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Abstract

This study proposes to carry out the experimental modal analysis of nonlinear systems under the
assumption of almost invariant modal shapes by coupling video analysis from a high speed/resolution
camera and extended Kalman filtering. A clamped-clamped beam with a local nonlinearity is consid-
ered, and its vibrations are measured by detecting and tracking a large set of (virtual) sensors bonded
to the beam outer surface. Specific image processing and video tracking techniques are employed and
detailed herein. Then, the instantaneous natural frequencies and modal amplitudes are identified by
means of a data assimilation method based on extended Kalman and modal filters. Finally, the pro-
posed method of identification is assessed using a numerical example possessing 3 degrees of freedom
and a strong nonlinearity. The performance and limits of the identification process are discussed.
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1 Introduction: current and
future needs in an
industrial context

Most industrial systems feature nonlinear dynam-
ical behavior due to assemblies, contacts and
geometries that depend directly on the ampli-
tudes of their vibrations. These nonlinearities can
be locally ”strong”, e.g., contact dynamics, but
eventually lead to weakly nonlinear effects at the
system scale. In that sense, natural frequencies

and damping ratios exhibit a strong dependence
on the amplitude of vibration, but the mode
shapes resemble those of the underlying linear sys-
tem. In specific industrial applications such as
health monitoring, the real-time identification of
modal contributions is required in order to track
specific nonlinearities or particular dysfunctions.
Such applications usually require numerous sen-
sors that may be advantageously replaced by a
high speed camera.
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To process a video sequence and measure a
displacement in the image, several algorithms
exist [1]. Digital image correlation (DIC) is
widespread [2–5]. By comparing two sub-images
taken at two successive instants, it is possible
to find the optimal transformation for passing
from one to the other and thus to deduce a local
movement in the overall image. Optical flow is
an interesting alternative [6–8]. This technique is
based on an Eulerian approach applied to the
light intensity of the pixels and calculates the
local speed in the image thanks to the intensity
gradient. The method of phase-based motion mag-
nification [9–12] allows to amplify the motions
inside a video sequence by analyzing the phase of
its Fourier transform.

Classical surface treatments for features detec-
tion in computer vision consist in white painting,
speckle patterns or glued targets. The choice of the
surface treatment depends on a number of factors
such as the resolution of the image, the physi-
cal quantity sought, and the type of computer
vision algorithm applied to the video sequence. For
example, the speckle pattern is suitable for high-
resolution images on which to apply the DIC for
the full-field estimation of displacement and strain
fields, or for damage detection. On the other hand,
the use of discrete targets is suitable for large-
scale structures in order to avoid painting large
surfaces. Moreover, the use of targets is advanta-
geous in those cases where the structural motion
can be reconstructed through measurement of the
displacement field at some discrete points placed
along the structure. In these cases, employing tar-
gets entails significant benefits. Not only in terms
of ease of installation and uncertainty, but also
in terms of computational costs since it reduces
the number of pixels considered during the image
processing phase.

In this framework, Ref. [13] measured the hori-
zontal displacements and rotations of each floor of
a tall building by placing several cameras and tar-
gets across the building width. Ref. [14] performed
several experiments showing the effectiveness of
camera-based metrology for the motion analysis
of flexible beams and cables. In this study, image
processing was performed with the aid of the
commercial software EVaRT4.6, such that no spe-
cific information are provided about the algorithm
employed for features detection and tracking. The

mode shapes of a cantilever beam were extracted
from video records by Romaszko et al. [15].

Other studies focused on the estimation of the
accuracy and uncertainty of target-based mea-
surements under uncontrolled environmental con-
ditions, see for example Refs. [16] and [17]. As
an alternative to classical glued stickers for tar-
geting, one can use projection of laser beams
as in [18–20] or emitting diodes, [21]. Ref. [22]
tracked elliptical targets with sub-pixel accuracy
on a video recorded by a commercial pocket digi-
tal camera. Ref. [23] shown that region-based local
detectors are more performant than corner-based
ones. Ref. [24] proved that the maximally stable
external regions (MSER) detector, first proposed
in [25], provides good repeatability and matching
scores against viewpoint changes. Ref. [26] verified
that MSER is better suited to indoors, simple and
human-made dominated scenes. Recently, Renaud
et al. [27] detected oscillations of elliptical tar-
gets bonded to a wing scale model by the MSER
algorithm. The 3D reconstruction of the wing
dynamics was obtained by projecting numerical
3D deflection shapes into the image frame of a
single camera.

Generally, modal analysis using camera mea-
surements is based on the principle of stereo vision
which requires a minimum of two cameras, see
[2, 3, 28]. Some authors tried to obtain stereo
vision with a single camera using a prism or a
set of mirrors [4, 5, 29]. Mode shapes were recon-
structed by recording two images of a scene at two
different locations and instants with a single cam-
era in [30]. More interestingly, by moving a single
camera relative to the object during shooting, it
was possible to reconstruct the eigenmodes [8, 31].

This paper proposes to couple video analy-
sis with extended Kalman filtering for real-time
experimental modal analysis of a system with a
local nonlinearity. Specifically, a video sequence
from a nonlinear beam mimicking the European
project COST F3 benchmark [32] was recorded
using a camera under impulsive excitation. The
present work is an extension of a previous work of
some of the authors [33]. The present study details
the image processing and the video analysis tech-
niques employed and developed, not addressed
in [33], and includes new analyses and discus-
sions regarding the accuracy and the feasibility of
the real-time implementation of the video analysis
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(a) (b)

Fig. 1: (a) Circular target glued on the COST
F3 beam. The nominal value of the internal
and external diameters are D̄int =1,5 mm and
D̄ext =10,5 mm, respectively [35]. (b) Target
detected and extracted with the MSER algorithm,
feature points and surrounding box [25, 36].

method. Moreover, this study focuses on two well-
known test benches previously published [32, 34],
in order to ensure repeatability and further results
comparison. The two chosen and studied bench-
marks are particularly nonlinear, whereas the
benchmarks in [33] are linear or weekly nonlinear.

The paper is organized as follows. Section 2
presents the image processing and the video track-
ing method employed for the video-based vibra-
tion measurements. Section 3 describes the data
assimilation method based on extended Kalman
filtering that is used for the identification of
the modal contributions of nonlinear systems.
In Section 4, the experimental test case, the
clamped-clamped nonlinear beam, is described.
Measurements analysis and results are discussed.
Because the beam only features a weakly nonlin-
ear behavior, the limits of the proposed method
of identification are highlighted through a numer-
ical example possessing a strong nonlinearity [34]
in Section 5. Finally, the conclusions are drawn in
Section 6.

2 Image processing and video
tracking

In this study, the motion of a clamped-clamped
beam with a weak nonlinearity resulting from free
vibrations was recorded by a camera at middle
speed (1000 fps). The beam motion is extracted
by tracking during the video sequence discrete tar-
gets bonded to the visible outer surface, see Fig. 1

and Fig. 4. Feature extraction is performed with
the MSER algorithm using the Image Process-
ing & Computer Vision toolboxes of MATLAB.
The result for one target is shown in Fig. 1(b).
The choice of this local detector is justified by
the fact that is very performing in detect sim-
ple features on an indoor scene, and because
of its stability against viewpoints changes, blur-
ring and light reduction, [24, 26]. This feature
is of particular interest in video-based vibrations
measurements since targets may experience vari-
able lighting conditions and focusing due to the
structure oscillations. Moreover, the MSER algo-
rithm extracts the detected features in the form of
ellipses. This aspect is well suited for the present
case study since circular targets are distorted in
the image plane by the camera lens and the varia-
tion of the viewpoint angle. In the next step of the
image processing, some feature points are detected
within the ellipses and tracked, [36]. This is pos-
sible because of the specific texture of the bonded
target (see Fig. 1(a)). The estimation of a geo-
metric transform from matching point pairs at the
frame i and i+1 allows updating the surrounding
box position and size, [37]. Finally, the coordinates
of a target are estimated by the box’s center.

The algorithm presented in this study aims to
detect the targets in the video sequence by look-
ing for the MSERs and feature points not within
the whole picture, but only inside virtual rect-
angular boxes placed around the circular targets.
These boxes are drawn on the first frame, and
their position is updated at each frame according
to the in-plane motion of the target. The proto-
col is easily adaptable to different set-ups, both in
research and industrial settings. This is because of
the fact that the specific treatments necessary to
extract the features from the filmed scene are per-
formed only on the first image. Indeed, the noise
and reflection suppression are performed only on
one frame. This procedure requires low computa-
tional costs since the features are sought only in
several small regions of interest (ROI) which move
accordingly with the beam oscillations. In other
words, a multi-target tracking is performed in the
first image to initialize the virtual targets posi-
tion, whereas multiple single-target tracking are
performed during the video sequence, since each
feature is searched in a specific ROI. It is worth
noting that this method does not require neither
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Start

