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circuit q Pointed cone q Schläfli’s bound q Stem vector q Strict linear inequalities q Sym-
metry q Winder’s formula.

AMS MSC 2020: 05A18 q 05C40 q 26A24 q 26A27 q 46N10 q 47A50 q 47A63 q 49J52 q

49N15 q 52C35 q 65Y20 q 65K15 q 90C33 q 90C46.
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1 Introduction

This manual is dedicated to the description of the Matlab functions isf and bdiffmin and
is a user-friendly introduction to their use.

Isf can solve diverse equivalent enumeration problems related to various areas of math-
ematics. These problems are described in section 2. One finds problems in linear algebra
(sections 2.1 and 2.2), convex analysis (sections 2.3 and 2.4), computational discrete geom-
etry (section 2.5) and nonsmooth analysis (section 2.6). These problems are all occasions
where the function isf can be useful and there are others (see [29, 2, 3] and the references
therein). The right way of formulating a problem in the language understood by isf and
of adapting the output of the function is not always straightforward; it is the main purpose
of section 2 to explain how to make these problem formulation and output adaptation. The
computer description of isf is made in section 3.

Bdiffmin focuses on the computation of the B-differential of the componentwise min-
imum of two affine vector functions, the problem described in section 2.6. This problem
deserves a special function and section since the link between the problems in section 2.1
and 2.6 is probably the least trivial, while the user of bdiffminmay not want to understand
this link. The computer description of bdiffmin is made in section 4.

If you find the functions isf and bdiffmin useful for your work and that this one
is described in a report, you may want to cite [6] (rather than just this manual), since
that paper is at the root of the design of these functions. This reference [6] completes the
information given in the present manual.

Notation

We denote by |S| the number of elements of a set S (i.e., its cardinality). The power set of
a set S is denoted by P(S). The sets of natural and real numbers are denoted by N and R,
respectively, while N∗ := N \ {0} and R∗ := R \ {0}. For n and p ∈ N∗, Rn×p denotes the
set of n × p real matrices. For p ∈ N∗, [1 : p] := {1, . . . , p} is the set of the first p integers.
For a subset S of a vector space, we denote by vect(S) the subspace spanned by S. The
Hadamard product of u and v ∈ Rn is the vector denoted by u qv ∈ Rn, whose ith component
is uivi. The range space of an m×n matrix A is denoted by R(A), its null space by N (A),
its rank is rank(A) := dimR(A) and its nullity is null(A) := dimN (A) = n − rank(A)
by the rank-nullity theorem. The ith row (resp. column) of a matrix A is denoted by Ai, :

(resp. A : ,i).

2 Solved problems

The Matlab functions isf and bdiffmin described in this manual can solve a number of
equivalent enumeration problems, which include

r the signed feasibility of strict inequality systems (section 2.1),
r listing the orthants encountered by the null space of a matrix (section 2.2),
r itemizing the pointed cones generated by a set of vectors and their inverses (section 2.3),
r giving the bipartitions of a finite set of points that can be separated by an affine hyper-
plane (section 2.4),
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r determining the chambers of an arrangement of hyperplanes having a point in common
(section 2.5) and

r computing the B-differential of the componentwise minimum of two affine vector func-
tions (section 2.6).

The isf function deals with the first problem (the one in section 2.1), while the solutions
to the other problems can be deduced from the sign vectors provided by isf and the
transformation rules described in the next subsections. In particular, the bdiffmin function
solves the last problem (the one in section 2.6), thanks to the use of isf.

2.1 Signed feasibility of strict inequality systems

The problem solved by isf is the following. A sign vector is a vector whose components
are +1 or −1.

Problem 2.1 (signed feasibility of strict inequality systems) Let be given two in-
tegers n and p ∈ N∗ and a matrix V in Rn×p with nonzero columns. It is requested to
determine the following set of sign vectors

S := {s ∈ {±1}p : s q (V Td) > 0 is feasible for d ∈ Rn}. (2.1)

✷

It is known that S 6= ∅. If s q (V Td) > 0 for some s ∈ S and d ∈ Rn, then (−s) q

(V T(−d)) > 0. Therefore, the set S is symmetric, in the sense that

− S = S. (2.2)

One has the following necessary and sufficient condition for the completeness of S (i.e.,
S = {±1}p):

S = {±1}p ⇐⇒ V is injective. (2.3)

The set S is potentially large. Its cardinality is given by Winder’s formula [29, 1966]:

|S| =
∑

I⊆[1 : p]

(−1)null(V : ,I ). (2.4)

The right-hand side of (2.4) is usually not easy to evaluate numerically but the following
lower and upper bounds are available:

max(2p, 2r) 6 2r + 2(p − r) 6 |S| 6 2
∑

i∈[0 : r−1]

(

p− 1

i

)

6 2p, (2.5)

where r := rank(V ). Equalities hold in the following cases (in (2.6a), it is assumed that
p > 2 and that V has no colinear columns)

|S| = 2p ⇐⇒ rank(V ) = 2, (2.6a)

|S| = 2
∑

i∈[0 : r−1]

(

p− 1

i

)

⇐⇒ ∀ I ⊆ [1 : p] : rank(V : ,I) = min(|I|, r), (2.6b)

|S| = 2p ⇐⇒ V is injective. (2.6c)

4



The implication “⇐” in (2.6b), when r = n, was established by the Swiss mathematician
Ludwig Schläfli [22, p. 174] before 1852; when the condition in the right-hand side of this
equivalence holds, the columns of V are said to be in general position.

