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Abstract The balanced traveling salesman problem (BTSP) is a variant of
the traveling salesman problem, in which one seeks a tour that minimizes the
difference between the largest and smallest edge costs in the tour. The BTSP,
which is obviously NP-hard, was first investigated by Larusic and Punnen
in 2011 [9]. They proposed several heuristics based on the double-threshold
framework, which converge to good-quality solutions though not always optimal
(e.g. 27 provably optimal solutions were found among 65 TSPLIB instances of
at most 500 vertices). In this paper, we design a special-purpose branch-and-cut
algorithm for solving exactly the BTSP. In contrast with the classical TSP, due
to the BTSP’s objective function, the efficiency of algorithms for solving the
BTSP depends heavily on determining correctly the largest and smallest edge
costs in the tour. In the proposed branch-and-cut algorithm, we develop several
mechanisms based on local cutting planes, edge elimination, and variable fixing
to locate more and more precisely those edge costs. Other important ingredients
of our algorithm are heuristics for improving the lower and upper bounds of
the branch-and-bound tree. Experiments on the same TSPLIB instances show
that our algorithm was able to solve to optimality 63 out of 65 instances.
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1 Introduction

Given a finite set E with cost vector c and a family F of feasible subsets of E, the
balanced optimization problem seeks a feasible subset S∗ ∈ F that minimizes
the difference in cost between the most expensive and least expensive element
used, i.e., maxe∈S∗ ce − mine∈S∗ ce. This optimization class arises naturally
in many practical situations where one desires a fair distribution of costs.
Balanced optimization was introduced by Martello et al. [12] in the context
of the assignment problem. Then, a line of works was investigated for other
specific cases of balanced optimization, such as the balanced shortest path [16,
3], the balanced minimum cut [8], and the balanced spanning tree [4,2].

In this paper, we consider the balanced version of the traveling salesman
problem (TSP). In the context of the TSP, the finite set E is the edge set of
a graph, and the feasible subset family F is the set of all Hamiltonian cycles
(a.k.a tours) in the graph. The balanced traveling salesman problem (BTSP)
finds a tour in which the difference between the largest and smallest edge costs
is minimum. We call this difference the max-min distance. Formally, given an
undirected graph G = (V, E) and a cost vector c associated with E, the BTSP
can be stated as follows:

min
H∈Π(G)

{max
e∈H

ce − min
e∈H

ce} (1)

where Π(G) is the set of all Hamiltonian cycles in G. The BTSP is NP-hard
as the problem of finding a Hamiltonian cycle in the graph can be reduced to
the BTSP.

The BTSP was first studied by Larusic and Punnen [9] with applications in
many practical problems, such as the nozzle guide vane assembly problem [13]
and the cyclic workforce scheduling problem [17]. While most of the previous
works about balanced optimization focused on polynomial-time algorithms,
the BTSP was the first NP-hard case studied. The BTSP can be reduced to
the problem of finding the shortest interval such that all edges whose costs are
in the interval can form a Hamiltonian cycle. An approach for finding such
an interval is the double-threshold algorithm [12], widely used for balanced
optimization problems. As its name suggests, the double-threshold algorithm
maintains two thresholds of the edge costs of the tour: a lower threshold and
an upper threshold. At each iteration, the algorithm generates a threshold pair
and checks whether the graph whose edge costs are restricted by this threshold
pair is Hamiltonian. The interval to find is a threshold pair with the smallest
difference.

A critical issue of this approach is that it requires solving O(|V |2) Hamil-
tonicity verification problems, which are NP-hard. It causes the approach to
be unpractical when the problem size is large. To tackle this issue, Larusic
and Punnen [9] heuristically solved the Hamiltonicity verification problem
at every iteration. They also developed four variants of the double-threshold
algorithm to reduce the number of iterations without sacrificing solution quality
by using the bottleneck TSP [10] and the maximum scatter TSP [1]. With
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these modifications, their algorithms produced provably optimal solutions for
27 out of 65 TSPLIB instances [14] from 14 to 493 vertices with a time limit
of 18000 seconds per instance.