i = 1

1. Image processing
2. Box size definition
3. MSERs detection
4. Selection of good features
5. Surrounding boxes
6. Centroid evaluation
7. Feature points detection
8. Bad points suppression
9. Point tracker initialization

i = i+ 1

i > imax j = 1

1. Feature points tracking
2. Geometric transformation
3. Updating box position
4. Centroid evaluation
5. Centroid storage

j = j + 1

j > jmax

End

yes

no

yes no

Fig. 2: Flowchart for feature detection and tracking in a video sequence. The bonded targets are extracted
with a MSER feature detector from a binary version of the first frame. Each feature is described by an
ellipse and a surrounding bounding box. Then, some feature points are detected inside each region. For
every next frame, feature points are tracked and the position of the surrounding boxes is updated by
applying a geometric transformation estimated by matching point pairs at the frame i and i + 1. The
output consists in the coordinates of the centroid of each box for all frames. imax is the last frame of the
video sequence and jmax the maximum number of detected targets, respectively.

a learning process nor a physical model describ-
ing the structural behavior. The algorithm for the
target detection and tracking is detailed in the
Section 2.1.

2.1 Target detection and tracking

On the first frame, the following operations are
performed:

1. Image processing. Contrast enhancement
and adaptive histogram equalization are per-
formed on the original gray-scale image. Then,
manual segmentation is applied in order to
highlights the bonded targets. Residual noise
is filtered by removing small objects from the
binary image.

2. Box size definition. The typical size of a
box is determined by manually drawing on the
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image a rectangle surrounding one of the visible
targets.

3. MSERs detection. MSERs are
detected by using the Matlab function
detectMSERFeatures.

4. Selection of good features. Among all
localized regions, only those corresponding to
a target are retained. This process can be
automated by applying geometric conditions
defined according to the type of target used. In
the present case, for each target the detection
of two concentric ellipses is expected. There-
fore, detected regions are considered as valid if
they meet the following criteria:

� region’s area is smaller than that of the box;
� the region’s center is close to that of another
region;

� both of them have a similar ratio between
their major and minor axis;

� one region is smaller than the other.

5. Surrounding boxes. For each region, unro-
tated rectangular boxes circumscribed to the
outer ellipse are calculated.

6. Centroid evaluation. The boxes’ center rep-
resents an estimate of the position of the target
in the image coordinates.

7. Feature points detection. They are detected
inside each box by using the Matlab function
detectMinEigenFeatures.

8. Bad points suppression. Points outside of
the ellipses are excluded.

9. Point tracker initialization. Initial-
ization of the feature-tracking algorithm
(vision.PointTracker), [36]. In this case
study, the MaxBidirectionalError parameter is
set equal to 2.

For the j–th box, the following operations are
carried out at the i–th frame:

1. Feature points tracking. The feature points
tracking is performed on a cropped version of
the image including only the structure under
study.

2. Geometric transformation. Estimation of
a similarity transformation which maps the
greatest number of point pairs the frames i and
i− 1 (estimateGeometricTransform), [37]. In
this case, the MaxDistance parameter is set
equal to 4.

3. Updating box position. The position of
the box is updated by applying the trans-
formation to the original bounding box
(transformPointsForward).

4. Centroid evaluation. The coordinates of the
target is estimated as center of the box.

5. Store centroid. This represents the position
of the target at the current frame.

These operations are summarized in the
Figure 2.

Finally, the trajectories of the beam are inter-
polated according to the discretization of a finite
element (FE) model. These data are processed
with the aid of the extended Kalman filter (EKF)
for the identification of the modal frequencies and
amplitudes. The formulation of the data assimila-
tion method is detailed in the next section.