2.2 Orthants encountered by the null space of a matrix

2.2.1 Problem definition

The equivalent form of problem 2.1 introduced in this section is based on a bijection between
the complementary set of S in {±1}p, denoted Sc := {±1}p\S, and a collection I of subsets
of [1 : p] (i.e., I ⊆ P([1 : p])), which refers to a collection of orthants of Rp, those encountered
by the null space of V .

Problem 2.2 (orthants encountered by the null space of a matrix) Let be given
two integers n and p ∈ N∗ and a matrix V in Rn×p with nonzero columns. Associate with
I ⊆ [1 : p] the following orthant of Rp:

Op
I := {y ∈ Rp : yI > 0, yIc 6 0},

where Ic := [1 : p] \ I. It is requested to determine the set

I := {I ⊆ [1 : p] : N (V ) ∩ Op
I 6= {0}}. ✷

Note that, if I ∈ I, then Ic ∈ I (because y ∈ (N (V ) ∩ Op
I ) \ {0} implies that −y ∈

(N (V ) ∩ Op
Ic) \ {0}), so that |I| is even (just like |S| and |Sc|; see (2.2)).

The equivalence between problems 2.1 and 2.2 is obtained thanks to the following bi-
jection

ı : s ∈ {±1}p → ı(s) := {i ∈ [1 : p] : si = +1} ∈ P([1 : p]), (2.7)

whose reverse map is ı−1 : I ∈ P([1 : p]) → s ∈ {±1}p, where si = +1 if i ∈ I and si = −1 if
i /∈ I. One can show that the restriction of ı to Sc is in bijection with I [6, proposition 3.6]:

The map ı defined by (2.7) is a bijection from Sc onto I.

Therefore, to get I from the sign vector set Sc computed by isf, it suffices to apply ı to
the sign vectors s ∈ Sc.

2.2.2 Stem vector

Recall that the nullity of a matrix A, denoted by null(A), is the dimension of its null space.
Let us introduce the following collection of index sets:

C := {J ⊆ [1 : p] : J 6= ∅, null(V : ,J) = 1, V : ,J0 is injective for all J0 ( J}, (2.8)

where “(” is used to denote strict inclusion. In the terminology of the vector matroid
formed by the columns of V and its subsets made of linearly independent columns [15,
proposition 1.1.1], the elements of C are called the circuits of the matroid [15, proposition
1.3.5(iii)]. The particular expression (2.8) of the circuit set is interesting in the present
context, since it readily yields the following implication:

J ∈ C =⇒ any nonzero α ∈ N (V : ,J) has none zero component. (2.9)
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From (2.8) and (2.9), one can associate with J ∈ C a pair of sign vectors ±s̃ ∈ {±1}J by
s̃ := sgn(α) for some nonzero α ∈ N (V : ,J); the sign vectors ±s̃ do not depend on the chosen
α ∈ N (V : ,J) \ {0} since null(V : ,J) = 1. We call such a sign vector a stem vector, because of
[7, proposition 3.9], which shows that any s ∈ Sc can be generated from such a stem vector,
in the sense that

s ∈ Sc ⇐⇒ sJ = s̃ for some J ⊆ [1 : p] and some stem vector s̃.

Definition 2.3 (stem vector) A stem vector is a sign vector s̃ = sgn(α), where α ∈
N (V : ,J) for some J ∈ C. ✷

2.3 Pointed cones by vector inversions

A convex cone K of Rn is a convex set verifying R++K ⊆ K (or, more explicitly, tx ∈ K
when t > 0 and x ∈ K). A closed convex cone K is said to be pointed if K∩(−K) = {0} [4,
p. 54], which amounts to saying that K does not contain a line (i.e., an affine subspace of
dimension one) or that K has no nonzero direction z such that −z ∈ K. For P ⊆ Rn, we
also denote by “coneP” the smallest convex cone containing P .

Problem 2.4 (pointed cones by vector inversions) Let be given two integers n and
p ∈ N∗ and p vectors v1, . . . , vp ∈ Rn \{0}. It is requested to determine all the sign vectors
s ∈ {±1}p such that cone{sivi : i ∈ [1 : p]} is pointed. ✷

The equivalence between the original problem 2.1 and this problem 2.4 is obtained
thanks to the next equivalence ([11, theorem 2.3.29], [4, theorem 3.3.15], [7, proposition 3.12]
and many other contributions):

cone{vi : i ∈ [1 : p]} is pointed ⇐⇒ ∃ d ∈ Rn, ∀i ∈ [1 : p] : vTi d > 0. (2.10)

It follows that the set of sign vectors S, determined by isf, is precisely the set of sign
vectors required by problem 2.4, which reads

S = {s ∈ {±1}p : cone{sivi : i ∈ [1 : p]} is pointed}. (2.11)

2.4 Linearly separable bipartitions of a finite set

Below, a partition of a set S made of two parts is said to be a bipartition of S. It is therefore
a pair (I, J) such that I ∪J = S and I ∩J = ∅. The bipartition (I, J) is said to be ordered
if (I, J) is considered to be different from (J, I). The set of ordered bipartitions of S is
denoted by B(S).

Problem 2.5 (linearly separable bipartitioning) Let be given n > 2 in N, p ∈ N∗ and
p vectors w1, . . . , wp ∈ Rn−1. It is requested to find all the (I, J) ∈ B([1 : p]), for which
there exists a vector ξ ∈ Rn−1 such that

∀ i ∈ I, ∀ j ∈ J : ξTwi < ξTwj . (2.12)

Such an ordered bipartition is said to a linearly separable bipartition of the set {wi : i ∈
[1 : p]}. ✷
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Like for problem 2.2, note that, if (I, J) is a linearly separable bipartition of {wi : i ∈
[1 : p]}, then (J, I) is also a linearly separable bipartition of {wi : i ∈ [1 : p]} (replace ξ
by −ξ). Therefore, the number of linearly separable bipartitions is even, which refers to
the symmetry of S in (2.2). The problem is illustrated by figure 2.1.

r = 2, |S| = 8

r = 3, |S| = 12 r = 3, |S| = 14

Figure 2.1: Linearly separable bipartitions of a set of p = 4 points wi in R2 (the dots in the
figure). Possible separating hyperplanes are the drawn lines. We have not represented any
separating line associated with the bipartition (∅, [1 : p]) or ([1 : p],∅), so that the number
of linearly separable bipartitions, which is also |S|, is 2(ns + 1), where ns is the number of
represented separating lines. We have set r := rank(V ) = dim(vect{w1, . . . , wp}) + 1 (the
matrix V ∈ R3×4 is defined by (2.13)).

Let us now see how the solution to this problem 2.5 can be deduced from the solution
to problem 2.1 (the output of the function isf). This is done by the following algorithm.

Algorithm 2.6 (linearly separable bipartitioning)
Let be given n > 2 in N, p ∈ N∗ and p nonzero vectors w1, . . . , wp in Rn−1.

1. For i ∈ [1 : p], define vi := (wi, 1) ∈ Rn. Form V ∈ Rn×p by

V =
(

v1 · · · vp
)

. (2.13)

2. Compute S defined by (2.1) (this set can be computed by the function isf).
3. For each s ∈ S, define

I := {i ∈ [1 : p] : si = −1} and J := {i ∈ [1 : p] : si = +1}.

Then, (I, J) is a linearly separable bipartition of {wi : i ∈ [1 : p]}.

The claim made in step 3 of algorithm 2.6 is justified by two facts. First, note that
cone{vi : i ∈ [1 : p]} is pointed (use d = (0, . . . , 0, 1) in (2.10)). Next, it follows that, for the
bipartition (I, J) of [1 : p] defined in step 3, one has

(I, J) is a linearly separable bipartition ⇐⇒ cone{sivi : i ∈ [1 : p]} is pointed

⇐⇒ s ∈ S.

The first equivalence is justified by [6, proposition 3.16], while the second equivalence is
(2.11). Therefore, algorithm 2.6 computes all the linearly separable bipartitions of the set
{wi : i ∈ [1 : p]}.
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2.5 Hyperplane arrangements

The problem examined in this section has a long history, going back at least to the XIXth
century [27, 20]. More recently, it appears in computational discrete geometry (the discipline
has many other names), under the name of hyperplane arrangements. Contributions to this
problem, or more general versions of it, with a discrete mathematics point of view, has been
reviewed in [12, 9, 26, 1, 13]. It has many applications [8, 24, 28].

Problem 2.7 (arrangement of hyperplanes containing the origin) Let be given two
integers n and p ∈ N∗ and p nonzero vectors v1, . . . , vp ∈ Rn. Consider the hyperplanes
containing the origin:

Hi := {d ∈ Rn : vTi d = 0}. (2.14)

It is requested to list the regions of Rn that are separated by these hyperplanes. Such a
region is called a sector or a cell or a chamber , depending on the authors [2, 23, 1]. More
specifically, let us define the half-spaces

H+
i := {d ∈ Rn : vTi d > 0} and H−

i := {d ∈ Rn : vTi d < 0}.

The problem is to determine the following set of open sectors of Rn, indexed by the ordered
bipartitions (I+, I−) of [1 : p]:

C :=
{

(I+, I−) ∈ B([1 : p]) : (∩i∈I+ H+
i ) ∩ (∩i∈I− H−

i ) 6= ∅
}

, (2.15)

where B([1 : p]) denotes the set of ordered bipartitions of [1 : p]. ✷

Let us now show how to get C from S, the latter set being given by the function isf,
for instance. Observe that, for V given by (2.13), (I+, I−) ∈ B([1 : p]) and s ∈ {±1}p linked
by si = +1 for i ∈ I+ and si = −1 for I ∈ I−, one has

(I+, I−) ∈ C ⇐⇒ ∃ d ∈ Rn :

{

vTi d > 0 for i ∈ I+
vTi d < 0 for i ∈ I−

⇐⇒ ∃ d ∈ Rn : s q (V Td) > 0

⇐⇒ s ∈ S.

Therefore, for s ∈ S given by the function isf, (I+, I−) ∈ B([1 : p]) defined by

I+ := {i ∈ [1 : p] : si = +1} and I− := {i ∈ [1 : p] : si = −1}

is in C.

2.6 B-differential of the minimum of two affine functions

2.6.1 Problem definition

The B-differential at x ∈ Rn of a function H : Rn → Rm is the set denoted and defined by

∂BH(x) := {J ∈ L(Rn,Rm) : H ′(xk) → J for {xk} ⊆ DH converging to x}, (2.16)

where L(Rn,Rm) is the set of linear (continuous) maps from Rn to Rm, {xk} denotes a
sequence and DH is the set of points at which H is (Fréchet) differentiable (its derivative
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at x is denoted by H ′(x), an element of L(Rn,Rm)). Hence, when H is continuously
differentiable at x, ∂BH(x) = {H ′(x)}, indicating that this notion is rather adapted to
nonsmooth functions. Recall that a locally Lipschitz continuous function is differentiable
almost everywhere in the sense of the Lebesgue measure (Rademacher’s theorem [19]) and
this property has the consequence that the B-differential of a locally Lipschitz function
is nonempty and bounded everywhere [5]. The B-differential is an intermediate set used
to define the C-differential (C for Clarke [5]) of H at x, which is denoted and defined at
x ∈ Rn by

∂CH(x) := co ∂BH(x), (2.17)

where coS denotes the convex hull of a set S [21, 14, 4]. Both intervene in the specification of
conditions ensuring the local convergence of the semismooth Newton algorithm [16, 17, 25],
which can be a motivation for being interested in that concept.

Problem 2.8 (B-differential of the minimum of two affine functions) Let be given
two integers n and m ∈ N∗, two matrices A, B ∈ Rm×n and two vectors a, b ∈ Rm. It
is requested to compute the B-differential at some x ∈ Rn of the function H : Rn → Rm

defined at x ∈ Rn by
H(x) = min(Ax+ a,Bx+ b), (2.18)

where the minimum operator “min” acts componentwise (for two vectors u, v ∈ Rm and
i ∈ [1 :m]: [min(u, v)]i := min(ui, vi)). ✷

This problem 2.8 can be solved by the Matlab function bdiffmin presented in section 4.
Let us now see the links between problem 2.8 and problem 2.1.

2.6.2 From ∂BH(x) to S

We start in this section by showing how a Jacobian J ∈ ∂BH(x) can be associated with
some s ∈ S.

Recall the definition 2.16 of the B-differential ∂BH(x). It is known that [5, proposition
2.6.2(e)]

∂BH(x) ⊆ ∂BH1(x)× · · · × ∂BHm(x) =: ∂BH(x), (2.19)

but that equality in this inclusion may not hold (see [10, section 7.1.15], [6, counter-
example 2.3] and almost all the examples and test-cases in the latter paper). It is also
known that for H given by (2.18) (see [6, lemma 2.1], for example)

∂BHi(x) =







{Ai :} if (Ax+ a)i < (Bx+ b)i,
{Ai : , Bi :} if (Ax+ a)i = (Bx+ b)i,
{Bi :} if (Ax+ a)i > (Bx+ b)i.

(2.20)

In view of these cases, it is useful to introduce the following index sets:

A(x) := {i ∈ [1 :m] : (Ax+ a)i < (Bx+ b)i},

B(x) := {i ∈ [1 :m] : (Ax+ a)i > (Bx+ b)i},

E(x) := {i ∈ [1 :m] : (Ax+ a)i = (Bx+ b)i},

E=(x) := {i ∈ E(x) : Ai, : = Bi, :},

E 6=(x) := {i ∈ E(x) : Ai, : 6= Bi, :}.
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The identities (2.19) and (2.20) readily imply that, a Jacobian J ∈ ∂BH(x) satisfies

Ji, : =

{

Ai : if i ∈ A(x) ∪ E=(x),
Bi : if i ∈ B(x) ∪ E=(x)

(2.22)

and that
∂BH(x) := {J ∈ L(Rn,Rm) : Ji, : = Ai, : , if i ∈ A(x),

Ji, : = Ai, : = Bi, : , if i ∈ E=(x),
Ji, : ∈ {Ai, : , Bi, :}, if i ∈ E 6=(x),
Ji, : = Bi, : , if i ∈ B(x)}.

(2.23)

The values that Ji, : can take for i ∈ E 6=(x) are more tricky to determine. In some places
below, our reasoning is expeditious, but it follows rather closely the meticulous treatment
made in [6, section 3.2.1]. To simplify the presentation, we assume in the sequel that

E 6=(x) = [1 : p],

for some p ∈ [1 :m] (actually, p = 0 if and only if E 6=(x) = ∅, in which case ∂BH(x) is
determined by (2.22)). For the rest of the discussion, assume that J ∈ ∂BH(x). Then,
by (2.20):

∀ i ∈ [1 : p] : Ji, : ∈ {Ai : , Bi :}.

However, as said above, the values of Ji, : cannot be determined componentwise, but all the
components J[1 : p], : must be considered simultaneously. To do so, one has to go back to the
definition (2.16) of the B-differential and consider a sequence {xk} ⊆ DH such that xk → x
andH ′(xk) → J . Since {xk} ⊆ DH and Ai, : 6= Bi, : , one cannot have (Axk+a)i = (Bxk+b)i
for i ∈ [1 : p] [6, lemma 2.1]. Therefore, one can find a subsequence K of indices k and a
partition (A0,B0) of E

6=(x) such that for all k ∈ K:

(Axk + a)A0
< (Bxk + b)A0

and (Axk + a)B0
> (Bxk + b)B0

. (2.24)

Therefore, for k ∈ K, H ′
i(xk) = Ai, : if i ∈ A0 andH ′

i(xk) = Bi, : if i ∈ B0. SinceH
′(xk) → J ,

it follows that

Ji, : =

{

Ai, : if i ∈ A0,
Bi, : if i ∈ B0.

(2.25)

Now, fixing k ∈ K, setting d := xk − x and using (Ax + a)i = (Bx+ b)i for i ∈ [1 : p], one
deduces from (2.24) that

(B −A)A0, :d > 0 and (B −A)B0, :d < 0. (2.26)

By these inequalities, we see that what matters here is the matrix

V := (B −A)TE 6=(x), : ∈ Rn×p. (2.27)

By (2.25), (2.26) and (2.27), we have found a sign vector s ∈ {±1}p defined by

si =

{

+1 if i ∈ A0 or Ji, : = Ai, :

−1 if i ∈ B0 or Ji, : = Bi, :
(2.28)

and a direction d ∈ Rn such that
s q (V Td) > 0. (2.29)
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In conclusion, for the matrix V given by (2.27), (2.28) and (2.29) show that we have found
an s ∈ S associated with the given J ∈ ∂BH(x).

The established link between J ∈ ∂BH(x) and s ∈ S can be formalized by the following
map

σ : J ∈ ∂BH(x) 7→ s ∈ S, where si =

{

+1 if Ji, : = Ai, :

−1 if Ji, : = Bi, :
(2.30)

and the following inclusion
σ(∂BH(x)) ⊆ S. (2.31)

An illustration of the problem when n = 2 and p = 3 is given in figure 2.2. Then,

v1

v2

v3





A1, :

A2, :

A3, :









B1, :

B2, :

B3, :









A1, :

A2, :

B3, :









B1, :

B2, :

A3, :









A1, :

B2, :

A3, :









B1, :

A2, :

B3, :





⊆ Dc
H − x

Figure 2.2: The vectors vi’s are given by vi = (B−A)Ti, : . The red lines are the “hyperplanes”

Hi := {d ∈ Rn : vTi d = 0}. Translated by x, these form the points where H, given
by (2.18), is nondifferentiable. The function H has a constant Jacobian in each of the 6
sectors (translated by x), which is the one that is indicated in the figure.

rank(V ) = 2 (if the columns of V are not all colinear) and |S| = 2p by (2.6a). The
situation is usually much more complex when n > 2 and p is larger.

2.6.3 From S to ∂BH(x)

In this section, we do the reverse operation of the one that was done in section 2.6.2 and
show how a Jacobian J ∈ ∂BH(x)) can be associated with a given sign vector s ∈ S.
We actually show that equality holds in (2.31). This will result from the inversion of the
bijective map σ:

σ−1 : s ∈ S 7→ J ∈ ∂BH(x), where Ji, : =

{

Ai, : if i ∈ [1 : p] and si = +1,
Bi, : if i ∈ [1 : p] and si = −1.

(2.32)

In (2.32), we have not specified the value of Ji, : for i /∈ [1 : p], which are actually given
by (2.22). It is this association that is used by bdiffmin, to compute the B-differential
∂BH(x) from the set S computed by isf.

Let V be given by (2.27) and s ∈ S (this sign vector set is associated with the given V ).
By (2.1), (2.29) holds for some d ∈ Rn. Introducing

A0 := {i ∈ [1 : p] : si = +1} and B0 := {i ∈ [1 : p] : si = −1},
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we get (2.26). Now, defining xk := x+tkd, for some {tk} ↓ 0, and using (Ax+a)i = (Bx+b)i
for i ∈ [1 : p], one deduces (2.24), which shows that xk ∈ DH and H ′(xk) is independent
of k and has the value H ′

i(xk) = Ai, : for i ∈ A0 and H ′
i(xk) = Bi, : for i ∈ B0. Therefore J

defined by (2.22) and

Ji, : :=

{

Ai : if i ∈ [1 : p] and si = +1
Bi : if i ∈ [1 : p] and si = −1

is in ∂BH(x).

3 The isf function

The Matlab function isf solves problem 2.1: for a given matrix V ∈ Rn×p, it computes the
sign vector set S given by (2.1); see section 2.1. The selected sign vectors are the leaves of
a tree of sign vectors of increasing size, called the S-tree below. The binary representation
of a sign vector s ∈ {±1}p is (s + 1)/2, which is indeed only formed of elements in {0, 1}.
This binary representation is useful, in particular, for printing s in a compact manner.

The name of the isf function stands for Incremental Sign Feasibility (not Impôt Sur
la Fortune). The term Incremental refers to the fact that the algorithm constructs the
S-tree of the sign vectors incrementally (and recursively). The term Sign refers to the
sign vectors computed by the function. The term Feasibility refers to the fact that the
feasibility of s q (V Td) > 0 in d ∈ Rn is used to select the appropriate sign vectors. Finally,
the juxtaposition of terms that is Incremental Sign Feasibility has a weak meaning, which
has the merit of bringing together the key concepts that characterize the function.