To the best of our knowledge, no exact algorithm based on Mixed-Integer
Programming (MIP) for the BTSP has been proposed in the literature, although
it is quite easy to formulate the BTSP through the existing MIP formulations
for the TSP. The reason is that solving the BTSP’s formulations directly
without tools to locate the largest and smallest edge costs can be inefficient
and more difficult than solving the classical TSP. In this paper, we propose a
branch-and-cut algorithm that includes mechanisms to tighten the bounds of
the largest and smallest edge costs. These mechanisms include local cutting
planes, edge eliminating, and variable fixing techniques. To further improve
the performance, we develop heuristics for strengthening the lower and upper
bounds of the BTSP. The efficiency of the proposed branch-and-cut algorithm
is assessed through computational comparison to the double-threshold-based
algorithms in [9]. Numerical results show that our algorithm can solve to
optimality 63 instances out of 65 within 3 hours of CPU time.

The paper is organized as follows. In Section 2, we present a MIP formulation
for the BTSP. Section 3 proposes a family of local cutting planes for the BTSP,
called local bounding cuts. Then, the heuristics to improve the lower and upper
bounds of the branch-and-bound tree are presented respectively in Sections 4
and 5. Section 6 describes the branch-and-cut algorithm used for the BTSP,
which includes heuristics to eliminate edges and fix variables. Section 7 provides
computational results to evaluate the algorithm’s efficiency. Finally, we give
some conclusions in Section 8.

1.1 Preliminaries

Given a graph G = (V, E) and a cost vector c associated with E, we provide
below some notations used throughout the paper. For any subset S of V , let
δ(S) be a subset of E where each edge has exactly one endpoint in S, i.e.,
δ(S) = {(i, j) ∈ E | i ∈ S and j ∈ V \ S}. For abbreviation, we write δ(v)
instead of δ({v}) for all v ∈ V . Given a Hamiltonian cycle H ∈ Π(G), we
respectively denote by uH and lH the largest and smallest edge costs in H. For
an edge set F ⊆ E, we denote V (F ) the end-vertices set of edges in F and
C(F ) = {ce ∈ c | e ∈ F} the edge cost set corresponding to F . Without loss of
generality, we assume that C(E) = {C1, . . . , Cp} where p ≤ m is the number
of distinct components of the cost vector c and C1 < C2 < · · · < Cp. For an
interval [α, β], G[α, β] stands for a subgraph of G with edge set E[α, β] = {e ∈
E | α ≤ ce ≤ β}. We call G[α, β] the subgraph restricted by [α, β]. For any
positive integer n, let [n] = {1, . . . , n}.
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2 MIP formulation for the BTSP

Given an undirected graph G = (V, E) with edge costs c, the BTSP consists in
finding a tour that minimizes the max-min distance. We denote by {xe | e ∈ E}
a set of binary variables where xe = 1 if edge e is in the tour and xe = 0
otherwise. Let u and l respectively be variables representing the tour’s highest
and smallest edge costs. We propose a MIP formulation for the BTSP as
follows:

(MIP − BTSP ) min u − l (2a)

s.t.
∑

e∈δ(v)

xe = 2 ∀v ∈ V (2b)

∑
e∈δ(S)

xe ≥ 2 ∀∅ ≠ S ⊂ V (2c)

u ≥ cexe ∀e ∈ E (2d)
l ≤ cexe + (1 − xe)Me ∀e ∈ E (2e)
xe ∈ {0, 1} ∀e ∈ E (2f)

where Me = min{maxe′∈δ(i) ce′ , maxe′∈δ(j) ce′} for all e ∈ E. The objective
function (2a) corresponds to the max-min distance. Constraints (2b) are degree
constraints, which ensure that each vertex has precisely two incident edges in
the tour. Constraints (2c) are the well-known subtour elimination inequalities
that prevent the existence of subtours. Constraints (2d) and (2e) are used to
estimate the highest and smallest edge costs. More specifically, constraints (2d)
ensure that u must be greater than or equal to the costs of edges selected in the
tour. On the other hand, if an edge e occurs in the tour (xe = 1), inequalities
(2e) read as l ≤ ce, which are true by the definition of l. Otherwise (xe = 0),
constraints (2e) become l ≤ Me, which are valid as l ≤ maxe∈δ(i) ce, ∀i ∈ V .