3 Real-time modal filter: a
solution based on extended
Kalman filtering

The displacement u(t) of a specific target can be
decomposed on a real modal basis:

u(t) = ℜ

(
M∑
k=1

αk(t)ϕk

)
(1)

where αk(t) is the instantaneous amplitude and ϕk

the mode shape. In the case of oscillatory motion
it can be rewritten as:

u(t) = ℜ

(
M∑
k=1

Ake
2iπfktϕk

)
(2)

where fk is the modal frequency and Ak the
modal amplitude. The displacement of the target
between two time instants is defined as:

u(t+ dt) = ℜ

(
M∑
k=1

αk(t+ dt)ϕk

)
(3)

The assumption that fk and Ak are almost
equal between two consecutive instants leads to:

u(t+ dt) = ℜ

(
M∑
k=1

Ake
2iπfk(t+dt)ϕk

)
(4)
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By replacing Eq. 2 into Eq. 4, the equation
becomes:

u(t+ dt) = ℜ

(
M∑
k=1

αk(t)e
2iπfkdtϕk

)
(5)

Thus, by expressing the instantaneous ampli-
tude in a complex form, αk(t) = ar,k(t) + iai,k(t),
the real and the imaginary part of αk(t+ dt) can
be obtained:

ar,k(t+ dt) = ar,k(t) cos(2πfkdt)

−ai,k(t) sin(2πfkdt),

ai,k(t+ dt) = ar,k(t) sin(2πfkdt)

+ai,k(t) cos(2πfkdt)

(6)

To identify the modal contributions at time
tn = n.dt, we consider that each natural mode
k ∈ [1 . . .M ] has 3 components in the state vec-
tor: its real and observable part x1+3(k−1),n =
ar,k(tn), its imaginary part x2+3(k−1),n = ai,k(tn),
which can be seen as the Hilbert transform of
x1+3(k−1),n, and its phase variation over one time
step x3+3(k−1),n = fkdt, which leads to its instan-
taneous natural frequency (normalized). The state
vector is a vector containing all the variables of
the state system and is built as:

XT
n = (x1,n x2,n x3,n . . . x1+3(M−1),n

x2+3(M−1),n x3+3(M−1),n)
(7)

In the context of nonlinear systems, state and
observation equations are respectively defined as:{

Xn+1 = Fn (Xn) +Wn

Zn = H Xn + Vn
(8)

with Wn the state noise and Vn the observation
noise. In other words, the state equation describes
the dynamics of the system and the observation
equation links the state vector (composed with
state variables) to the observation vector (sen-
sors). The modal filter consists in projecting mea-
surements (observation vector, sensors) on natural
modes (states). The specific set of equations used
for the extended Kalman filter is detailed in our
previous work [38]. The filter was there designed
to track harmonic components with amplitude and
frequency modulations.

Denoting x̂, the estimation of u, for M natural
modes the nonlinear state matrix is defined as:

Fn (Xn) =


. . . 0 0
0 Fn,k 0

0 0
. . .

Xn

with Fn,k =

 cn,k −sn,k 0
sn,k cn,k 0
0 0 1


and

{
cn,k = cos(x̂3+3(k−1),n)
sn,k = sin(x̂3+3(k−1),n)

(9)

As proposed in A. Goeller’s PhD thesis [35],
the observation matrix H is composed of the
modal bases Φ = [ϕ1, ϕ2, ..., ϕM ]:

H = [ϕ1, 0, 0, ϕ2, 0, 0, ..., ϕM , 0, 0] (10)

In other terms, only real signals are observed
by the sensors, and each sensor is able to see
the local contribution of each state variable. The
observation matrix H is invariant in time. This
choice is directly linked to the assumption of weak
nonlinearity, i.e., the damping ratios and natural
frequencies depend on the displacement amplitude
but the mode shapes are assumed to be invari-
ant vectors. The limits of this assumption will be
discussed in Section 5.

The transition (state) matrix Fn depends on
the instantaneous frequencies and its evolution
can be estimated at first order by its Jocabian
matrix:

F̃n|n =
(
∇X (F (X)X)

T
)T ∣∣∣∣

X=X̂n|n

(11)

This Jacobian matrix has the following structure:

F̃n =


. . . 0 0

0 F̃n,k 0

0 0
. . .

 (12)
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Fig. 3: Schematic of the nonlinear COST F3 beam.

with the elementary bloc defined as follows:

F̃n,k =

 cn,k −sn,k −ar,n,ksn,k − ai,n,kcn,k
sn,k cn,k ar,n,kcn,k − ai,n,ksn,k
0 0 1


with


ar,n,k = x̂1+3(k−1),n

ai,n,k = x̂2+3(k−1),n

cn,k = cos(x̂3+3(k−1),n)
sn,k = sin(x̂3+3(k−1),n)

(13)
The state Fn and observation H matrices are

built in order to ensure the robustness of the
numerical process of the EKF. In fact, there are
several methods to describe the same system;
we selected a state system based on real/imagi-
nary parts and instantaneous frequencies. Another
way could be based on magnitudes and phases.
Additional state variables, e.g. the instantaneous
damping ratio, could also be introduced. This
choice is a result of our numerical investiga-
tions and represents the most robust and accurate
solution which we have developed for the state
prediction with EKF.

The state matrix Fn tracks the time responses
based on frequency decomposition, and the obser-
vation matrix H tracks the kinematics and space
description with a modal decomposition. This
decomposition allows to extract small levels of
vibrations with low signal-to-noise ratio. This
method, termed Kinematic-SAMI [33], was suc-
cessfully applied to a linear cantilever beam. In
Section 4, it is employed on a beam with a local
nonlinear stiffness under free vibrations. Each
mode, extracted from the linear FE model is
introduced in the observation matrix, Eq. (10).

The advantage of coupling this identifica-
tion technique with video analysis is that the
state vector introduced in Eq. 7 can be filled
with experimental data resulting from the vir-
tual sensors motion. In contrast to traditional
sensors such as accelerometers, the targets do

not affect the dynamics of the considered struc-
ture and can be employed in large numbers. The
details of the video measurements and the results
obtained for the identification of a clamped-
clamped beam with a weak nonlinearity are pre-
sented in Section 4. The method is also applied
to a strongly nonlinear numerical example in
Section 5.

4 Experimental test case on a
weakly nonlinear system

The COST F3 beam schematized in Figure 3 is
used in this paper as a benchmark for the proposed
data assimilation method based on the extended
Kalman filter. Due to the presence of a thin beam
at the end of the cantilever beam, this benchmark
is known to exhibit geometrically nonlinear effects,
particularly around the first mode.

The geometrical and mechanical properties of
the beam are presented in Table 1. The main AB
and thin BC beams have different lengths Lmb,
Ltb, thicknesses tmb, ttb, equal width hb and mate-
rial properties Eb, ρb. Non-ideal clamping is taken
into account by two torsional springs. The rota-
tional stiffness at points A and C is equal to
kc,mb = 114700 Nm/rad and kc,tb = 40 Nm/rad,
respectively. An additional torsional spring with
kmt = 42, 2 Nm/rad is located between the main
and thin beams at point B.

A FE model of the underlying linear beam
was formulated according to the Euler-Bernoulli
assumption. The main and thin beams were dis-
cretized into nmb and ntb 2-node Hermite finite
elements, respectively. Two degrees of freedom
at each node were considered, namely the trans-
verse displacement wx in the x direction and the
rotation θz around the z axis (see Figure 3).
The eigenvectors estimated by this model fill the
observation matrix, see Eq. (10), needed by the
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COST F3
beam

Length
[m]

Width
[mm]

Thickness
[mm]

Young’s
Modulus [GPa]

Density
[kg/m3]

Main 0.7 14 14 205 7800
Thin 0.04 14 0.05 205 7800

Table 1: Geometrical and mechanical properties of the nonlinear COST F3 beam [39, 40].

EKF to identify the evolution of the beam modal
frequencies and amplitudes.

4.1 Video measurements

Video measurements were performed with a dig-
ital camera Vieworks VC-12MX-M/C 180. The
hardware and the software HIRIS developed by
the R&D Vision company were used for image
acquisition. Frames were transmitted in real-time
to a PC via a CoaXPress link (CXP-6). Fur-
ther details about the equipment and settings are
given in Table 2 by following the recommendation
provided from good-practice guidelines [41].

The beam was clamped on both sides to two
rigid blocks fixed on an optical table, as depicted
in Figure 4(a). As shown in Figure 5, the camera
looked at the beam from above, and the tripod was
placed on the table. Figure 4(b) presents a picture
taken by the camera, with a 4096 x 500 pixels
matrix. In order to reduce the optical distortion,
the ROI containing the whole beam was centered
with respect to the image sensor. Noteworthy is
that the thickness in pixel of the main beam is very
small (∼ 90) compared to the maximum resolution
of the camera in the same direction (3072), and the
outer surfaces of the beam and the image sensor
are almost parallel.

The tracked features consist of a series of circu-
lar targets bonded to the beam surface, as shown
in Figure 1(a). D̄int =1,5 mm and D̄ext =10,5 mm
are the nominal value of the internal and external
diameters. The distance between the camera and
the filmed mechanical setup leads to a resolution
R close to 5.52 px/mm. This value is evaluated as
the arithmetic mean between the resolution calcu-
lated from the targets diameter, RD, and from the
main beam thickness, RL. RD is evaluated as the
mean of the ratio between the mean of inner diam-
eter in pixels in two perpendicular directions and
the nominal value, taken over three targets placed
near the main beam edge. RL is the mean of the
ratio between the beam length and thickness in
pixels and the nominal value (Table 1):

RD =
1

3

∑
i

[
1

2

(
Di,ex +Di,ey

D̄int

)]
,

RL =
1

2

∑
j

(
Lj

Lmb

)
+

1

2

∑
k

(
tk
tmb

) (14)

where i = 1, 2, 3, and (ex, ey) are the axes of the
image coordinate systems, the origin of the lat-
ter being at the bottom-left corner of the image.
j = u, b stands for upper and bottom edges, and
k = l, r stands for left and right edges. It is
worth noting that several errors may result from
the video analysis due for example to poor image
resolution and high lens distortion. Also, the fea-
ture detection can be less accurate on blurred
targets and due to improper lighting conditions.
The Kalman filtering technique allows to overcome
this issue since all inaccuracies and uncertain-
ties resulting from video analysis are taken into
account in Eq. 8 in the observation noise term, Vn.
Please note that the piezoelectric patches glued
to the beam (in yellow in Figure 4(a)) are not of
interest in this experimental campaign. Similarly,
the electromagnetic shaker was disconnected from
the beam during the shock test.

The beam vibrations were recorded after a
shock given in the x direction on the main beam
at about 15 cm from point A. The movie frame
rate is 1000 fps. A 8 s duration test needs 15,2 Gb
of memory to store all images in BMP format.

4.1.1 Video analysis

As depicted in the Figure 4(c), of the 36 bonded
targets, 33 were detected and tracked on the video
sequence. This is due to poor light conditions on
the left side of the image. The figure highlights also
the presence of some regions (in green) detected by
the MSER algorithm in the first image that do not
corresponds to a target. Thanks to the algorithm
developed and detailed in Figure 2, these wrong
regions are not tracked in the following images.
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(a)

(b)

(c)

Fig. 4: (a) Experimental setup of the COST F3 beam [32], (b) picture (4096 x 500 pixels) of the beam
taken by the Vieworks VC-12MX-M/C 180 digital camera and (c) detected targets, labels and surrounding
boxes.

Parameter Value
Camera Vieworks VC 12MX-M 180
Lens Samyang 35 mm F1.4 AS UMC
Lighting DESISTI Rembrandt Piccolo 1200W MK2
Image resolution 4096 x 500 pixels
Field-of-View 742.0 x 90.6 mm
Image scale 5.52 px/mm
Patterning technique Circular targets
Exposure time 700 µs
Image acquisition rate 1000 fps
Image acquisition platform HIRIS R&D Vision

Table 2: Image acquisition equipment, settings and software information.

In this study, the target tracking was not
performed on real-time, and so neither the identi-
fication procedure based on the EKF. Indeed, for
the video analysis the computation time is equal
to about 0.3 s per image by using a PC with
Intel(R) Xeon(R) CPU E5-1607 v4 @ 3.10GHz
3.10 GHz and 32.0 Go of RAM. Therefore, for

this study a real-time implementation of the iden-
tification procedure would not be possible, being
the movie recorded at 1000 fps. The duration
of the image processing is related to the pro-
cessor, to the code performance, and mostly on
the feature points tracking algorithm employed.
In addition, the image resolution and the number
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Fig. 5: Digital camera position.

of bonded targets have a large impact. Further
studies can be conducted to speed up the video
tracking algorithm, being beyond the scope of this
paper.

4.2 Vibration measurement analysis

This section describes the identification process
(K-SAMI [33], Section 3) performed with a modal
filter led by EKF on the experimental data
obtained by the video analysis. The first 3 modes
were studied. Despite the heavy optical table,
the camera linked to the table through a tripod
moved slightly when the shock occurred. In order
to remove the camera motion in the analysis, a
rigid body mode was added to the modal basis.

Figure 6 depicts the time evolution of the nat-
ural frequencies of the beam. The (linear) mode
shapes associated with each natural frequency are
inset. As studied in previous works [32, 39, 40], the
first bending mode is the most nonlinear one, with
an evolution of the natural frequency from 26 Hz
for small vibration amplitudes to 32 Hz for large
vibration amplitudes. The second bending mode

Fig. 6: Evolution of the natural frequencies over
time for the first 3 bending modes of the beam
(and the rigid body motion of the camera).

behaves in the opposite way with a natural fre-
quency close to 147 Hz for small amplitudes and
142 Hz for large amplitudes. The softening effect
of the second mode is attributed to the bound-
ary conditions. The third mode behaves linearly.
The rigid body motion is associated with a natural
frequency lower than 10 Hz.

The corresponding modal amplitudes are rep-
resented in Figure 7. The amplitude of the rigid
body mode is close to the amplitude of the first
bending mode (∼1 mm) and much greater than
the second (∼0,1 mm) and third (0,1 mm) bending
modes. The proposed method is particularly suit-
able for separating the contributions of each mode,
and the rigid body mode does not affect the accu-
racy in the tracking of the flexible modes. One can
also observe that the modal amplitudes are mod-
ulated. These modulations are not ”physical” but
only due to their dynamics that interacts in a fre-
quency range which is too close from the natural
frequency of the mode. The assumption of nar-
row bandwidth signal theory used in the Hilbert
Transform is not exactly valid in this context.
However, the phenomenon and its effects are well
understood, and we decided to keep a state sys-
tem based on the Hilbert Transform assumption
instead of modifying the analytical state system
or using an EMD-like method [42].

Uncertainties measurements are quantified for
each natural mode in Figure 8, which highlights
that the kinematics of each natural mode is known
with an accuracy (standard deviation) close to
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0.01 pixel (∼2 micrometers). Standard deviation
are quantified for each variables with the Kalman
process assuming that uncertainties follow a Gaus-
sian probability law. These uncertainties concern
the whole numerical process but do not include
intrinsic optic bias.

The frequency shift of the first bending mode
is due to a stiffening effect and is depicted
in Figure 9. The continuous wavelet transform
(CWT) in this Figure was calculated using the
Cauchy wavelet [43]. This frequency tracking was
also framed by ±3σ1 (σ1 is the standard devia-
tion of the estimation of the first bending mode
frequency). One can observe the correspondence
between the proposed method and the classical
technique based on the wavelet transform at low
amplitudes. On the other hand, the stiffening
effect is tracked by the EKF from the very begin-
ning at more than 30 Hz, whereas the greatest
frequency identified by the CWT is only close to
27 Hz.

Fig. 7: Evolution of the modal amplitudes along
time for the first 3 bending modes of the beam
(and the rigid body motion of the camera).

In order to identify the modal stiffness of the
first bending mode, it is plotted against the modal
displacement in Figure 10. The directly-measured
stiffness is the black curve, built from the track-
ing of the instantaneous frequency and amplitude
(the modal stiffness is assumed as the squared fre-
quency). Following previous works on nonlinear
normal modes (NNMs), this stiffness can be fitted
with a polynomial function and is represented by
the gray curve in Figure 10.

Fig. 8: Uncertainties measurements quantified for
each natural mode.

Fig. 9: Instantaneous frequency of the first
bending mode: comparison between the proposed
method (black and white dotted line) and the
CWT (gray shadow and light grey line).

The proposed technique is based on extract-
ing the spatial and temporal coordinates of the
beam by locating specific features (the bonded
targets) in a video sequence. The coupling of
this information with the EKF, through a priori
knowledge of the modal shapes, allows the iden-
tification of the modal stiffness of the system, in
both the linear and nonlinear cases. The EKF does
not require knowledge of the complete response
history to perform the identification, but only
knowledge of the system state and the uncertainty
at the previous instant due to the measurement
and prediction errors. Indeed, due to its recursive
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Fig. 10: Identification of the nonlinear stiffness of
the first bending mode.

nature, the Kalman filter allows for a real–time
implementation, [44].

5 Numerical test case on a
strongly nonlinear model

Even if the proposed method is geared towards
weakly nonlinear systems in conjunction with
video analysis, the main goal of this section is to
assess its potential in the presence of strongly non-
linear effects. The aim is to understand the ability
of the EKF to track nonlinear resonant frequen-
cies and modal amplitudes with a decomposition
based on a linear modal basis.