3.1 Specifications

function [info] = isf(V,options)

A description of the function can be obtained by entering “help isf” in Matlab. We only
describe here the main structure fields of input and output variable.

3.1.1 Input variables

V: This is the matrix V ∈ Rn×p from which the set S of sign vectors given by (2.1) is
computed. The dimensions n and p are deduced from the size of V . The matrix cannot
have a zero column; in this case S = ∅ and isf returns with info.flag = 3.

options: Structure array allowing the user to tune the behavior of isf. All options have
default values, so that the options argument can be omitted or set to [ ]. The following
options are available (they are given in alphabetic order of the field names).

options.bestv: integer in {0, 3} (default 0 if options.sv == 3, default 3 if options.sv
< 3; ignored if options.rc2018 == true or if options.withd == false). This option
can be used to modify the order in which the vectors vi’s (i.e., the columns of V ) are
considered for constructing the S-tree. By default, this order is that imposed by the
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QR factorization of V . When options.bestv > 0, a reordering is performed following
a heuristics whose aim is to decrease the number of nodes of the S-tree, which has an
impact on the number of linear optimization problems (LOP) that must be solved. Only
the values 0 and 3 are actually evaluated in [6].

= 0: no modification of the order, except that imposed by the QR factorization;
= 3: a reordering of the vectors is made so that the number of nodes of the S-tree

decreases (and therefore the number of LOP to solve).

options.dvnear0: logical (default true; ignored if options.rc2018 == true or if op-
tions.withd == false). If true, the S-tree algorithm constructs two descendants
when vTd is in a specific computed interval surrounding zero, without having to solve
a LOP or to use stem vectors if any (v is here the new considered vector and d is the
direction intervening in (2.1) at the current node of the S-tree).

options.fout: integer, default 1. First output channel containing all but the printing
made during the generation of the S-tree. Set 1 (default) for the standard output
(screen). For a specific file, use “options.fout = fopen(...)” before calling isf.

options.fout2: integer, default 1. Second output channel containing the printing made
during the generation of the S-tree. Set 1 (default) for the standard output (screen).
For a specific file, use “options.fout2 = fopen(...)” before calling isf.

options.rc2018: logical (default false). If true, the simulated Rada and Černý algo-
rithm of [18] is run, ignoring most other options.

options.s: logical (default true). If true, half the sign vectors s ∈ S are stored
in info.s, in binary representation. The other half can be obtained by symmetry:
ones(size(info.s))-info.s.

options.sc: logical (default false). If true and if options.sv < 3, half the sign vectors
s ∈ Sc are stored in info.sc, in binary representation. The other half can be obtained
by symmetry: ones(size(info.sc))-info.sc.

options.sv: integer in [0 : 3] (default 3; ignored if options.rc2018 == true). Deter-
mine whether and how many stem vectors (definition 2.3) must be used (the i of op-
tion Di in [6, section 5.2.5(D)]).

= 0: do not compute/use stem vectors;
= 1: use the p − r stem vectors that can be computed thanks to the QR factorization

of V (r denotes the rank of V ); this is not many, but it is inexpensive to compute;
= 2: in addition to the p − r stem vectors obtained with “options.sv = 1”, use the

dual solution to each linear optimization problem having no solution to add a stem
vector to the list (see [6, prosition 5.9]); this improves significantly the speed of
the algorithm, but requires to solve the LOP with the dual simplex method;

= 3: compute all the stem vectors at the beginning of the run (time consuming operation
when p is large).

options.verb: integer in [0 :∞] (default 1). Verbosity level of the output channel options.
fout.

= 0: isf works silently on channel options.fout;
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> 1: isf prints error messages, initial setting, final status on channel options.fout;
> 2: isf also prints more information on channel options.fout.

options.verb2: integer in [0 :∞] (default 1). Verbosity level of the output channel
options.fout2.

= 0: isf works silently on channel options.fout2;
> 1: isf also prints error messages and the binary representation of the sign vectors;
> 2: isf also prints the feasible directions d intervening in (2.1);
> 3: isf also prints some information at the intermediate steps of the recursivity pro-

cess;
> 4: isf also checks that the directions d intervening in (2.1) verify indeed s q(V Td) > 0,

which is a certificate on the correctness of the computation.

options.withd: logical; default true if options.sv < 3; default false if options.sv
== 3. If true, isf is required to compute a direction d (the one intervening in (2.1)) at
each node of the S-tree; this requires more computation, in particular for solving LOPs.

The table 3.1 below gives the combinations of options used in [6] to get the algorithms
named there “simulated rc” (Rada and Černý [18] simulated algorithm), isf(A), isf(AB),
isf(ABC), isf(ABCD1), isf(ABCD2), isf(ABCD3) and isf(AD4). As one can see in

options
Simulated

rc
isf(A) isf(AB) isf(ABC) isf(ABCD1) isf(ABCD2) isf(ABCD3) isf(AD4)

rc2018 true

dvnear0 — false

bestv — 0 0 3 3 3 3

sv — 0 0 0 1 2 3

withd — true

Table 3.1: Options to specify to get the algorithms used in [6]. Default values apply for
the unspecified options (these default values can depend on the values of other options).
The symbol “—” in the “simulated rc” column means that the option is not used in that
algorithm.

table 3.1, the default algorithm is isf(AD4), since this one is obtained by the default values
of the options rc2018, dvnear0, bestv, sv and withd. This does not mean, however, that
isf(AD4) is always the best (fastest) algorithm. This one actually depends on the problem
data. To this respect, one can give the following guidelines.

