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Abstract.

We present here results for the Andra Couplex 1 test case, obtained with the
code Cast3m. This code is developped at the CEA (Commissariat l’nergie atom-
ique) and is used mainly to solve problems of solid mechanics, fluid mechanics and
heat transfers. Different types of discretization are available, among them finite
element, finite volume and mixed hybrid finite element method. Cast3m is also
a componant of the platteform Alliances (co-developped by Andra, CEA), which
will be used by Andra for the safety calculation of an underground waste disposal
in year 2004. We solve the Darcy equation for the water flow and a convection-
diffusion transport equation for the Iodine 129 which escapes from a repository
cave into the water. The water flow is calculated with a MHFE discretization. It
is shown that this method provides sharp results even on relatively coarse grids.
The convection-diffusion transport equation is discretized with FE, MHFE and FV
methods. In our comparison, we point out the differences of these methods in term
of accuracy, respect of the maximum principle and calculations cost. Neither the
finite element nor the mixed hybrid finite element approach respects the maximum
principle. This results in the presence of negative concentrations near the repository
cave, whereas FV calculations respect the monotonicity. We show that mass lumping
techniques suppress this problem but with strong restrictions on the grid. FE and
MHFE approaches are more accurate than FV for the diffusion equation, but the
overall results are equivalent since the advective terms are dominant in the far field
and are discretized with centered schemes. We conclude by studying the influence
of the grid: a very fine grid near the repository solves almost all the problems of
monotonicity, without employing mass lumping techniques. We also observed a very
important increase of the accuracy on a structured grid made up of rectangles.

Keywords: Couplex 1, convection-diffusion transport, monotonicity, finite volume,
finite element, mixed hybrid finite element, grid influence

Abbreviations: FE – Finite Element; MHFE – Mixed Hybrid Finite Element; FV
– Finite Volume
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1. Introduction

We consider the ANDRA Couplex 1 test case [1], and more specifically
the transport of the Iodine 129. It escapes from a repository cave into
the water and its concentration is given by the convection-diffusion
equation :

Rω(
∂C

∂t
+ λC)− div(D~∇C + ~uC) = s in Ω× (0, T ). (1)

where Ω is an open bounded subset of R2, D is the diffusion/dispersion
tensor, R the latency Retardation factor (equal to 1), λ = log 2/Ti with
Ti being the half life of the element and ω the effective porosity.

The rock layers are saturated with water and boundary loads are sta-
tionary. The flow is therefore independent of time and Darcy’s velocity
u is given by Darcy’s law :

u = −K∇h in Ω× (0, T ). (2)

where K is the permeability tensor, assumed constant in each layer and
h the dynamic load. All the coefficients are defined in [1].

The present paper is organized as follows. The numerical schemes
are presented in Section 1. We describe the study of the space conver-
gence in Section 2. We compare the accuracy of the different methods
and their calculation cost in Section 3. Techniques of mass lumping,
employed with FE and MHFE discretizations, are presented Section 4.
A discussion Follows in Section 5.

2. Numerical schemes

2.1. MHFE for the flow

We calculate the flow ~u = −K~∇h with a mixed hybrid finite element
method [2, 3]. Briefly, the method consists in solving the following
problem :

{

~u = K~∇h
div~u = 0

(3)

The unknown h is discretized with functions which are constant on
each cell, representing the average value of h. The flux is discretized
in HDIV (L2 norm of ∇.u is finite) for mixed finite element, whereas
hybridization consists in introducing the trace of the unknown h on the
boundaries of each cell to ensure the continuity of the flux across each
cell. The problem is reformulated with the trace of head, as the only
unknown variable.
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2.2. FV for the transport equation

We choose a finite volume method described in [4, 5] for the diffusive
part. For the convective part, we use a classical upwind scheme (order
1): the value of the concentration at one egde of a cell is the concentra-
tion at the center of the cell located on the upstream side of this edge.
Let us give a few details about the first method. We are interested by
the discretization of the operator ∇.(D~∇C) and we consider nearly the
same problem as above, Eq. (3), with the diffusion tensor D instead of
the permeability K, C the concentration of Iode 129, and the porosity
ω multiplied by the retardation factor R before the time derivation:







