S. info.nsc: = |S c |/2, half the number of sign vectors in S c := {±1} p \ S. info.s: matrix of size (info.ns)×p, whose rows give half the sign vectors s in S, in binary representation. The other half can be obtained by symmetry: ones(size(info.s))info.s. info

Example of use

Consider the following example that is the one considered in [7, section 5.2.9]:

and run bdiffmin with that data and the following options: Then, bdiffmin prints nothing on the standard output. It forms the matrix V in (2.27), which reads (note that

Next, bdiffmin runs isf which is asked to work silently (in particular, nothing is printed on the standard output). Let us examine the output structure info on return from bdiffmin to have information on the run and on the computed values.

r Since info.flag is 0, the run is successful.

r The cell array info.bdiff contains all the Jacobians of the B-differential of x → min(Ax + a, Bx + b) at the given x. If one executes for i = 1:length(info.bdiff) fprintf('Jacobian %i\n',i) disp(info.bdiff{i}); end one gets the 6 Jacobians in ∂ B H(x):

r Since bdiffmin was run with options.bdiffc set to true, the cell array info.bdiffc contains all the matrices that are in the set (4.1). If one executes for i = 1:length(info.bdiffc) fprintf('Matrix %i\n',i) disp(info.bdiffc{i}); end one gets the 2 matrices in that set: