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Abstract

The simulation of corona discharges usually requires an excessive amount
of time. The objective of this work is therefore to reduce the CPU time of
corona discharges. The profound disparity between physical time scales in
a gas discharge renders explicit time integration impractical in large time
scale applications, for example in flow controls. We propose an implicit time
strategy in the scope of the Local Field Approximation plasma model. We
investigate some algorithms to solve the discretized plasma model, which are
adapted to take into consideration a constraint on the electron density. The
constraint is introduced to compensate for unaccounted sources of electrons;
it is expressed by a minimum/floor density imposed on the electrons. There-
fore, simplified plasma models can be employed for discharge simulations, for
instance a four-specie, four-reaction model is used in this article. The inves-
tigation is done on a one-dimensional wire-to-wire corona discharge. After
having identified the most suitable algorithm, we carry on to two-dimensional
wire-to-wire discharges and compare the numerical results with experiment
data for different floor densities.

Keywords: implicit method, corona discharge, LFA model, differential
inclusion

1. Introduction

In the past two decades plasma actuators have been extensively studied
for their applications in airflow control [1, 2], anti-icing [3] and flight sus-
taining [4], among many others. These devices are robust, light, low energy



consuming and easy to install, thus they have a potential interest for in-
dustrial use. A typical actuator usually consists of two or more electrodes
and/or a dielectric barrier that are capable to sustain a stable discharge. The
newborn ions from the ionization process are drifted along the field and col-
liding with neutral particles in air, creating an electro-hydrodynamic (EHD)
force. A lot of experimental efforts have been made to characterize the EHD
force [5, 6, 1, 7, 8, 9, 10, 11, 12, 13], to optimize the actuator geometry
[14, 15, 16, 17, 18] or to measure the dielectric surface charge [19, 20, 21].
Also during these years, a large numerical research has been conducted to
get more insights from a plasma discharge such as distribution density of
particles, how they interact with each other and with the potential field, how
they accumulate on the dielectric surface or how they dictate the onset of
different discharge phases [22, 23, 24, 25, 26, 27, 28, 29, 30].

For simulation of corona discharges, many fluid models have been pro-
posed throughout the years. Morrow [31] studied the discharge for concentric-
sphere electrodes with a set of evolution continuity equations for five species
(electrons, positive ions, negative ions, neutrals) coupled with a Poisson equa-
tion for the electrostatic potential. This approach took into account also the
electron source from photoionization but was not validated experimentally.
Adamiak & Atten [32] proposed a simplified, stationary model consisting of
the Poisson equation and a nonlinear equation for the space charge, at the
expense of capturing the discharge dynamics. This approached was validated
experimentally for different actuators such as point-to-plane [32], needle-to-
plane [33], wire-cylinder-plate [34] or needle-to-ring [35]. A similar model, but
evolutionary, was proposed by Guan et al. [36] but the boundary condition
for the charge equation depends on the experimental electric current. Chen
et al. [37] used a model similar to Morrow’s with three species (electrons,
positive ions, negative ions) to study negative needle-to-cylinder discharges
and validated experimentally. Photoionization was however neglected since
secondary emission from the cathode surface has more contribution for neg-
ative corona discharges [38].

Simulation of corona discharges proves to be very challenging in terms of
waiting time [31] since there is a disparity among characteristic time scales
of several phenomena within a discharge. For example, in flow control, the
time scale of air flow motion is on milliseconds, but the time scale of elec-
tron motion is only on picoseconds. Many numerical efforts have been made
to reduce the simulation time. Ventzek et al. [39] proposed a semi-implicit
scheme which allowed to compute the field implicitly and separately from the
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specie densities. Hagelaar [40] proposed a scheme in the same category in the
presence of the electron energy equation. Seimandi et al. [24] studied some
asymptotic models to reduce the problem dimension in the ionization lay-
ers near the electrodes. Dufour & Rogier developed a sub-cycling algorithm
in their multiscale plasma solver COPAIER [41]. The idea was to repeat-
edly “freeze” the field and ions motion and update the electron density in
the meantime. There are other numerical methods developed for studying
streamer propagation, such as fully coupled implicit schemes [42, 43, 44] or
asynchronous time stepping [45], but their application on corona discharges
does not seem to be obvious.

The description of all physicochemical processes in a non-equilibrium
plasma discharge is very complex. In air, the number of plasma-chemical
reactions can be as high as around 300 [46]. The integration of all processes
in the numerical model would be impractical for large time scale applica-
tions. Furthermore, some processes, such as photoionization, require a huge
computation effort. The effects of photoionization are very important to dis-
charge regimes such as streamer propagation because they are structurally
non-uniform and extremely sensitive to simulation conditions [47, 48], but
not for the glow regime in which we are interested [38] in this article. For
these reasons, we aim to drop most of the plasma-chemical processes, in-
cluding photoionization for the sake of simulation time. We enforce instead
a minimum/floor density on the electron density to compensate for unac-
counted sources of electrons. This approach was implemented in ONERA’s
in-house plasma solver COPAIER [41] with explicit time integration. Sim-
ulations with floor density have been contributing to the study of plasma
actuators [49, 50, 51, 52]. Recently, simulation results from [53] with a floor
density around 1011−1012m−3 showed good agreement with experiment data
for a wire-to-wing corona discharge.

The structure of this work is presented as follows. In section 2, we clarify
the integration of the floor densities to the plasma model. The enforcement
of a minimum density ψ on the charged particle density n can be seen as
a constraint: n ≥ ψ, which is not automatically satisfied by the solution of
the particle continuity equation, but necessitates the rewriting of the charged
specie conservation law under the form of a differential inclusion. Section 3
introduces the implicit time discretization of the plasma model and investi-
gates some algorithms to solve the differential inclusions numerically. Since
the problem is nonlinear, direct methods are not suitable to use and hence
splitting methods such as Lie operator splitting or iterative methods such
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as Douglas-Rachford or Gauss-Seidel algorithms are employed. However, we
shall see in section 4 that the Lie splitting is not a good candidate. In fact,
it does not conserve the steady state solution of a DC corona discharge since
the numerical electric current depends on the chosen time step. On the other
hand, the studied iterative methods do conserve the stationary solution and
therefore they should be preferred for simulations of corona discharges or
even of the corona phase in DBD discharges. Finally, section 5 discusses the
capability of the proposed model to reproduce the electric currents measured
in real physics experiments [7]. The studied case is a corona discharge gen-
erated by a wire-to-wire actuator and the simulations are conducted in two
dimensions with COPAIER.

2. Modeling of gas discharges with floor density

2.1. Simplified fluid model

We use the Local Field Approximation (LFA) model [54] to describe the
plasma dynamics. It is composed of a set of conservation laws coupled with
a Poisson equation. Let us assume that the discharge is contained in an
open bounded domain Ω ⊂ Rd (d = 1, 2, 3) (see fig. 1) and evolves on a
time interval (0, T ). Let us denote as L the set of particle species that are
considered in the discharge and as ni(t,x) (measured in m−3) the particle
density of the specie i ∈ L. The densities are grouped in a vector denoted as
U ≡ (ni)i∈L. The electrostatic field is denoted as E(t,x) (V m−1).

The generic form of the continuity equations for the species reads as
follows,

∂tU +∇ · F (E,U) = S(E/N,U), (t,x) ∈ (0, T )× Ω, (1)

where F ≡ (fi)i∈L, S ≡ (Si)i∈L, E ≡ |E| and N (m−3) is the air den-
sity. More precisely, fi(E,U) is the particle flux density of specie i and
Si(E/N,U) is the creation/decay rate per unit volume of i via plasma-
chemical processes. For x ∈ Ω, fi = uini − Di∇ni where ui(E) (ms−1)
is the drift velocity of i and Di(E/N) (m2s−1) is its diffusion rate. The
charged species are subject to a mobility law which reads as

ui = sign(zi)µiE,

where zi is the charge number of i and µi(E/N) (m2V −1s−1) is its mobility
coefficient. The field is derived from the electric potential φ as

E = −∇φ.
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The electric potential φ(t,x) (V ) is given by Gauss’ law,

−∇ · (ε∇φ) = ρ, (2)

where ε(x) (CV −1m−1) is the electric permittivity of the domain Ω, ρ ≡
q
∑
i∈L

zini (Cm−3) is the space charge density and q ≈ 1.6 × 10−19C is the

elementary charge. We assume for simplicity that ni, φ, E, Si are smooth
functions defined on (0, T )× Ω.

x

Ω

Γ

x1

x2

Figure 1: A two-dimensional open domain Ω with boundary Γ ≡ Ω \ Ω. The coordinates
of an arbitrary point is denoted as x.

The number of species and physicochemical reactions is generally very
numerous [46, 55]. In order to limit the complexity of the system, we adopt
a simplified model from J.-P. Bœuf et al.’s work [27] where the composition of
the ionized gas is lumped into four species: electrons (denoted as e), positive
ions (p), negative ions (n)1 and neutral particles (N). The reactions consist
only of Townsend ionization e+N → 2e+p, electron attachment e+N → n,
electron-ion recombination e+p→ N and ion-ion recombination p+n→ N .
In the following, we suppose that the neutral particle density, still denoted
as N , is constant and N = 2.5 × 1025m−3 at atmospheric pressure. The
plasma dynamics is thus decoupled from airflow dynamics, the discharge
model simply considers three continuity equations for ne, np, nn; therefore,
L = { e, p, n }. The specie source terms are written as,

Se = (α− η)Nne − kepnenp,
Sp = αNne − kepnenp − knpnnnp,

Sn = ηNne − knpnnnp,

where α, η, kep and knp (m3s−1) are resp. the ionization, electron attachment,
electron-ion recombination and ion-ion recombination coefficients, which are

1ze = −1, zp = +1, zn = −1
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positive. In the LFA model, these coefficients depend only on the reduced
field strength E/N . In the simulations, α, η are extracted from look-up
tables provided by the BOLSIG+ application [56]; kep = 2 × 10−13 and
knp = 1.7× 10−13.

As discussed in section 1, we introduce a positive and smooth function
on Ω,

ψ(x) ≥ 0,

which we dub floor density, to represent the smallest electron population
that exists because of unaccounted plasma-chemical processes. We enforce
the following constraint on the electron density,

ne(t,x) ≥ ψ(x), ∀(t,x) ∈ (0, T )× Ω. (3)

The problem as a whole is ill-posed since the solution of eq. (1) (for i = e)
may not respect eq. (3). Therefore, a new reformulation of the problem is
necessary.

Let us denote K as the closed convex set of smooth functions defined on
Ω that satisfy eq. (3), i.e.

K = { v | v ≥ ψ } 2.

The characteristic function of K is defined as

IK(v) =

{
0 if v ∈ K,
+∞ if v /∈ K.

The subdifferential [57, Proposition 3] of IK at v is a set of functions
defined as

∂IK(v) =


∅ if v /∈ K,
{ 0 } if v > ψ,

{ u | ∀w ∈ K, (u,w − v) ≤ 0 } otherwise,

(4)

where (·, ·) is a scalar product defined on a Hilbert space H such that for
every t ∈ (0, T ), ni(t, .) ∈ H, i ∈ L. For example, H = L2(Ω) and (u, v) =∫

Ω

u(x)v(x)dx.

2without ambiguity, all inequalities are point-wise, i.e. v(x) ≥ ψ(x) ∀x ∈ Ω

6



As we have discussed, the constraint eq. (3) may not be compatible with
eq. (1), but if we assume for now the contrary, i.e. ne(t, ·) ∈ K ∀t ∈ (0, T ),
then we would have from eq. (1) that

Se − ∂tne −∇ · fe + ne = ne ≥ ψ, ∀(t,x) ∈ (0, T )× Ω,

Having these relations suggests that the projection on K of the left-hand
side is ne. On the other hand, we have the following functional analysis
theorem [58].

Theorem 1 (Projection on a closed convex). Let K ⊂ H be a non empty
closed convex. Then for all v ∈ H, there exists a unique u ∈ K (its projec-
tion) such that,

|v − u| = min
w∈K
|v − w|,

where | · | is the norm induced from (·, ·). Furthermore, u is characterized by
the property

(v − u,w − u) ≤ 0, ∀w ∈ K.
Thus, we have (Se − ∂tne −∇ · fe + ne − ne, w − ne) ≤ 0 for all w ∈

K and t ∈ (0, T ). This and eq. (4) imply that Se(t, ·) − ∂tne(t, ·) − ∇ ·
fe(t, ·) is an element of the set ∂IK

(
ne(t, ·)

)
for all t ∈ (0, T ). Let us denote

Sψ(t) ≡ −∂IK
(
ne(t, ·)

)
. The electron conservation law which integrates the

floor density ψ now transforms into a differential inclusion [59] which reads
as

∂tne(t, ·) +∇ · fe(t, ·) ∈ Se(t, ·) + Sψ(t)3, ∀t ∈ (0, T ). (5)

Finally, the simplified LFA model reads as follows,
∂tU +∇ · F ∈ S +

 Sψ

0

0

 ,

U(0, ·) = U 0,

∇ · (εE) = ρ,

(6)

where U 0 = (n0
e n0

p n0
n)t and n0

i are smooth functions defined on Ω.
We remark that the above system is not charge conservative, i.e. ∂tρ+∇·

j 6= 04. However, since the floor density ψ that we choose in the simulations

3Se(t, ·) + Sψ(t) ≡ { Se(t, ·) + v | v ∈ Sψ(t) }
4j ≡ q(fp − fn − fe) is the conduction current density
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is much less than the charge density in corona discharges (see section 5.1),
the charge conservation issue does not have much influence on the studied
discharges.

Another remark is that the sign of Se and ∂tne +∇ · fe in eq. (5) is not
arbitrarily chosen (we could have otherwise Se ∈ ∂tne + ∇ · fe + Sψ). The
existence and uniqueness of solution of the nonlinear problem eq. (5) are
subject of classical studies based on the theory of monotone operators [60]
and variational inequalities [61, 62, 63].

2.2. Boundary conditions

The boundary conditions for the conservation laws are imposed on the
fluxes fi. Different boundary conditions exist and each is defined on a non-
overlapping boundary portion Γk. The union of these portions is the domain
boundary Γ: Γ = ∪kΓk (see fig. 10 for example).

1. For free-flow boundaries Γf , which are fictive interfaces between the
discharge domain and the outer air space, we assume that they are far
enough from the discharge so that the potential and density gradients
are null, i.e.

(E · ν)|Γf = 0,

fi|Γf ≡ (fi · ν)|Γf = (niui · ν)|Γf = 0, i ∈ L,
(7)

where ν(x) is the unit outward normal of Ω at x ∈ Γ.

2. For wall boundaries Γw, which are physical interfaces between the dis-
charge domain and the electrodes5, we determine the specie fluxes using
the two-stream approach [64]. We assume that there is no particle re-
flection on the walls and only electron secondary emission due to ion
bombardment is involved. The boundary conditions read as

φ|Γw = φ0,

fi|Γw =
(
ni max (ui · ν, 0)

)
|Γw
, i ∈ L \ { e } ,

fe|Γw =
1

2

(
8kBTe
πme

) 1
2

ne|Γw − 2γfp|Γw .

(8)

5we do not consider interfaces with dielectric material: they do not appear in the
discharges studied in this article
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where φ0 is the electrode voltage, kB is the Boltzmann constant, Te is
the electron temperature, me is the electron mass and γ is the secondary
emission coefficient. We set Te = 2eV and γ = 10−4.

3. For symmetric boundaries Γs, which are fictive interfaces between sym-
metric discharge domains, the boundary conditions are

(E · ν)|Γs = 0,

fi|Γs = 0, i ∈ L.
(9)

2.3. Natural sources of charged species in normal condition

We assume that all the discharges in this paper are simulated in open
space air. The level of pre-ionization charged species is dictated by natural
radioactive decays, especially those of radon [65]. The appearance rate of
an electron-positive ion pair is up to 109m−3s−1 which yields an equilibrium
density of 109 − 1010m−3. The floor density ψ can also be envisioned to
include the naturally formed electrons.

3. Numerical methods

3.1. Key features

A complete description of the COPAIER solver is found in [41], so we
only highlight here some useful elements.

Numerical grids are locally refined near the electrodes where the ioniza-
tion process is most active. This proves to be vital to the simulations as
pointed out in section 4, where the electric currents do not exhibit artifact
pulses like those in [23] for instance. The discharges studied in this paper
do not develop streamers so only fixed grids are sufficient. The grids used in
section 5 are triangular and generated by the Gmsh application [66].

The cell-centered finite volume approach is employed to discretized the
continuity equations/inclusions. The Scharfetter-Gummel scheme [67] as well
as the SGCC scheme [68] are used to flux approximation, although the latter
has not yet been implemented in COPAIER. The P1-Lagrange finite element
method is used to solve the Poisson equation.

Explicit time integration is customary in COPAIER. The numerical time
step suffers some upper limitations. For example, on an one-dimensional
uniform grid with step size ∆x and at the time level tl, the time step ∆tl ≡
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tl+1 − tl must satisfy6

∆tl ≤ min
x

(
∆x

|ue

(
E(tl,x)

)
|

tanh
|ue

(
E(tl,x)

)
|∆x

2De

(
E(tl,x)

) )
≡ ∆tle,

∆tl ≤ min
i,x

(
∆x

|ui|
tanh

|ui|∆x
2Di

)
≡ ∆tlions, i ∈ L \ { e } ,

∆tl ≤ min
x

(
ε(x)

σ(tl,x)

)
≡ ∆tlφ.

In corona discharges, the dielectric relaxation time ∆tlφ is much larger

than the CFL condition ∆tle (a factor 104−107). The latter is around 10−13−
10−12s comparing to the target physical time 10−3s. This huge discrepancy
results in unbearable waiting time which can amount to weeks or even months
in two-dimensional simulations, even on multi MPI processes. Therefore we
could treat the conservation laws eq. (5) implicitly and then update the
potential by eq. (2) after the charge density is up-to-date.

3.2. Discrete plasma model

For l ≥ 0, let U l(x) be an approximation of U(tl,x) at discrete time tl

(and similarly for φ, ui, Di, α, η, kep, knp) and ∂tU (tl+1) be approximated

by
U l+1 −U l

∆tl
, we consider the following time discretization of eq. (6),


U l+1 −U l

∆tl
+∇ · F (El,U l+1) ∈ S(El/N, Ũ) +

 Sl+1
ψ

0

0

 ,

∇ · (ε∇El+1) = ρl+1,

(10)

with

S(El/N, Ũ) =

 (αl − ηl)Nnl+1
e − klepnl+1

e nlp + Sl+1
ψ

αlNnl+1
e − klepnl+1

e nlp − klnpnlnnlp
ηlNnl+1

e − klnpnlnnlp


6σ(t,x) ≡ q

∑
i∈L

|zi|µi
(
E(t,x)

)
ni(t,x) is the electrical conductivity
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and Slψ ≡ Sψ(tl) = −∂K
(
ne(t

l, ·)
)
. We remark that the coefficients ue, Di,

α, η, kep, knp are computed from the potential φl, so the Poisson equation
is decoupled from the specie conservation laws. Also, in the recombination
terms, only the electron density is taken at tl+1. This choice was made to
reduce the non-linearity of the system and because the recombination rates
are much smaller than the ionization rate in corona discharges. The proposed
discrete model is quite similar to the one proposed in [69] except the non-
linearity only stemming from Sψ.

Let us denote as I the identity operator,

Al : U 7→

∇ · fe(El,U)− (αl − ηl)Nne + klepnen
l
p

∇ · fp(El,U)− αlNne + klepnen
l
p

∇ · fn(El,U)− ηlNne + klnpn
l
nn

l
p

 ≡

(
AlU

)
e(

AlU
)
p(

AlU
)
n

 ,

Bψ : U 7→

 −Sψ0
0

 and Rl =

 nle
nlp −∆tlklnpn

l
nn

l
p

nln −∆tlklnpn
l
nn

l
p

 ≡
 Rl

e

Rl
p

Rl
n

. Then at

tl, the semi-discrete (in time) conservation laws of eq. (10) can be rewritten
as

(I + ∆tlAl + ∆tlBψ)U l+1 3 Rl. (11)

K
xK

xK,λ
νK

λ

Ω

Figure 2: A triangulation T of a polygonal domain Ω in R2

Furthermore, let us consider a polygonal domain Ω in R2 and a mesh T
consisting of closed polygonal convex subsets of Ω (see fig. 2). For an element
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K ∈ T , we denote as EK the set of its edges. Let us consider the electron
conservation law of eq. (10),

nl+1
e − nle

∆tl
+∇ · fe(El,U l+1)− (αl − ηl)Nnl+1

e + klepn
l+1
e nlp = h,

where h is an element of Sl+1
ψ . Now integrating this equation on K and

dividing it by |K|, we have

nl+1
e,K − nle,K

∆tl
+

1

|K|
∑
λ∈EK

∫
λ

fe · νKdl−
(
(αl − ηl)Nnl+1

e

)
K

+
(
klepn

l+1
e nlp

)
K

= hK ,

where vK ≡
1

|K|

∫
K

v(x)dx for any function v, dl is the unit length element

and νK(x) is the unit outward normal of K at x ∈ λ ∈ EK . We approximate
αl(x) for x ∈ K (and similarly for η, kep) by αl(xK) ≡ αlK with xK the

center of K,

∫
λ

fe · νKdl by |λ|fe,K,λ · νK,λ ≡ |λ|fe(xK,λ) · νK(xK,λ) with

xK,λ the center of λ ∈ EK and then nenp by nenp. Finally we have

nl+1
e,K − nle,K

∆tl
+

1

|K|
∑
λ∈EK

|λ|fe,K,λ · νK,λ − (αlK − ηlK)Nnl+1
e,K + klep,Kn

l+1
e,Kn

l
p,K ≈ hK ,

(12)

for every K ∈ T . Now for any smooth function v defined on Ω, we define a
piecewise constant function v on Ω such that

v(x) = vK , ∀x ∈ K \ ∪λ∈EKλ.

It is not evident how h with h ∈ Sl+1
ψ relates to ψ and ne. Therefore, we

make an assumption that

h ∈ Sψ(nle) ≡ −∂IK(nle), K =
{
v
∣∣ v ≥ ψ

}
. (13)

Finally, using the Scharfetter-Gummel scheme7 [67] to approximate the
fluxes fi,K,λ · νK,λ, i ∈ L yields a linear relation of (ni,K)K∈T . The left-hand

7see Appendix A
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side of eq. (12), combining with similar equations for other species, can be
written in the same way of eq. (11) as follows,

(I + ∆tlAl + ∆tlBψ)U
l+1 3 Rl

, (14)

where U
l ≡ (nle,K nlp,K nln,K)tK∈T ∈ R|L||T |, I is the identity matrix, Al is

a |L||T | × |L||T | matrix which is the discrete counterpart of Al and R
l

is

the discrete counterpart of Rl. We remark that writing BψU
l+1

is a notation

abuse since U
l+1

is a discrete vector; eq. (14) should be understood in the
sense of eq. (12).

We shall investigate in the next section some algorithms to solve the
(semi-)discrete conservation laws eq. (11)/eq. (14).

3.3. Solving the conservation laws

The complex structure of the operator I+∆tlAl+∆tlBψ makes the eval-

uation of (I+ ∆tA+ ∆tB)−1R
l

hard to achieve. Therefore, we explore some
splitting and iterative methods to solve this problem, namely the Lie opera-
tor splitting, the Douglas-Rachford method [70] and a Gauss-Seidel-inspired
algorithm. The first one is a classical and very simple method to implement.
The second one is also classical and well known in convex optimization [71].
The last method is derived from the Gauss-Seidel algorithm which is used for
solving linear systems. We shall compare these methods further in section 4.

Let us remark first of all that the operator ∂IK is maximal monotone on
the Hilbert H. We recall that a (multivalued) operator A is monotone if

(y − u,w − v) ≥ 0, ∀v, w ∈ D(A) ⊂ H, u ∈ A(v), y ∈ A(w),

where D(A) is the domain of A; and is maximal monotone if its resolvent
J∆t
A ≡ (I + ∆tA)−1 is a contraction defined on H [70]. In our case, if

(I + ∆tl∂IK)w 3 y then from the definition eq. (4) we have,

y − w
∆tl

∈ ∂IK(n) ⇐⇒ ∀v ∈ K, (y − w, v − w) ≤ 0.

It is shown that w is the projection of y onK, i.e. w(x) = max(y(x), ψ(x)),
which is unique according to theorem 1 and easily shown to be a contraction.
Therefore, if Y = (ye yp yn)t then

J∆tl

Bψ Y ≡ (I + ∆tlBψ)−1Y =
(

max(ye, ψ) yp yn
)t
. (15)
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Hence, from eq. (11) the electron density at tl+1 is nl+1
e = max(Rl

e −
∆tl(AlU l+1)e, ψ) which implies that nl+1

e = max(Rl
e −∆tl(AlU l+1)e, ψ). By

this point, making the assumption eq. (13) is in fact to approximate the right-
hand side with max

(
Rl
e −∆tl(AlU l+1)e, ψ

)
. Further approximations of flux

and chemical coefficients lead finally to nl+1
e = max

(
R
l

e −∆tl(AlU l+1
)e, ψ

)
,

which is the electron density solution of eq. (14).

Another remark is that J∆tl

Bψ is independent of ∆tl, which means that the
electrons are created instantaneously to reach the floor density. Therefore,
we can omit the time step and write JBψ instead of J∆tl

Bψ .

3.3.1. Lie splitting

The simplest operator splitting method is the Lie algorithm which is first-

order in time. At tl, we compute the numerical solution, still denoted asU
l+1

,
by

U
l+1

= JBψJ
∆tl

Al
R
l
. (16)

The evaluation of J∆tl

Al
R
l
is classical since it is equivalent to inverting a linear

system.

3.3.2. Douglas-Rachford algorithm

The second method that we consider is the Douglas-Rachford algorithm
[70, 72]. The original method was introduced as a first-order-in-time operator
splitting to solve the evolution problem{

∂τU + (A+B)U 3 R,
U(τ = 0) = U0 ∈ D(A) ∩ D(B),

(17)

where A and B are maximal monotone operators. The algorithm is described
as follows: we choose V 0 ∈ (I + ∆τB)U0 and for m ≥ 0 define

V m+1 = J∆τ
A (2J∆τ

B − I)V m + (I − J∆τ
B )V m + ∆τJ∆τ

A R.

The approximation of U at time m∆τ is then Um = J∆τ
B V m. A crucial

property of this method is that as m→∞, Um converges to the steady-state
solution U∞ of eq. (17) (i.e. (A+B)U∞ 3 R) if the latter exists.

We adopt the Douglas-Rachford algorithm to solve the semi-discrete prob-
lem eq. (11) by considering it as a stationary problem. More precisely, we
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search for the steady-state solution of the following pseudotime [73] problem,∂τU(τ) +

(
I

∆tl
+Al + Bψ

)
U(τ) 3 1

∆tl
Rl,

U(0) = U l,

where τ is the pseudotime. We apply the Douglas-Rachford algorithm for

A =
I

∆tl
+Al, B = Bψ, R =

1

∆tl
Rl, ∆τ = ∆tl,

and when it converges, we put U l+1 = U∞.
The requirement that A is monotone imposes a constraint on the time

step ∆tl which is related to the Townsend ionization rate α. For simplicity,
let us assume that Di, ui, α are constant and other reaction coefficients are
null. We define the scalar product on the space H ≡ H ×H ×H as

(U ,V )H = (ne, we) + (np, wp) + (nn, wn),

with U = (ne np nn)t, V = (we wp wn)t. Since A is a linear operator it
is sufficient to check the sign of (AU ,U )H. By some algebraic manipulation
we have

(AU ,U)H =
1

∆tl

∑
i∈L

|ni|2 +
∑
i∈L

Di|∇ni|2 +
1

2

∑
i∈L

∫
Γ

(ui · ν)n2
idl− αN |ne|(1 + |np|).

For (AU ,U)H ≥ 0, ∆tl must satisfy

∆tl ≤
(
αN |ne|(1 + |np|)−

∑
i∈L

Di|∇ni|2 −
1

2

∑
i∈L

∫
Γ

(ui · ν)n2
idl
)−1∑

i∈L

|ni|2.

(18)

In case of very large α such as in streamers or microdischarges, the time step
is severely restricted in spite of implicit integration.

Finally, the discrete version of the Douglas-Rachford method is presented
in algorithm 1.

3.3.3. Gauss-Seidel algorithm

For a discrete linear system AU = R where A is a square matrix, the
solution U can be obtained iteratively via

Um+1 = (M +D)−1 (R−NUm) , m ≥ 0,
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Algorithm 1 Douglas-Rachford

1: Let ε > 0, U0 = U
l
, V 0 ∈ (I + ∆tlBψ)U0, δ > ε

2: while δ > ε do
3: Set V m+1 = J1

I+∆tlAl
(2JBψ − I)V m + (I − JBψ)V m + J1

I+∆tlAl
R
l

4: Set Um+1 = JBψV
m+1 and let

(
n(m+1)
e n(m+1)

p n(m+1)
n

)t
= Um+1

5: Update δ = max
i∈L

(
|n(m+1)
i − n(m)

i |∞
|n(m)
i |∞

)
where | · |∞ is the L∞ norm

defined on H
6: end while
7: Set U

l+1
= Um

where U0 is an initial guess, D, M , N are resp. the diagonal, strictly lower
and upper triangular components of A. By using the forward substitution,
the elements of Um can be computed sequentially as follows,

Um+1
p =

1

1 + App

(
Rp −

∑
q>p

ApqU
m
q −

∑
q<p

ApqU
m+1
q

)
, p = 1, 2, . . . ,

where Um
p is the pth element of Um and Apq is the element of A on the pth

row and qth column.
For the nonlinear problem eq. (14), by analogy to the Gauss-Seidel method

we propose the following iteration for forward substitution,

Um+1 = (I + ∆tlMl + ∆tlDl + ∆tlBψ)−1
(
R
l −∆tlN lUm

)
,

where Dl,Ml, N l are resp. the diagonal, strictly lower and upper triangular

components of Al. Its element-wise form reads as(
I +

∆tl

1 + ∆tlAlpp
Bψ

)
Um+1
p =

1

1 + ∆tlAlpp

(
R
l

p −∆tl
∑
q>p

AlpqUm
q −∆tl

∑
q<p

AlpqUm+1
q

)
.

As long as 1 + ∆tlAlpp > 08, ∀p so that
∆tl

1 + ∆tlAlpp
Bψ is monotone, the

8this imposes a restriction on ∆tl which is a discrete and local (on each cell K ∈ T )
version of eq. (18)
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resolvent of Bψ is well defined as in eq. (15) and we have

Um+1
p =

JBψ

1 + ∆tlAlpp

(
R
l

p −∆tl
∑
q>p

AlpqUm
q −∆tl

∑
q<p

AlpqUm+1
q

)
.

The complete description of the proposed algorithm is presented in algo-
rithm 2.

Algorithm 2 Gauss-Seidel

1: Let ε > 0, U0 = U
l
, δ > ε

2: while δ > ε do
3: Forward substitution
4: Um+ 1

2 = (I + ∆tlMl + ∆tlDl + ∆tlBψ)−1
(
R
l −∆tlN lUm

)
5: Backward substitution
6: Um+1 = (I + ∆tlN l + ∆tlDl + ∆tlBψ)−1

(
R
l −∆tlMlUm+ 1

2

)
7: Let

(
n(m+1)
e n(m+1)

p n(m+1)
n

)t
= Um+1

8: Update δ = max
i∈L

(
|n(m+1)
i − n(m)

i |∞
|n(m)
i |∞

)
9: end while

10: Set U
l+1

= Um

4. Comparison of algorithms in one-dimensional discharges

Our first test case is the wire-to-wire corona discharge proposed in [23].
The sketch of the actuator is illustrated in fig. 3. It is composed of a small
wire of radius r1 = 0.35mm and a bigger wire r2 = 1mm, parallel to each
other and d = 40mm apart. The wires are L = 16cm long. Between them we
apply a voltage VG = 40kV . The computational domain is the straight line
Γ0 in the figure, which is well meshed near the electrodes to capture correctly
the ionization process.

If we suppose that the plasma is uniform along the wires then the three-
dimensional problem can be easily transformed into a two-dimensional one.
In order to transform it into a one-dimensional problem, we suppose that
the plasma is contained in a layer whose thickness S depends on the space

coordinate x (see fig. 3). S(x) is compute from the relation
d(VextS)

dx
= 0,
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S(x) r2r1

VG

x

Γ0

Figure 3: Wire-to-wire actuator schematics

where Vext is the analytic expression of the electrostatic potential generated
by the electrodes, which can be found in [23]. We set max

x
S = 5mm.

We set n0
p = n0

e = 109m−3 accordingly to section 2.3. On the contrary,

the seed negative ion density is considered negligible: n0
n = 1m−3.

For this one-dimensional test, we suppose that Dp = Dn = 0. By affecting
the variable change vi = Sni, the quasi-2D model reads as follows,

∂tve +∇ · (uSe ve −De∇ve) ∈ (α− η)Nve − kSepvevp + SSψ,

∂tvp +∇ · (upvp) = αNve − kSepvevp − kSnpvnvp,
∂tvn +∇ · (unvn) = ηNve − kSnpvnvp,
vi(t = 0) = Sn0

i , i ∈ L,

−∇ · (εS∇φ) = q
∑
i∈L

zivi,

with uSe = −µeE +DeS
′/S, kSep = kep/S and kSnp = knp/S.

4.1. Conservation of steady state

We define the steady state of a corona discharge as when the value of the
electric current does not change more than 10−4%. The analytic expression of
the total current I is given in [23]. For the described test case, it happens that
the steady state exists, but the capacity of the code to reproduce this steady
state depends strongly on the algorithm used to solve the specie conservation
laws as we show in the next paragraphs. In this section, all the simulations are
conducted on a 400-element grid with the smallest cell size ∆xmin = 5.5µm,
and using the Scharfetter-Gummel scheme as the flux approximation method.
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We compute the time step as ∆t = min(c∆tions,∆tφ)9. When the simu-
lations occur between 0 and 0.04ms, we fix c = 10−2 since at the discharge
onset, there is a rapid charge multiplication and as a result, the dielectric
relaxation time ∆φ decreases quickly and so having a small time step ∆t
ensures that the plasma dynamics are captured correctly. After 0.04ms, we
choose the value of c between 1 and 102. After around 0.4ms, the discharge
enters the ion collection phase and we have c∆tions < ∆tφ.

Lie splitting. The computed electric currents with the Lie algorithm are
shown in fig. 4. The discharges were simulated until T = 7ms when we
obtained steady states. We show that the Lie splitting does not conserve
the steady state: indeed, the current changes when we vary the time step.
We also show the electric current obtained with the forward Euler scheme as
reference (black dashed line).

1 2 3 4 5 6 7

1.2× 102

1.4× 102

1.6× 102

1.8× 102

2× 102

t (ms)

I
(µ
A

)

c = 1
c = 10
c = 20

Figure 4: Lie splitting: electric current I with different CFL numbers c

Douglas-Rachford algorithm. We defined the stop criterion as ε = 0.0001%
(see algorithm 1). The electric current at steady state is conserved by the
Douglas-Rachford algorithm as shown in fig. 5. This feature was remarked

9c is the CFL number
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in [70]. At T = 7ms, the current of ∆t = 102×∆tL differs only 0.007% from
the current of ∆t = ∆tL.

1 2 3 4 5 6 7

1.9× 102

2× 102

2.1× 102

t (ms)

I
(µ
A

)
c = 1
c = 10

c = 102

Figure 5: Douglas-Rachford algorithm: electric current I with different CFL numbers c

Gauss-Seidel algorithm. We defined the stop criterion as ε = 10−4% (see
algorithm 2). The electric current at steady state is also conserved by the
Gauss-Seidel algorithm as shown in fig. 6. At T = 7ms, the current of
∆t = 102 ×∆tL differs only 8× 10−7% from the current of ∆t = ∆tL.

1 2 3 4 5 6 7

1.9× 102

2× 102

2.1× 102

t (ms)

I
(µ
A

)

c = 1
c = 10

c = 102

Figure 6: Gauss-Seidel algorithm: electric current I with different CFL numbers c

4.2. Performance comparison of DR and GS algorithms

We have seen that the steady state current computed with the Douglas-
Rachford (DR) and Gauss-Seidel (GS) algorithms is virtually independent
of the time step. Therefore, these algorithms should be preferred over the
Lie splitting to conduct implicit simulations of corona discharges. However,
there is a huge difference between the two methods in term of computation
time as shown in table 1.

In order to understand why, we count the number of iterations N(tl) at
each time level tl that is necessary for the algorithms to converge. Then we

20



evaluate the averaged number of iterations N by dividing it with the number
of time levels. Furthermore, we only count the iterations from T = 1ms to
7ms, since before 1ms the dielectric time step ∆tφ can fall below c∆tions so
N(tl) would not depend on c. To sum up, we have,

N =

7ms∑
tl=1ms

N(tl)

Number of time levels
.

c
DR GS

N CPU time N CPU time
1 14 45 1 17
10 84 26 1.13 4.65
100 856 24 1.33 1.68

Table 1: Averaged number of iterations & CPU time (minutes) of Douglas-Rachford and
Gauss-Seidel algorithms for corona discharge simulations on the 400-element grid

We remark from table 1 that the averaged number of iterations of the
DR algorithm scales almost linearly with c. This explains why the DR sim-
ulation time is not shortened although we increase the time step. On the
contrary, the averaged number of iterations of the GS algorithm is almost
the same regardless of the time step and boosts significantly the simulation
time. Therefore, we exclusively use the GS algorithm from now on.

4.3. Mesh convergence

In this section, we conduct a mesh convergence study to ensure that the
Gauss-Seidel algorithm, combining with the SGCC flux schemes [68], is able
to capture correctly the discharge dynamics. We perform the simulations
on five grids with 400 cells (∆xmin = 5.5µm), 800 cells (2.6µm), 1600 cells
(1.3µm), 3200 cells (0.6µm) and 6400 cells (0.3µm). We use the Scharfetter-
Gummel scheme and the SGCC1, SGCC2 schemes [68] for flux approxima-
tion. Since the latter two are non-linear because of slope limiters, we use the
fixed-point algorithm to iterate on the slopes10.

10see Appendix B
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The electric currents of each flux scheme are shown in fig. 7, fig. 8 and
fig. 9. They are compared to the current of the SGCC2 scheme obtained on
the 0.3µm-grid (the black dashed curve). We can conclude that the whole
numerical scheme is able to perform corona discharge simulation with confi-
dence by observing that the electric currents converged to the black reference
curve as the mesh size decreased. We also remark the high-order flux schemes
(SGCC1, SGCC2) increased significantly the numerical precision.

1 2 3 4 5 6 7

0.8× 102

1× 102

1.2× 102

1.4× 102

1.6× 102

1.8× 102

2× 102

2.2× 102

t (ms)

I
(µ
A

)

5.5 µm 2.6 µm 1.3 µm
0.6 µm 0.3 µm Ref

Figure 7: Scharfetter-Gummel flux scheme: electric current I with different mesh size
∆xmin

Finally, we note that a mesh convergence study for the SGCC schemes
with explicit time integration was partially conducted in [68] but the simula-
tion with the 3200-element grid was only launched until 300µs. The reason
is that it would have taken months to obtain the steady state current. In
this paper, the simulations are rapid. For example, a computation with the
SGCC2 scheme takes only an hour on the 3200-element grid and 4 hours on
the 6400-element grid11.

11on a Dell Latitude 5410
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Figure 8: SGCC1 flux scheme: electric currentI with different mesh size ∆xmin
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Figure 9: SGCC2 flux scheme: electric currentI with different mesh size ∆xmin
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5. Two-dimensional simulations of DC corona discharges

The same wire-to-wire discharges in section 4 are now studied here. A
sketch of the actuator in two-dimension is presented in fig. 10. The electrodes
are connected to a resistor R. The presence of the circuit resistance modifies
of course the voltage Va at the anode following the relation Va = VG − RI.
The computation of Va is given in [23]. The zone inside the solid-line loop is
the computation domain. Since we assume that the wires are hanged in air,
the bottom boundary condition is symmetric. The domain height equals to
h. The distance between an electrode and its closest vertical border equals
to l.

r2r1

VGR

ΩΓf Γf

Γf

Γs Γs Γs

Γw

Γw

Figure 10: Sketch of the computation domain

The particular geometry of the wire-to-wire actuator intensifies the elec-
trostatic field in the electrodes vicinity [74]. Therefore, all the chemical
reactions are much stronger in these zones than they are in the region be-
tween the wires. As a result, the numerical grids that we use are strongly
refined near the electrodes as illustrated in fig. 11. The minimal grid size is
fixed to a value ∆xmin.

We set n0
p = n0

e = 109m−3 accordingly to section 2.3. On the contrary,

the seed negative ion density is considered negligible: n0
n = 1m−3.

The characteristics of the actuator and the numerical parameters are
grouped in table 2.
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Figure 11: Example of grid refinement near the smaller wire generated by Gmsh [66]

r1 0.1 to 0.5mm VG 9 to 37kV ∆xmin 5µm
r2 1mm R 10kΩ n0

e 109m−3

L 20cm h 8mm n0
p 109m−3

d 10 to 40mm l 4mm n0
n 1m−3

Table 2: Parameters of the wire-to-wire simulations

5.1. Steady-state solution

We present the numerical results for a case of VG = 13kV , r1 = 0.1mm,
d = 10mm, ψ = 1010m−3 and ∆xmin = 5µm. To avoid the formation of
streamers that can reduce significantly the dielectric time step and prolong
the simulation, we increase the voltage gradually on 2µs until it reaches the
maximal value VG.

We set the CFL number to c = 103 and run the simulation on four MPI
processes12. The waiting time of our implicit method is about three to four
hours instead of a week for explicit methods in COPAIER.

Figure 12 shows the x-component of the EHD force density Fx ≡ ρEx at
T = 4ms when the discharge reaches the steady state. The result shows that
between the electrodes, there is a force density of 16kNm−3 which directs
towards the cathode. On the left of the anode, the EHD reverses sign and
reaches −4.6kNm−3. Overall, the force density radiates from and concen-
trates near the anode.

12see Appendix C
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Figure 12: EHD force density Fx (Nm−3) at T = 4ms for r1 = 0.1mm, d = 10mm,
VG = 13kV , ψ = 1010m−3 (figure reflected on symmetric boundaries)

5.2. Influence of the floor density on numerical discharges

We conduct a parametric study in which we compute the steady state
current for each (constant) floor density ψ. In fig. 13, we show the ψ − I
curves for fixed r1 = 0.1mm and we change the wire distance d. For each
d, the circuit voltage VG is chosen closed to the maximal potential reached
before the apparition of spark discharges, as documented in [7]. In fig. 14,
we fix d = 10mm and change the anode radius r1.

In the first case, the minimal electron density, when there is no floor den-
sity, is more than 108m−3 for all d, suggesting that the discharges are self-
sustaining and do not need other sources of electrons other than impact ion-
ization and secondary emission from the cathode surface. For this reason, we
do not show in fig. 13 the values of I for ψ smaller than 5×108m−3. Although
the discharges maintain themselves, the current is far from experimental value
if there is no additional electron source (see section 5.3 for d = 10mm). The
current I clearly depends on ψ as suggested in fig. 13, but the dependence
seems to differ in each value interval of ψ. For ψ = 109 − 1011m−3, we have
the estimated law I ∼ ψ0.07. For ψ = 1012−1014m−3, we have I ∼ ψ0.7. This
suggests that ψ should be around 1010m−3 for this wire-to-wire discharge,
since a too high ψ may lead to a too high electric current and potentially a
spark discharge.

In fig. 14, we highlight the fact that in certain cases, the discharge is not
self-sustaining unless there is an additional source of electrons. The example
of the case r1 = 0.5mm shows that the current I is close to 0 when ψ is small
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Figure 13: ψ − I curves with r1 = 0.1mm and VG = 13kV for d = 10mm, VG = 20kV for
d = 20mm, VG = 37kV for d = 40mm

(1m−3), suggesting that there is no discharge at all though this is not true
(see section 5.3). Therefore, the inclusion of ψ is necessary.

5.3. Comparison with experimental data

Reproducing experimental data is the first step for a plasma solver to
become a predictive simulation tool. In this section, we compare our numer-
ical results to the data of Bérard et al. [7]. The simulations are conducted
for d = 10mm, r1 ranging from 0.1 to 0.5mm and VG ranging from 9 to
17kV . Figure 15 shows the numerical V − I curves with filled markers and
the experimental ones with hollow circle markers.