3 Local bounding cuts

The BTSP entails estimating the largest and smallest edge costs compared
to the TSP. This task is non-trivial and enormously impacts the algorithm’s
performance. In (MIP − BTSP ), while the highest edge cost u is directly
estimated through the edge variables, the smallest edge cost estimation needs
to use the constants Me. It can lead to untight bounds for l in the linear
programming (LP) relaxations and make solving the BTSP noticeably more
time-consuming than solving the TSP. This can be seen in the following
experiment. We addressed the TSP and BTSP on the TSPLIB instance si175
(with 175 vertices) by a general-purpose branch-and-cut algorithm with the
same TSP constraints in the MIP formulations. While the TSP can be solved
in 25 seconds, the BTSP can not be solved to optimality within 10800 seconds.
Thus, the crucial point in solving the BTSP via branch-and-cut algorithms is
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not the reinforcement of TSP constraints but the estimation of the largest and
smallest edge costs. This section provides a family of local cutting planes to
strengthen the bounds of the smallest edge cost in the LP relaxations.

Observe that in the branch-and-bound tree, each node is associated with an
ordered pair ⟨F0, F1⟩ where F0, F1 ⊂ E are two disjoint edge sets. Given a node
⟨F0, F1⟩, a tour found by the node or its descendants is one whose incidence
vector satisfies

xe = 0 ∀e ∈ F0

xe = 1 ∀e ∈ F1.

In other words, this tour permanently includes the edges of F1 and excludes
the edges of F0. Let M i

C(F1) be the minimum of C(F1) = {ce | e ∈ F1}.
Obviously, the smallest edge cost of the tour can not exceed M i

C(F1). Based on
this observation, we have the following inequalities, called local bounding cuts

l ≤ cexe + (1 − xe)M i
C(F1) ∀e ∈ E. (3)

As their name suggests, the local bounding cuts are locally-valid, namely
that these cuts are valid only for the current node and its descendants in the
branch-and-bound tree, as they use the specific properties of the node. The
local bounding cuts aim at favoring early locating the smallest edge cost at
the subtree to help the solver concentrate on finding a tour or proving the
tour’s non-existence in the subgraph restricted by [l, u]. Indeed, these cuts can
tighten the bounds of the smallest edge cost l in the subproblems and thus
narrow the interval [l, u].

4 Algorithm for improving the lower bound

A good lower bound enables to speed up branch-and-cut algorithms. Given
a graph G = (V, E) with edge costs c, we present below a heuristic partly
inspired by the Hamiltonian verification procedure in [9] to find a lower bound
of the BTSP.

As mentioned in [9], a Hamiltonian graph must be a biconnected graph (i.e.,
a graph in which for any pair of vertices u and v, there exist two paths from
u to v without any vertices in common except u and v). The intuition of the
heuristic is that for all distinct costs Ci ∈ C(E), we find the shortest interval
containing Ci such that the subgraph restricted by this interval is biconnected.
The minimum length among these intervals is a lower bound of the BTSP.
Algorithm 1 gives a formal description of our lower bound heuristic. Before
describing the heuristic in detail, we introduce some definitions and lemmas.

Definition 1 (Biconnected interval) For any Ci ∈ C(E), a biconnected
interval compatible with Ci is an interval [α, β] such that

i) α ≤ Ci ≤ β;
ii) G[α, β] is biconnected.
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Algorithm 1 Heuristic to find a lower bound of the BTSP
Input: A graph G = (V, E) with edge costs c.
Output: A lower bound of the BTSP.
1: Let C1 < C2 < · · · < Cp be the distinct costs of c
2: b0 ← 1, Cp+1 ← +∞
3: for i ∈ [p] do
4: j ← bi−1
5: while j ≤ p do
6: if G[Cj , Cuj ] is biconnected then
7: bi ← j
8: break
9: end if

10: j ← j + 1
11: end while
12: if j > p then
13: bi ← p + 1
14: end if
15: end for
16: for i ∈ [p] do
17: Cli

← C1, Cui ← Cp

18: for j ∈ [i] do
19: if Cbj

− Cj < Cui − Cli
then

20: Cli
← Cj , Cui ← Cbj

21: end if
22: end for
23: end for
24: return mini∈[p] Cui − Cli

.

The length of a biconnected interval [α, β] is the difference between β and α,
i.e., β − α. We denote by γ(Ci) the length of the shortest biconnected interval
compatible with Ci.