~q = D~∇C

Rω
∂C

∂t
= div~q

(4)

2.2.1. Notation

We describe the method for a triangle for the simplicity of exposition.
This method can be similarly extended to quadrangles (and even 3
dimensional elements). We use the following notation (Figure 1):

− S the triangle (P,Q,R) ; C,B and D the middles of its edges ; A its
barycenter and AS its area.

− T the triangle (A,B,C) ; δT its boundary and AT its area.

− ~nAB, (and respectively ~nAC , ~nCB, ~nPB, ~nCP , ~nBQ, ~nDQ, ~nRD,

~nRC), a normal to ~AB (and respectively ~AC, ~CB, ~PB, ~CP , ~BQ,
~DQ, ~RD, ~RC) with the same length as this vector.

− Ωp the quadrangular cell (A,B,C, P ).

− NP the number of edges of the mesh having the point P as end-
point.

2.2.2. Algorithm

We assume that C is affine on the quadrangular cell ΩP , ~q is constant
on ΩP and D is constant on S. We denote by CA (respectively CB,
CC) the value of the function C at the point A (respectively B, C).
Integration of the first equation of the system (4) over T , using Green’s
formula leads to :

∫

T
D−1~qdΩ =

∫

T

~∇CdΩ =

∫

δT
C~ndΓ. (5)
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Using the assumption that C is affine on ΩP , we get :

~D−1qP =
1

AT

(CA − CC)~nAB +
1

AT

(CA − CB)~nAC . (6)

So, we deduce the flux fPB through the interface BP as

fPB = ~qP .~nPB = ~nPBD~nAB

1

AT

(CA −CC) + ~nPBD~nAC

1

AT

(CA −CB).

(7)
Applying the flux continuity condition on each edge having P as a

vertex, we deduce the interface value (CB, CC , etc...) by inverting a
small matrix of dimension NP . Then, we can reconstruct all the fluxes
around the point P . Let us integrate the mass conservation equation
(the second equation of the system 3) over a cell S. We get:

∫

S
Rω

∂C

∂t
dΩ =

∫

S
div~qdΩ (8)

=

∫

δS
~q.~ndΓ (9)

= fPB + fBQ + fQD + fDR + fRC + fCP ; (10)

that is to say:

ASRSωS

∂CA

∂t
= fPB + fBQ + fQD + fDR + fRC + fCP . (11)

So, we are able to calculate the value C located at the barycenter of
each cell of the grid. Indeed, once the time discretisation is done (we use
Euler implicit, Explicit and Cranck-Nicholson scheme), the equation is
discretized as a linear expression of the concentration at the center of
each cell of the grid. The matrix of discretization is not symetrical.

2.2.3. Properties of the algorithm

The scheme seems to be consistent on triangular and quadrangular cells
using the usual L2 norm. It is conservative. It is monotone if the grid
is regular enough. Unfortunately, we know that this algorithm can be
unstable using very distorted cells and anisotropic tensors.

2.3. MHFE for the transport equation

2.3.1. Algorithm

The diffusive term is discretized like the flow equation. The advec-
tive term’s discretization is similar to a finite volume approach. The
div(uC) term is integrated on each cell. The volume integral is then
changed into a boundary integral where appears the convective flux
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Figure 1. Case of triangular cells

uC.n. This flux is calculated using the trace of the concentration and
the velocity flux, available with the MHFE method [6]. This is an order
two discretization. Similar techniques could have been employed [7, 8],
but we wanted to avoid a splitting between convection and diffusion
discretization, as it is the case in Siegel et al.. Our technique allows a
fully implicit scheme, by the use of Mixed Hybrid Finite Element for
both the diffusive and the convective terms. On the other hand, the
convection scheme does not respect the monotonicity. Whenever the
Peclet number is higher than 2, we add some orthotropic numerical
diffusion.

We also tried a splitting algorithm using a finite volume scheme for
convection and a Mixed Hybrid Finite Element scheme for diffusion.

2.3.2. Properties of the algorithm

The scheme is consistent on triangular and quadrangular cells using
the usual L2 norm. It is conservative. It is monotone if the cells Fourier
number Foi = D∆t/di is larger than 1/6, where ∆t is the time step
and di the typical size of the cell along the ith axis. The concentration
and the fluxes are approximated with the same accuracy O(d), where
d is a typical cell’s dimension.

The cell Fourier number is higher than 1/6 whenever the concentra-
tion diffuses beyond one sixth of a cell during a time step. The cells have
therefore to be small enough, or the time steps large enough. This can’t
be easily achieved when the time step is controlled by other phenomena
(coupling problems or presence of short period source terms).
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2.4. FE for the transport equation

We use a standard Galerkin, linear (or bilinear on quadrangles) dis-
cretization. The scheme is consistent on triangular and quadrangular
cells using the usual L2 norm. It is not locally conservative, but is
conservative on the domain. It is not monotone. The concentration
is accurate as O(d2) and the fluxes are accurate as O(d), for the L2

norm. We have also made a calculation, with a quadratic FE method,
providing accuracy of O(d3) for the concentration.

2.5. Time discretization

Let us denote AC the space dicretization of the diffusion operator
∇.(D~∇C),BC the space discretization of the convection operator∇.(~uC),
and IdC the discretisation of C. We use an implicit method. Therefore,
the scheme writes, at a given time step n :















RωId(
Gn+1

−Gn

∆t
)−AGn+1 +BGn+1 = Sneλt

n

Cn+1 = Gn+1e−λtn+1

G0 = C0

(12)

where ∆t the time step, tn = n ∗∆t, and Gn is introduced as a change
of variable to solve analytically the decaying term RωλC. Of course,
this scheme is unconditionnaly stable.

The source term, from the Couplex 1 data file, is time integrated.
Then, for each time step, the discretized source term is calculated as
the difference between the integrated source at the end and at the
beginning of the time step.

The change of variable makesit possible to solve analytically the
radioactive decaying term of the equation.

2.6. The solvers used

The calculations were run on 1.7 GHz PC with 500 Mb of RAM mem-
ory. At each time step, we solve a linear sparse system which is not
symmetric due to the convection operator. For the smallest grids (less
than 50000 nodes), we use a direct solver. For larger numbers of nodes,
we use a BCGSTAB algorithm and a ILU(0) preconditioning. This
enables us to load only non-zero coefficients of the matrix discretization.
The nodes were renumbered in all cases with the algorithm of Gibbs-
King [9] to minimize the profile. It is essential for direct method but
also very efficient for the iterative method. It indeed allowed a gain of
at least a factor 3 in the number of iterations during the calculations.
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2.7. The grid

Two sets of grids were used. The first one follows exactly the different
layers and is made up of quadrangles. The second set does not exactly
follow the inclined boundary of the repository’s layer. It is made up of
rectangles; therefore, the layer’s boundary is a broken line. The first
and second types of grid are very similar, except that the angles are
around 90 ± 2 degrees for the first one.

The two approaches lead to the same results concerning the contour
levels of iodine 129. Nevertheless, the velocity profiles at x=50, 12500
and 20000m are wrong up to a factor 2 for the vertical component, in
the case of a rectangular mesh. This is a purely local effect, which is
observed only with certain grids, where the observation lines are close
to a jump of the repository layer’s boundary (constituted with a broken
line). It has very little negative effect on the final results on the iodine
concentration. On the contrary, we will show that a better convergence
is achieved on the rectangles with the three methods presented here.

2.8. The contour level lines

For the concentration, the contour level are drawn for the concen-
trations 10−12 (symbol A), 10−10 (B), 10−8 (C), 10−6 (D) and 10−4

(E).
We first encountered problems with the plotting software, which

works in simple precision and was calculating wrong contour levels.
The problem has been solved by segregating the values above or below
the chosen levels (in double precision). The contour levels are then
plotted, but without any interpolation, that is to say they follow the
edges of the meshes.

3. Convergence Analysis

We use two different sets of five different grids, one set containing grids
made up of rectangles, GRi, i = 1,...,5, and the other containing grids
made up of quadrangles, GQi, i = 1,...,5. The coarsest ones, GQ1 and
GR1, consist of 5000 cells; the second ones, GQ2 and GR2, of about
26000 cells; GQ3 and GR3, of about 55000 cells; GQ4 and GR4, of
88000 cells, and GQ5 and GR5 of 166000 cells. We point out that
the number of unknowns is equal to the number of vertices for the
FE method and to the number of cells for the FV method. These are
roughly the same for the type of grids considered here. However, the
number of unknowns for the MHFE method is equal to the number of
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edges, nearly double the number of unknows needed for the other two
methods.

3.1. The flow equation

Calculation for the flow equation using the mixed hybrid method with
the grid GQ5 gave results nearly identical to those obtained with the
grid GQ1. This indicates that a small number of cells is sufficient. The
contour level curves for the piezomztric head are presented in Figure
2. In Figures 3, 4 and 5 are shown the Darcy velocity fields along the
vertical lines x = 50m, x = 12500m, and x = 20000m, respectively.

3.2. The transport equation - Spatial convergence

The tests of spatial convergence were performed with small enough
time steps so that time discretization errors were negligible. We used
100 year time steps from 1000 up to 2000 years, 250 year time steps
from 2000 to 10110 years, 500 year time steps from 10110 to 50110
years, 2500 year time steps from 50110 to 2×105 years, 5000 year time
steps from 2×105 to 106 years and 10000 year time steps from 106 to
107 years. To check that this list was satisfactory, we compared results
obtained using three different time stepping schemes, Euler implicit
(first order), Crank-Nicholson (second order), and an explicit scheme.

In Figures 6, 7, 8, 9, and 10 we show level curves of the concentration
at 200000 years, and in Figures 11 and 12 at 106 years. Except where
otherwise noted, a centered scheme for the advective term was coupled
with the specified scheme for the diffusive term and an implicit scheme
was used for the time stepping.

We observe that the calculations are not fully converged, even with
more than a hundred thousand nodes, see Figures 6, 7, 11 and 12. For
example, in Figures 11 and 12, when the calculations are carried out
using the grid G2, the contour level D is located mostly in the clay layer.
However, when the grid G4 or G5 is used the corresponding contour
level is located almost entirely in the bottom layer. In Figures 6, 7, and
9, the contour level in the limestone layer, that exits from and re-enters
the clay layer, decreases in size as the grid is refined.

We point out that all of the methods studied perform better on
the grids of rectangles than on the grids of quadrilaterals see Figures
8, 9, and 10. The results obtained with either of the three methods,
FE, FV, or MHFE, on the grid GR4 made up of rectangles show less
diffusion than those obtained with the FE method on the finer grid GQ5
made up of quadrangles. Generally speaking, with each of the methods
considered here, we obtain results of the same quality on the grid GR2
made up of rectangles as on the finer grid GQ4 and GQ5 made up of
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quadrilaterals. (We can not really talk about superconvergence here as
we haven’t calculated errors and rates of convergence).

We also point out that upwind schemes are far less accurate than
centered ones, as illustrated Figure 7. To complete this section, we
present selected results obtained by the different methods tested at the
remaining years 10110, 50110 and 10000000, in Figures 13 and 14.

4. Comparison of the different methods

4.1. Accuracy

The previously exposed results, Figures 8 and 9, show that MHFE
compares well to the FE methods for a same grid. The same conclusion
applies to the FV discretization, see Figures 6 and 10. However, we have
compared the FV and MHFE methods on a simple diffusion equation
with analytical solution. Both methods were converging at the same
rate, but the constant of error was three times less important for the
MHFE discretization. It seems therefore that MHFE are more accurate
for the diffusion term. In the present problem, most of the comparisons
are done outside the clay layer, where advection dominates. This might
partly explain why the higher accuracy of the MHFE method is not
observed.

4.2. Calculation cost

For the considered grids, we checked that the finite volume and the
finite element discretization generate sparse matrices, the size of which
is 9 times the number of unknowns, whereas the MHFE produce a
matrix, the size of which is 7 times the number of unknowns. However,
the calculation cost of the different methods is difficult to evaluate. On
the average, we observed that the calculation costs for all three methods
were almost the same, for the same number of unknowns (but we remind
that there are twice as many unknowns for the EFMH discretization
than for FE or FV discretizations on a same grid).

However, it has to be noticed that the MHFE method happened to
be far slower when the mesh was strongly distorted. It seemed to be a
lot more sensitive to the quality of the grid than the other methods. The
number of iterations required by the BiCGSTAB algorithm to converge
could be 10 times higher on a bad quality grid. The memory load is
also very similar between the different methods with a slight advantage
to the MHFE discretization.

Nevertheless, the presented results show that MHFE method re-
quires a grid just as highly refined as the other two methods, in order to

couplex.tex; 12/07/2007; 10:08; p.9



10

math their accuracy, for this particular COUPLEX 1 problem. There-
fore, the MHFE method is more expensive, since it requires twice as
many unknowns than the two others methods presented. This contra-
dicts what we said in Subsection 4.1, where the EFMH was said to be
tree time more accurate than the FV method on a diffusion problem,
for the same grid. We carried out other comparisons, on different types
of grids (triangular, rectangular ...) and different types of equations. It
shows that the accuracy of the different methods depends strongly on
the grid and the equation. No general rule could be found concerning
their accuracy; the MHFE discretization is sometimes much more ac-
curate (3 or 4 times) than the FE or FV discretization, but it might
also be the opposite.

On a pentium 4, 1,7 Ghz and 500 Mo of memory, for the G4 grid,
it takes between 1 second (with 12 iterations) and 4.5 seconds (for
60 iterations) to solve a time step with a BiCGSTAB algorithm. The
numerotation of the grid proved to be very important, even for an
iterative method. It takes about 12 seconds to solve a time step with
a direct method and then 0.3 second to solve each following time step,
for an identical time increment.

On such a two-dimensional problem, a direct solver seems to be more
appropriate and leads to calculations of less than 12 minutes on grid 4
for 1173 time steps for the FE discretization.

5. The maximum principle

Neither the FE nor the MHFE discretization of the transport equation
preserves the monotonicity. When the concentration is rapidly vary-
ing, as is the case at early times near the repository, the calculated
concentration shows oscillations, Figure 15.

When diffusion is dominant, i.e. the cell’s Peclet number is smaller
than 1, these oscillations are suppressed whenever the Fourier number
is high enough. This can be achieved by reducing the cells size or by
increasing the size of the time step, see Figure 13. However, it is not
always possible to choose a larger time step or a finer grid. An alter-
native is to use a mass lumping technique. For an FE discretization,
this consists in creating a diagonal time discretization matrix dC/dt
by summing the terms of each row of the matrix and putting the sum
in the diagonal slot. For the MHFE discretization, the technique is the
same but with the mass matrix of the flux equation q = −D∇C.

This technique suffers strong restrictions. It can be employed only
with rectangle cells for the MHFE, or with Delaunay-Voronoi meshes
(for isotropic diffusion tensor). In this second case, the technique is
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more complicated than a simple sum. For the FE method, it works
only with Delaunay-Voronoi meshes (for isotropic diffusion tensor).

When the diffusion is negligible compared to the advective term
(Peclet larger than 1), problems of monotonicity are reduced by adding
numerical diffusion along the flow lines, in order to reduce the Peclet
number down to 1. We are speaking of an upwind scheme in this case,
and a centered scheme otherwise.