As an attempt to fit the given data, we use two values of ψ, 1010m−3

(shown by filled square markers) and 1011m−3 (filled triangles). For r1 =
0.1mm, the numerical currents of ψ = 1010m−3 fit the data very well. For
r1 = 0.175mm, the currents of ψ = 1011m−3 only agree with the experiments
for high voltages, and as VG decreases so does the slope of the numerical
curve. The two smallest values seem to agree more with the 1010m−3-curve
but the curve itself deviates too much for large voltages. The situation is
quite similar for r1 = 0.2mm, although the numerical results differ even more
from experimental data.
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Figure 14: ψ − I curves with d = 10mm and VG = 13kV for r1 = 0.1mm, VG = 16.5kV
for r1 = 0.5mm
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Figure 15: VG − I curves with d = 10mm. Numerical currents with ψ = 1010m−3 (filled
squares) and ψ = 1011m−3 (triangles). Experimental data in hollow circles.
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For corona discharges, the VG − I characteristics is given by the law
I = kVG(VG − Vc) [38, Chapter 12] where Vc is the breakdown voltage and
k is a coefficient. The fitting of experimental and numerical currents with
this quadratic law gives k (µA(kV )−2) and Vc (kV ) for each curve. These
characteristics are laid out in Table 3.

r1 = 0.1mm r1 = 0.175mm r1 = 0.2mm

data ψ = 1010 ψ = 1011 data ψ = 1010 ψ = 1011 data ψ = 1010 ψ = 1011

k 2.42 2.3 2.33 2.8 1.71 2.13 2.77 1.69 2.24
Vc 8.88 8.54 7.64 10.55 10.66 9.68 11.53 11.51 10.51

Table 3: VG − I characteristics of experimental data (‘data’) and numerical results (ψ =
1010, 1011m−3)

The results show that the breakdown voltages Vc of ψ = 1010 are closer
to experimental data. Vc decreases with increasing ψ since the breakdown
condition is favorable with large floor density. However, the proportional
coefficient k of ψ = 1011 is closer to experimental data. Overall, we find that
the proposed numerical model provides quite good estimates of experimental
data, considering the simplicity of the model, the first-order discretization
and other factors in the experiments that could change the current, such as
impurities on electrode surface.

6. Conclusions

The main results of this study are summarized as follows.

1. The continuity equations were reformulated into the form of differential
inclusions. The constraint on the electrons ne ≥ ψ were integrated into
the conservation laws via the subdifferential of a characteristic function
of a convex set.

2. The conservation laws were discretized in time using the backward
Euler scheme and ensued a system of inclusions that was nonlinear
because of the subdifferential terms. Some numerical methods were
studied to solve this system. The Douglas-Rachford and Gauss-Seidel
algorithms demonstrated to conserve the steady state of the discharges.
The Gauss-Seidel algorithm converged however much faster and thus
was used by default for simulations.
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3. The proposed time integration approach reduces drastically the compu-
tation time of DC corona discharges: an implicit simulation takes only
hours or days to reach the steady-state, while an explicit simulation
takes weeks or even months.

4. We have proposed a simplified discharge model that is capable to re-
duce significantly the simulation time but also reproduce with quite
good agreement the experimental data of wire-to-wire DC corona dis-
charges. Works are still needed to further improve the quality of nu-
merical results.

Appendix A. Implementation of the Scharfetter-Gummel scheme
on two-dimension grids

K
L

x̂KL

x̂LK

xKL
λKL

Figure A.16

Let us consider a conformal triangulation13 T of the domain Ω. Let
K,L ∈ T be two neighbor triangles sharing the edge λKL and xKL be the
midpoint of λKL. Let x̂KL (resp. x̂LK) be the intersection of the line passing
through xKL orthogonal to λKL and one of other edges of K (resp. L) such
that the segment bounded by xKL, x̂KL (resp. x̂LK) is contained in K (resp.

L) (see fig. A.16). Let dKL =
1

2
|x̂KL − x̂LK |.

We use the following extension of the Scharfetter-Gummel scheme [67] on

13i.e. no hanging nodes

30



two-dimensional grids to approximate the flux fi,K,λKL · νK,λKL in eq. (12),

fKL =
Di,KL

dKL

(
B(pi,KL)ni,K − B(−pi,KL)ni,L

)
, i ∈ L,

where B(z) ≡ z

exp(z)− 1
is the Bernoulli function, pi,KL ≡ −

ui,KLdKL
Di,KL

is

the numerical Péclet number, ui,KL (resp. Di,KL) is an approximation of
ui(xKL) · νK,λKL (resp. Di(xKL)).

Appendix B. Implicit integration of the SGCC schemes

The (p+ 1)th-order SGCC flux scheme [68] reads as follows,

f
p

KL =
Di,KL

dKL

(
B(pi,KL)npi,K − B(−pi,KL)npi,L

)
, i ∈ L,

It can be decomposed as

f
p

KL = fKL + f̃pKL,

which is the sum of the Scharfetter-Gummel flux and a high-order correction
which reads

f̃pKL =
Di,KL

dKL

(
B(pi,KL)

(
npi,K − ni,K

)
− B(−pi,KL)

(
npi,L − ni,L

))
,

In the above equation,
(
npi,K − ni,K

)
is a weighted sum of reconstructed

derivatives of ni on K. In the presence of slope limiters to ensure the stability
of the scheme, it is a nonlinear term even if the problem is linear.

Following the steps in section 3.2, we can write the discretization of the
conservation laws with the SGCC scheme as follows,

(I + ∆tlAl + ∆tlÃp,l + ∆tlBψ)U
l+1 3 Rl

,

where Ãp,l is the nonlinear operator ensued from f̃p. We adapt a fixed-point
method to solve this problem (see algorithm 3). This algorithm has been
only applied for one-dimensional simulations.
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Algorithm 3 Fixed-point

1: Let ε > 0, U (0) = U
l
, δ > ε

2: while δ > ε do
3: Set V (q) = Ãp,lU (q)

4: Use algorithm 1 or algorithm 2 to solve (I + ∆tlAl + ∆tlBψ)U (q+1) 3
R
l −∆tV (q)

5: Let
(
n(q+1)
e n(q+1)

p n(q+1)
n

)t
= U q+1

6: Update δ = max
i∈L

(
|n(q+1)
i − n(q)

i |∞
|n(q)
i |∞

)
7: end while
8: Set U

l+1
= U q

Appendix C. MPI implementation of the Gauss-Seidel algorithm

The sequential nature of the Gauss-Seidel algorithm makes the parallel-
computing implementation not evident. In fact, if we imagine a simple parti-
tion of the simulation domain (see fig. C.17) and the variables on the second
subdomain are enumerated after those on the first subdomain, then the den-
sity update on the second subdomain would have to wait for the update
on the first subdomain to finish before getting started. For this reason, we
rather send U (m) than U (m+1) of the border zone (yellow-filled triangles) from
the first subdomain to the second and vice versa. Meanwhile, the interior
variables (on red-filled triangles) are updated normally by the Gauss-Seidel
algorithm. The overall method resembles a block-Jacobi method where each
block is affiliated to a subdomain.

1

2

Figure C.17: In this figure the computation domain is partitioned into two subdomains,
sharing the thick black line as interface. The triangles which share an edge with the
interface are called border cells and are painted in yellow. The other triangles are called
interior cells and are painted in red.
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