Lemma 1 Let H be a tour in G. If H contains an edge with cost Ci, then

uH − lH ≥ γ(Ci).

Proof. We consider the graph G[lH, uH] with edge set E[lH, uH] = {e ∈ E |
lH ≤ ce ≤ uH}. G[lH, uH] is biconnected as it contains the tour H. Since H has
an edge with cost Ci, lH ≤ Ci ≤ uH. Thus, (lH, uH) is a biconnected interval
compatible with Ci. By the definition of γ(Ci), uH − lH ≥ γ(Ci).

Corollary 1 Let γ∗ = minCi∈C(E) γ(Ci) and OPT be the optimal value of
(MIP − BTSP ), we have γ∗ ≤ OPT .

Thanks to Corollary 1, to obtain a lower bound of the BTSP, it is sufficient
to find the shortest biconnected interval compatible with Ci for all Ci ∈ C(E).
The following lemma provides a characterization of the shortest biconnected
intervals.

Lemma 2 If [α, β] is the shortest biconnected interval compatible with Ci, then
α and β belong to the edge cost set of E.
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Proof. We consider the graph G[α, β]. Let α′ = min{ce | e ∈ E[α, β]} and
β′ = max{ce | e ∈ E[α, β]}. Obviously, α′, β′ ∈ C(E) and α′ ≤ Ci ≤ β′. Since
G[α′, β′] = G[α, β] and G[α, β] is biconnected, G[α′, β′] is also biconnected.
Thus, [α′, β′] is a biconnected interval compatible with Ci.

Since [α, β] is the shortest biconnected interval compatible with Ci, β −α ≤
β′ − α′. On the other hand, by the definition of G[α, β], α ≤ α′ and β ≥ β′.
Then, β′ − α′ ≤ β − α. The equality holds if and only if α = α′ and β = β′.

By Lemma 2, to find the shortest biconnected intervals, we first determine
the smallest index bj ∈ [p] (recall that p = |C(E)|) such that G[Cj , Cbj

]
is biconnected, for all Cj ∈ C(E). Then, the shortest biconnected interval
compatible with Ci is the shortest interval [Cj , Cbj

] containing Ci. A naive
way to find bj is to initially set bj by j and increase bj until G[Cj , Cbj ] is
biconnected. It requires checking the graph’s biconnectivity O(|E|2) times.
However, we can reduce it to O(E) by using the following lemma.

Lemma 3 For any i, j ∈ [p], if Ci < Cj then bi ≤ bj.

Proof. We prove the lemma by contradiction. Assume that there exist two
costs Ci, Cj such that Ci < Cj and bi > bj . Obviously, G[Cj , Cbj

] is a subgraph
of G[Ci, Cbj

]. Since G[Cj , Cbj
] is biconnected, G[Ci, Cbj

] is also biconnected.
On the other hand, bi is the smallest value such that G[Ci, Cbi ] is biconnected.
Thus, bi ≤ bj , contradicts the assumption.

Using Lemma 3, we can set bj initially as bj−1 instead of j. This reduces
the number of biconnectivity checks at most O(|E|). The algorithm then
repeatedly verifies the biconnectivity of the graph G[Cj , Cbj

] and increases
bj until G[Cj , Cbj

] is a biconnected graph. Since a biconnected graph is a
connected graph without articulation vertices, the graph’s biconnectivity can
be checked in O(|V | + |E|) by Tarjan’s algorithm [15]. In total, the complexity
of Algorithm 1 is O(|E|2).

5 Local search algorithm to improve the upper bound

To improve the upper bound of the branch-and-cut algorithm, we develop
a local search algorithm for the BTSP, called k−balanced, based on k−opt
algorithms for the TSP [11,7]. The algorithm takes a graph G = (V, E) with
edge costs c and an initial tour as input and returns an improved tour with
a smaller max-min distance. We use k−balanced to provide a good feasible
solution at the beginning of the branch-and-cut algorithm and enhance the
incumbent solutions during the branch-and-cut.