G1. The best (fastest) algorithm is always among the three following ones (those in the
blue columns of table 3.1)

isf(ABCD2), isf(ABCD3) and isf(AD4).

According to the tests realized in [6], the others are always worse in terms of the
number of linear optimization problems to solve and of the computing time (there
are reasons for this, see [6]). We mention them to make the link with the algorithms
benchmarked in [6], not to recommand their use.

G2. The algorithm isf(AD4) is particularly efficient when there is not too many stem
vectors. The reason is that in the current versioin of isf, it is time consuming to
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detect the stem vectors and to use them. Since the number of stem vectors rapidly
increases with p, the number p of columns of V should not be too large for algorithm
isf(AD4) to be efficient.

G3. When p becomes large, the algorithm isf(ABCD2) usually becomes faster than isf

(AD4).

G4. The algorithm isf(ABCD3) is somehow intermediate between isf(ABCD2) and isf

(AD4). It can be faster than isf(ABCD2), but then isf(AD4) is usually even much
faster. It can be faster than isf(AD4), but then isf(ABCD2) is usually even much
faster. Therefore, algorithm isf(ABCD3) could be chosen if one has no information
on what means a large p for the type of matrix V that one has to deal with.

3.1.2 Output variable

info: Structure array giving the output of isf, as well as information in the run. The
following fields are available.

info.flag: integer in [0 : 9] giving the diagnosis of the run.

= 0: the required job has been realized;
= 1: an input argument is wrong;
= 2: nothing to do since V has no column (p = 0);
= 3: one of the vectors V : ,i vanishes, implying that S = ∅;
= 4: when a direction d intervening in (2.1) is computed (options.withd == true) and

that the checking of s q (V Td) > 0 is asked (options.verb2 >= 4), this diagnosis
flag means that the checking failed; this should be due to rounding error;

= 5: one vector is opposite to another one, in which case S = ∅;
= 6: the linear optimization solver failed;
= 9: a “technical” problem has been encountered, which requires improvements of the

code.

info.ns: = |S|/2, half the number of sign vectors in S.

info.nsc: = |Sc|/2, half the number of sign vectors in Sc := {±1}p \ S.

info.s: matrix of size (info.ns)×p, whose rows give half the sign vectors s in S, in binary
representation. The other half can be obtained by symmetry: ones(size(info.s))-

info.s.

info.sc: if options.sc is true and options.sv < 3 (otherwise the field does not ex-
ist), it is a matrix of size (info.nsc) × p, whose rows give half the infeasible sign
vectors s in Sc, in binary representation. The other half can be obtained by symmetry:
ones(size(info.sc))-info.sc.

3.2 Example of use

Consider the example specified by the matrix

V =





1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1



 .
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Hence n = 3 and p = 6. Even though V is “simple”, determining S is not trivial. For this,
run isf with the given options (for example):

options.verb = 0;

options.verb2 = 0;

options.sv = 2;

options.sc = true; % requires options.sv < 3

[info] = isf(V,options);

Then, isf prints nothing on the standard output. At the end of the run, one can explore
the output structure info to have information on the run and on the computed values.

r Since info.flag is 0, the run is successful.

r Half the number of sign vectors in S is info.ns = 13 and half the number of sign vectors
in Sc is info.nsc = 19. Observe that 13 + 19 = 2p−1.

r In info.s, one finds the binary representation of half of the 26 sign vectors in S:

1 1 1 1 1 1

1 0 1 1 1 1

1 0 1 1 0 1

1 0 1 0 1 1

1 0 1 0 0 1

1 1 0 1 1 1

1 1 0 1 1 0

1 1 0 1 0 1

1 1 0 1 0 0

1 0 0 1 0 1

1 0 0 1 0 0

1 0 0 0 0 1

1 0 0 0 0 0

The other half of S can be obtained by symmetry (ones(size(info.s))-info.s):

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 1 0

0 1 0 1 0 0

0 1 0 1 1 0

0 0 1 0 0 0

0 0 1 0 0 1

0 0 1 0 1 0

0 0 1 0 1 1

0 1 1 0 1 0

0 1 1 0 1 1

0 1 1 1 1 0

0 1 1 1 1 1

r Since options.sc == true and options.sv < 3, one finds in info.sc the binary rep-
resentation of half of the 38 sign vectors in Sc:

1 1 1 1 1 0

1 1 1 1 0 0

1 1 1 1 0 1

1 1 1 0 0 0

1 1 1 0 0 1
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1 1 1 0 1 0

1 1 1 0 1 1

1 0 1 0 0 0

1 0 1 0 0 1

1 0 1 0 1 0

1 0 1 0 1 1

1 1 0 0 0 0

1 1 0 0 0 1

1 1 0 0 1 0

1 1 0 0 1 1

1 0 0 0 0 0

1 0 0 0 0 1

1 0 0 0 1 0

1 0 0 0 1 1

The other half of Sc can be obtained by symmetry (ones(size(info.sc))-info.sc):