The chosen nonlinear system [34] possesses
3 degrees of freedom, and Rayleigh damping is
introduced in the model:

Mẍ+ Cẋ+Kx+ Fnl = F (15)

where

M =

 1 0 0
0 1 0
0 0 1

 , K =

 2 −1 0
−1 2 −1
0 −1 2

 ,

Fnl =

 0
0.5x3

2

0

 , F =

 0
0

f(t)

 (16)

where C is

C = 2.10−3M + 2.10−2K (17)

The shock applied to the system is defined as
a flat-top window in order to have a controlled
and accurate frequency bandwidth. The flat-top
window is calculated from:


f (tn) = a0 − a1 cos

(
2πn
N−1

)
+

a2 cos
(

4πn
N−1

)
− a3 cos

(
6πn
N−1

)
+

a4 cos
(

8πn
N−1

)
, 0 ≤ t ≤ Ndt

f (tn) = 0, t > Ndt

(18)

where tn = n.dt, dt is the time step and N
is the total number of points during the shock,
see [45, 46]. The parameters ai are listed in Tab. 3.
The frequency bandwidth was chosen in order to
encompass the 3 linear natural frequencies and
their evolution for higher energy levels (see [34],
Fig. 11).

Fig. 11: Frequency–energy plot of the 3 DOF sys-
tem (Eq. 15) defined by [34]. NNMs represented
by bar graphs are inset.

The displacement vector x is obtained here
though the numerical integration of the nonlinear
system introduced in Eq. 15. These displacements
would be obtained experimentally by video anal-
ysis by employing at least three virtual sensors
placed on each mass. The identification process
performed with K-SAMI is depicted in Figure 12.
3 linear modes were used as modal filters for
the real-time identification performed by EKF in
order to track the 3 NNMs. Kinematic initial con-
ditions of the K-SAMI were randomized and initial
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i 0 1 2 3 4

ai 0.21557895 -0.41663158 0.277263158 -0.083578947 0.006947368

Table 3: Fourier factors of the flat-top window used as a shock function.

frequencies were chosen close to real values (error
of 5%).

Fig. 12: Frequency–Energy Plot of identified nat-
ural frequencies with K-SAMI. The nonlinear first
natural frequency is well identified. The linear sec-
ond natural frequency is accurately tracked. The
third nonlinear mode is tracked with a bias.

Despite a large evolution (over 50%), the
first natural frequency is well-tracked whereas the
mode shape undergoes important changes. How-
ever, for high energy levels, the identification
process shows larger variance and oscillations in
the identified frequency curve. The second mode
is quickly and accurately identified as a linear
mode without any perturbation along the natural
frequency curve. The third mode is strongly non-
linear with great changes in the mode shape and
natural frequency. The third natural frequency
evolves faster than the first natural frequency, and
the identification process leads to a biased nat-
ural frequency for high energy levels. This third
mode highlights the limits of the K-SAMI process,
which assumes that mode shapes are invariant and
natural frequencies exhibit ”small and smooth”
changes.

6 Conclusion

The tracking of nonlinear modes based on the
coupling of video analysis with a data assimila-
tion method was successfully performed on an
experimental beam featuring a geometrical nonlin-
earity. The kinematic measurements are obtained
with a high resolution/middle speed camera and
advanced techniques are used in order to facilitate
the tracking process. Specifically, the modal con-
tribution identification is performed with a modal
filter combined with an extended Kalman filter
and a state space with Hilbert transform of sig-
nals. The uncertainty resulting from video analysis
is estimated through the observation noise, pro-
viding an accuracy about equal to 0.01 pixel for
each mode.

The chosen contactless measurement technique
and the modal tracking process were shown to be
effective for weakly nonlinear modes. Such modes
are classically observed on most industrial sys-
tems. In order to identify the limits of the method,
the tracking was also attempted for a strongly
nonlinear numerical example. As further develop-
ment, an experimental campaign on a strongly
nonlinear system is planned to test our findings.

In order to deepen the target-based video anal-
ysis reliability for vibrations measurements, the
next developments will focus on the estimation
of the uncertainty resulting from video recording
conditions and image post-processing. Indeed, the
EKF method enables to quantify this uncertainty
in the observation noise term without identify the
error sources. At first, more numerical example
will be implemented with the aim of quantify-
ing the amount of error coming from the feature
detection and tracking. Then, further experimen-
tal tests will be conducted by coupling virtual
and physical sensors to address the uncertainty
related to the camera and lens properties, the
camera position, its rigid motion and the lighting
conditions.
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à la compression de données, la réalité aug-
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