The intuition of k−balanced is to repeatedly perform k−exchanges (k−opt
moves) to improve the current tour. A k−exchange replaces k edges in the
current tour with k edges in such a way that a tour with a smaller max-min
distance is achieved. Algorithm 2 sketches a generic version of k−balanced. In
the following, we describe in detail the algorithm.
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Algorithm 2 Generic k-balanced
Input: A tour H of G and a fixed number k.
Output: A tour with a smaller max-min distance.
1: improved ← True
2: while improved do
3: improved ← False
4: Select (F, l′, u′) where F ⊂ H and [l′, u′] ⊊ [lH, uH].
5: EC(F, l′, u′)← {(i, j) ∈ E | i, j ∈ V (F ) ∧ (l′ ≤ c(i,j) ≤ u′)} .
6: if exists a k-subset F ⊂ EC(F, l′, u′) such that (H \ F ) ∪ F is a tour then
7: H ← (H \ F ) ∪ F .
8: improved← True
9: end if

10: end while
11: return H.

Given a tour H of G, at each iteration, k-balanced constructs two edge sets,
F = {f1, . . . , fk} and F = {f1, . . . , fk}, such that H′ = (H \ F ) ∪ F is a new
tour with a smaller max-min distance. We call the edges of F out-edges and
the edges of F in-edges.

The max-min distance of H′ is smaller than that of H if and only if all
edge costs of H′ belong to an interval shorter than [lH, uH]. Due to this fact,
the out-edge set F must contain all edges with either the maximum edge cost
or the minimum edge cost in H and the in-edge set F only comprises edges
with costs belonging to a range [l′, u′] such that u′ − l′ < uH − lH. In order
to avoid searching all possible intervals [l′, u′], we simply consider intervals
[l′, u′] ⊊ [lH, uH].

We first describe a way to construct the in-edge set F given a triple (F, l′, u′)
where F ⊂ H and [l′, u′] ⊊ [lH, uH]. Let EC(F, l′, u′) = {(i, j) ∈ E | i, j ∈
V (F ) ∧ (l′ ≤ c(i,j) ≤ u′)} the set of edges whose end-vertices are in V (F )
with costs between l′ and u′. By its definition, EC(F, l′, u′) is precisely the
set of edges that can be used to complete a tour from H \ F , namely that
F ⊂ EC(F, l′, u′). To construct F , we solve the problem of completing a
Hamiltonian cycle from H \ F with only edges in EC(F, l′, u′). With k fixed,
we can solve the same problem on G′ - a compressed version of G with at most
2k vertices. The construction of F is thus cheap since it is independent of the
size of G. Figure 1 illustrates this idea.

We now present rules to select (F, l′, u′). We create three variants of
k−balanced corresponding to three selection rules for (F, l′, u′): k−balanced
min, k−balanced max, and k−balanced extreme. Table 1 summarizes the three
variants.

Algorithm 3 describes the selection rule of (F, l′, u′) for k−balanced min/max.
In these variants, we select F in such a way as to maximize the cardinality of
EC(F, l′, u′). We call this rule the maximum candidate cardinality principle
(MCCP). In particular, for k-balanced min, we set (l′, u′) = (lH + 1, uH) and
initialize F by all min-cost edges. At step i, an edge fi in H \ F is added to
the current F if it can increase the cardinality EC(F, l′, u′) the most. More
precisely, fi is the edge that has the most incident edges having one end-vertex
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Fig. 1 Illustration of a 3−opt move in 3−balanced max. (1.a) represents a tour H whose
largest and smallest edge costs are 8 and 3, respectively. We will remove all edges with
max-cost 8 (f1, f2, f3) from H and set (l′, u′) = (lH, uH − 1) = (3, 7). (1.b) illustrates the
remainder H \ F of the tour. The dash lines are the edges of EC(F, l′, u′) where edges have
two endpoints in V (F ) and costs belong to [3, 7]. (1.c) demonstrates a compressed version
G′ of G, in which paths in H \ F are considered as edges. The problem of reconnecting H
in G is equivalent to the one in G′. (1.d) shows the resulting tour with a smaller max-min
distance, i.e. 3.