0 0 0 0 0 1

0 0 0 0 1 1

0 0 0 0 1 0

0 0 0 1 1 1

0 0 0 1 1 0

0 0 0 1 0 1

0 0 0 1 0 0

0 1 0 1 1 1

0 1 0 1 1 0

0 1 0 1 0 1

0 1 0 1 0 0

0 0 1 1 1 1

0 0 1 1 1 0

0 0 1 1 0 1

0 0 1 1 0 0

0 1 1 1 1 1

0 1 1 1 1 0

0 1 1 1 0 1

0 1 1 1 0 0

4 The bdiffmin function

As already mentioned in section 2.6, bdiffmin computes the B-differential of the compo-
nentwise minimum of two affine vector functions, which is the function H in (2.18). As
explained in section 2.6.3, bdiffmin computes ∂BH(x) from the sign vector set S in (2.1),
obtained by running isf.

4.1 Specifications

function [info] = bdiffmin(A,a,B,b,x,options)

A description of the function can be obtained by entering “help bdiffmin” in Matlab. We
only describe here the main structure fields of input and output variable.

17



4.1.1 Input variables

A, a, B, b: these are the matrix A and B ∈ Rm×n and the vectors a and b ∈ Rm defining
the function H in (2.18). The dimensions m and n of the problem are deduced from the
size of these variables.

x: the point x ∈ Rn at which the B-differential must be computed.

options: structure array allowing the user to tune the behavior of bdiffmin. All options
have default values, so that the options argument can be omitted or set to [ ]. The
following options are available (they are given in alphabetic order of the field names).

options.bdiffc: logical, default false. If true the matrices that are in the set (4.1),
defined below, are listed in info.bdiffc.

options.eqtol: positive real number, default 1.e-8. Small value used to detect equality
of the components of Ax+ a and Bx+ b. If

|(Ax+ a)i − (Bx+ b)i| 6 options.eqtol,

the ith components of Ax+ a and Bx+ b are considered to be equal.

options.fout: integer, default 1. Output channel containing all the printings made
during the run of bdiffmin (nothing is printed from isf). Set 1 (default) for the
standard output (screen). For a specific file, use options.fout = fopen(...) before
calling bdiffmin;

options.verb: integer in [0 :∞] (default 1). Verbosity level of the output channel options.
fout.

= 0: bdiffmin works silently;
> 1: bdiffmin prints error messages, initial setting, final status on the channel options.

fout.

4.1.2 Output variable

info: Structure array giving the output of bdiffmin, as well as information on the run.
The following fields are specific to bdiffmin; other fields are inherited from isf.

info.bdiff: cell array containing all the Jacobians in ∂BH(x) ⊆ Rm×n.

info.bdiffc: (if options.bdiffc is true) cell array containing all the matrices in

(

∂BH1(x)× · · · × ∂BHm(x)
)

\ ∂BH(x). (4.1)

info.flag: integer in [0 : 11] giving the diagnosis of the run.

= 0: the required job has been realized;
= 11: an input argument of bdiffmin is wrong.

The other values of info.flag are inherited from those of the function isf.
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4.2 Example of use

Consider the following example that is the one considered in [7, section 5.2.9]:

A =





1 0 0
0 1 0
0 0 1



 , B =





2 0 0
0 2 1
1 1 2



 and a = b = x =





0
0
0





and run bdiffmin with that data and the following options:

options.verb = 0;

options.bdiffc = true; % to get the non-Jacobians

[info] = bdiffmin(A,a,B,b,x,options);

Then, bdiffmin prints nothing on the standard output. It forms the matrix V in (2.27),
which reads (note that E 6=(x) = [1 : 3])

V =





1 0 1
0 1 1
0 1 1



 .

Next, bdiffmin runs isf which is asked to work silently (in particular, nothing is printed on
the standard output). Let us examine the output structure info on return from bdiffmin

to have information on the run and on the computed values.

r Since info.flag is 0, the run is successful.

r The cell array info.bdiff contains all the Jacobians of the B-differential of x 7→
min(Ax+ a,Bx+ b) at the given x. If one executes

for i = 1:length(info.bdiff)

fprintf(’Jacobian %i\n’,i)

disp(info.bdiff{i});

end

one gets the 6 Jacobians in ∂BH(x):

Jacobian 1

1 0 0

0 1 0

0 0 1

Jacobian 2

1 0 0

0 2 1

0 0 1

Jacobian 3

1 0 0

0 2 1

1 1 2

Jacobian 4

2 0 0

0 1 0

0 0 1

Jacobian 5

2 0 0
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0 1 0

1 1 2

Jacobian 6

2 0 0

0 2 1

1 1 2

r Since bdiffmin was run with options.bdiffc set to true, the cell array info.bdiffc

contains all the matrices that are in the set (4.1). If one executes

for i = 1:length(info.bdiffc)

fprintf(’Matrix %i\n’,i)

disp(info.bdiffc{i});

end

one gets the 2 matrices in that set:

Matrix 1

1 0 0

0 1 0

1 1 2

Matrix 2

2 0 0

0 2 1

0 0 1
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