Practically, the mass lumping proved to be efficient with the MHFE
method but rather inefficient with the FE discretization, Figure 16.
Indeed, the mass lumping technique has been used on quadrangles (for
the FE method) or non Delaunay-Voronoi triangles, and leads to worse
results than those presented in Section 3.2. These bad results are mainly
due to the presence of a centered convective term. When it is removed,
the results are indeed free of oscillations. The use of Stream Upwind
Petrov Galerkin scheme will be the object of a future work.

6. Discussions

The three methods studied here lead to results of similar quality. When-
ever respecting monotonicity is important, the FV approach is more
efficient than the FE or the MHFE technique. Indeed, mass lumping
and upwind techniques work under strong restrictions. The other alter-
native, consisting in using fine grids also poses problems, particularly
for problems in 3 dimensions.

Nevertheless it is possible to employ other techniques to ensure the
positivity of the results. We envisage to work on the log(C) variable. We
could benefit from the superior flexibility of FE and MHFE method,
whose consistency is proved, even for very distorted meshes.

We envisage to use a second order FV scheme for the advective term
and a SUPGDC upwind technique for the FE algorithm [10], which is a
non linear discontinuity capturing method inducing numerical diffusion
along the flow lines, and also along the gradient of the concentration.

A splitting algorithm using a MHFE discretization for the diffusion
and a FV discretization for the advection has been tested. It works well,
but requires small time steps (nearly as small as those required by a
time explicit scheme). We are working on improving this technique.
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Figure 2. Isovalues of the piezometric head, MHFE, grid 1
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Figure 3. Darcy velocity field (ux, uy) at x = 50m, GQ5 grid, 332000 unknowns
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Figure 4. Darcy velocity field (ux, uy) at x = 12500m, GQ5 grid, 332000 unknowns
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Figure 5. Darcy velocity field (ux, uy) at x = 20000m, GQ5 grid, 332000 unknowns
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Figure 6. Results at 200000 years, grids GQ2 and GQ3 - quadrangles - FE
discretization - centered advection
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Figure 7. Results at 200000 years, grid GQ5 - quadrangles - with an FE dis-
cretization - centered advection and G4 - rectangles - with an upwind FV
discretization
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Figure 8. Results at 200000 years, grid GR4 - rectangles - with a bilinear FE dis-
cretization and grid GR2 - rectangles - with a quadratic FE discretization (centered
advection for both)
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Figure 9. Results at 200000 years, grid GR4 - rectangles - MHFE discretization
(left), splitting method - MHFE for diffusion - centered FV advection (right)
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Figure 10. Results at 200000 years, grids GQ2 - quadrangles (left) and GR2 -
rectangles (right) - FV discretization - centered advection
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Figure 11. Results at 1000000 years, grids GQ2 and GQ4, FE discretization,
presence of small oscillations - quadrangles
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Figure 12. Results at 1000000 years, grid GQ5 - quadrangles - with an FE
discretization (left) and grid GR4 - rectangles - with an MHFE discretization (right)
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Figure 13. Results at 50110 years, grids GQ5 - quadrangles, FE discretization
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Figure 14. Results at 10110 years, grid GQ2 with an FV discretization (left) and at
10 million years, grid GR4 - rectangles with an MHFE discretization (right)

 CONCENTRATION (mol/m3) I_129 A 10110 ANS

E
D
CB
A

AA
AB
AB
ABC
DE

 CONCENTRATION (mol/m3) I_129 A 10110 ANS

E
D
CB
A

A
AA
B
AB
ABCD
E

Figure 15. Oscillations of the concentration 10110 years, grids GQ2 - quadrangles,
FE discretization (left) and MHFE discretization (right), no mass lumping
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Figure 16. grids GQ2, results at 10110 years, MHFE discretization (left) and at
200000 years, FE discretization (right), with mass lumping techniques, centered
convective terms
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