F l′ u′

k−balanced min min-cost edges and
edges found by MCCP lH + 1 uH

k−balanced max max-cost edges and
edges found by MCCP lH uH − 1

k−balanced extreme extreme-cost edges and
edges with smallest d(c, H) mine∈H\F ce maxe∈H\F ce

Table 1 Selection rules of (F, l′, u′)

in V (F ) with costs between l′ and u′. The selection procedure is repeated
until the cardinality of F equals k. This selection rule is applied similarly for
k-balanced max with two modifications: F initially is a set of all max-cost edges,
and l′, u′ respectively equal lH and uH − 1. Such a way to select (F, l′, u′) offers
the uttermost cardinality of EC(F, l′, u′) and thus increases the probability
of F ’s existence. However, it slowly decreases the max-min distance at each
iteration (the gain can be only 1 per k-exchange).

On the other hand, k-balanced extreme prioritizes dropping the max-min
distance as fast as possible. While k-balanced min/max chooses edges to
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remove, the removal rule of k-balanced extreme is cost-based. Let d(ce, H) :=
min(|lH − ce|, |uH − ce|) be a distance from a cost ce to the edge costs of H.
We choose F as the set of k edges with the smallest distance d(c, H). Then,
(l′, u′) equals (mine∈H\F ce, maxe∈H\F ce). This selection method can reduce
the max-min distance substantially. However, it also decreases the cardinality
of EC(F, l′, u′) and thus decreases the possibility of finding the in-edge set F .
Algorithm 4 gives the formal description of the rule.

Algorithm 3 Selection rule for k−balanced min/max
Input: A graph G = (V, E), a tour H, a constant k, and an extreme type ET .
Output: (F, l′, u′) where F ⊂ H and [l′, u′] ⊊ [lH, uH].
1: if ET is min then
2: F ← {e ∈ H | ce = lH}, l′ ← lH + 1, u′ ← uH
3: else if ET is max then
4: F ← {e ∈ H | ce = uH}, l′ ← lH, u′ ← uH − 1
5: end if
6: while |F | < k do
7: f ← arg maxe=(i,j)∈H | δ({i, j}) ∩ δ(F ) ∩ {e ∈ E|l′ ≤ ce ≤ u′} |
8: F ← F ∪ {f}
9: end while

10: return (F, l′, u′)

Algorithm 4 Selection rule for k−balanced extreme
Input: A graph G = (V, E), a tour H, and a constant k.
Output: (F, l′, u′) where F ⊂ H and [l′, u′] ⊊ [lH, uH].
1: F ← ∅.
2: while |F | < k do
3: removed_cost← arg mince∈C(H\F ) d(c,H)
4: F ← F ∪ {e ∈ H | ce = removed_cost}
5: end while
6: l′ ← mine∈H\F ce

7: u′ ← maxe∈H\F ce

8: return (F, l′, u′)

Notice that in all variants of k−balanced, we only consider one subset F to
find k−exchange at each iteration. Although this setting can omit high-quality
k−exchanges, it allows the algorithm to launch with many random initial tours
and k’s values within an acceptable amount of CPU time. Thus, we still can
obtain reasonable feasible solutions. To further improve the algorithm, when
the number of min-cost edges or max-cost edges is at most 3, we search 3−opt
moves with all valid edge triples of the tour.

6 Branch-and-cut algorithm

In this section, we describe a branch-and-cut algorithm for solving exactly the
BTSP. It contains mechanisms to locate the largest and smallest edge costs
(i.e., local bounding cuts, edge elimination, and variable fixing) and algorithms
to improve the lower and upper bounds.
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The first step is to perform Algorithms 1 and 2 to yield a lower bound and
an upper bound to start the branch-and-cut algorithm. These bounds are also
used to eliminate edges and reduce the formulation’s size. Details are given in
Section 6.1.

After the initialization steps, the algorithm constructs a search tree (a.k.a
branch-and-bound tree) whose root node is the LP relaxation of (MIP −BTSP )
without subtour elimination constraints. When an integer solution is found,
violated subtour constraints are found and added to the formulation. If this
solution satisfies all subtour constraints and has the best objective value, it
is called the incumbent solution. When obtaining a new incumbent solution,
Algorithm 2 is called to enhance this solution and decrease the upper bound
of the branch-and-cut algorithm. At nodes in which the solutions to the
subproblems are fractional, local bounding cuts and subtour constraints are
generated following the separation strategies presented in Section 6.3. To
accelerate exploring the nodes, we integrate into the branch-and-cut algorithm
several variable fixing techniques, which are described in Section 6.2. Other
fundamental components, such as node and variable selections, follow the
default rules of the commercial solver CPLEX 12.10.

The algorithm is sketched as follows:

Step 0: (Initialization)
0.1 Run Algorithms 1 and 2 to get a lower bound of the BTSP and an
initial feasible solution (x0, l0, u0), respectively.
0.2 (Edge elimination) Eliminate edges based on (x0, l0, u0) following
Section 6.1.
0.3 Let N be the node set of the branch-and-bound tree and (x, l, u)
be the current incumbent solution. Initialize N by the LP relaxation of
(MIP − BTSP ) without (2c) and (x, l, u) by (x0, l0, u0).

Step 1: (Node selection) If N is empty, then return (x, l, u) and terminate.
Otherwise, take out a subproblem P from N .
Step 2: Solve P. If P is infeasible, go to Step 1. Otherwise, let (x∗, l∗, u∗)
be an optimal solution to P.
Step 3: If u∗ − l∗ ≥ u − l, go to Step 1.
Step 4: If x∗ is integer, verify subtour elimination constraints with x∗.

4.1 If x∗ satisfies subtour constraints, then (x∗, l∗, u∗) is a new incumbent
solution. Run Algorithm 2 to improve (x∗, u∗, l∗). Replace (x, l, u) by
(x∗, l∗, u∗), fix variables as in Section 6.2 and go to Step 1.
4.2 Otherwise, add subtour elimination constraints violated by x∗ to
the formulation and go to Step 2.

Step 5: (Cut generation) Generate violated valid inequalities by the separa-
tion strategies in Section 6.3 and fix variables by the heuristics introduced
in Section 6.2.
Step 6: (Variable selection) Choose a fractional variable to branch. Add
the two resulting subproblems to N and go to Step 1.
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6.1 Edge elimination

To reduce the formulation’s size and accelerate solving the LP relaxations, we
eliminate edges that can not occur in the optimal tour of the BTSP. Remember
that the branch-and-cut algorithm aims to improve the incumbent solution
more and more. Thus, if we can prove that the occurrence of an edge leads
to a tour worse than the incumbent tour, we can remove this edge from the
formulation.

Let H0 be the initial tour found by Algorithm 2. As proven in Lemma 1, if
a tour contains an edge with cost Ci, its max-min distance is at least the length
of the shortest biconnected interval compatible with Ci. Then, edges with
costs Ci satisfying γ(Ci) > uH0 − lH0 can not be a part of the optimal tour;
otherwise, the max-min distance of this tour will be greater than uH0 − lH0 .
By this observation, we can remove edges e ∈ E such that γ(ce) > uH0 − lH0 .

6.2 Variable fixing

Besides eliminating edges at the beginning, we also fix variables during the
branch-and-cut algorithm to decrease the number of variables to be controlled
and tighten the LP relaxations. Naturally, variables that cannot help to improve
the incumbent solution should be fixed to 0. To fix variables, we add the
inequalities corresponding to the fixing of the variables as cutting planes. This
section proposes two heuristics to determine variables that can be fixed to 0:
one based on the biconnected intervals and one based on fixed costs at nodes.
Throughout this section, we denote by (x, l, u) the current incumbent solution
of the search tree.

6.2.1 Biconnected-interval-based variable fixing

Using the same arguments as in Section 6.1, edges with costs Ci such that
γ(Ci) ≥ u − l can not appear in solutions that are better than the incumbent
solution. Thus, such edges can be permanently fixed to 0 in the remaining
nodes of the branch-and-bound tree. In particular, when a new incumbent
solution (x, l, u) is found, we add the following inequalities to the formulation

xe = 0 ∀e ∈ E : γ(ce) ≥ u − l. (4)

Obviously, the inequalities (4) are valid for the remainder of the search tree.

6.2.2 Fixed-costs-based variable fixing

The second heuristic to fix variables is due to the fact that each node of
the search tree is associated with two disjoint edge sets F0 and F1 where
F0, F1 consist of edges that have been fixed to 0 and 1, respectively. Given
a node ⟨F0, F1⟩, we respectively denote by M i

C(F1) and Ms
C(F1) the minimum

and maximum of C(F1). Let H′ be a tour that has the max-min distance
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smaller than the incumbent solution’s one and is found by the node or its
descendants. Obviously, H′ only comprises the edges of F1 and edges with
costs in (Ms

C(F1) − (u − l), M i
C(F1) + (u − l)). The remaining edges, which

do not satisfy the above cost condition, can be fixed to 0. The inequalities
corresponding to the fixing of these variables are

xe = 0, ∀e ∈ E : ce /∈ (Ms
C(F1) − (u − l), M i

C(F1) + (u − l)) (5)

Since the validity of inequalities (5) depends on fixed costs at the node, these
inequalities are only valid for the considered node and its descendants.

6.3 Separation algorithms and strategies

An efficient branch-and-cut algorithm relies on good separation algorithms
and deft separation strategies. We propose here separation procedures and
strategies for subtour constraints and local bounding cuts. We first denote by
(x∗, u∗, l∗) a fractional solution at a node of the branch-and-bound tree.

6.3.1 Subtour elimination constraints

Recall that subtour elimination inequalities have the form
∑

e∈δ(S) xe ≥ 2
where S ⊂ V . To find subtour constraints violated by x∗, one can construct a
graph G∗ = (V, E∗) with edge set E∗ = {e ∈ E | x∗

e > 0}. A cost associated
with e ∈ E∗ is x∗

e. By this setting, a violated subtour constraint is a cut whose
weight is less than 2 in G∗. Such a cut can be found via a Gomory-Hu tree [5]
of G∗, built from |V | − 1 max-flow computation.

Since solving subtour’s separation problem is computationally expensive
and can provide no cutting planes, we generate subtour inequalities at every
100 nodes instead of every node in the search tree.

6.3.2 Local bounding cuts

At a node of the branch-and-bound tree, one can generate at most O(|E|) local
bounding cuts. If we generate all possible local bounding cuts at every node, the
subproblems will be enormous and very hard to solve. Thus, we only generate
local bounding cuts with variable xe such that x∗

e > 0 and Me < M i
C(F1). In

addition, since the local bounding cuts are mainly for the optimality phase,
we only generate them when the MIP relative gap is less than 0.5 at every 10
nodes.

7 Computational experiments

In this section, we conduct some experiments to assess the efficiency of our
branch-and-cut algorithm. All the experiments are conducted on a PC Intel Core
i7-10700 CPU 2.9GHz and with 64 GB RAM. The algorithm is implemented
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in Python using CPLEX 12.10 with default setting and one solver thread. The
CPU time limit for exploring the branch-and-bound tree is 10800 seconds (3
hours) per instance. For the testbed, we use the same TSPLIB instances [14]
from 14 to 493 vertices as [9].

The biconnectivity verification problem in Algorithm 1 has been solved
using the Networkx package [6]. For the k−balanced algorithms, since the test
instances are completed graphs, we use permutations of {1, . . . , |V |} to initialize
tours. The problem of completing a Hamiltonian cycle to find k−exchanges is
solved by integer programming. To find a good upper bound, we run k−balanced
with 10 random tours; at each iteration, we launch k−balanced extreme with
k in {0, 10, . . . , K} and 3−balanced (if possible). To enhance the incumbent
solutions during the branch-and-cut algorithm, we run k−balanced min and
k−balanced max with k = K and 3−balanced. The value of K is defined in
Table 2.

Graph size (|V |) |V | < 50 50 ≤ |V | < 100 100 ≤ |V | < 200 |V | ≥ 200

K 0 30 50 100

Table 2 The value of K corresponds to graph sizes.

We first selected 12 instances from the test set to analyze the impact
of ingredients in our algorithm. The initial set comprises four small-sized
instances (gr21, hk48, eil75, gr96), four medium-sized instances (pr136, si175,
d198, tsp225) and four large-sized instances(a280, lin318, pcb442, d493). The
first experiment in Section 7.1 aims at comparing our branch-and-cut algorithm
to the commercial solver CPLEX 12.10. Then, Section 7.2 analyzes the impact
of the components: local bounding cuts, Algorithm 1 to find a lower bound
and Algorithm 2 to improve the upper bound. Finally, in Section 7.3, the
entire testbed’s results are shown with a comparison to the results of the
double-threshold-based algorithms in [9].

7.1 The effectiveness of the proposed branch-and-cut algorithm

In the first experiment, we compare our algorithm with the commercial solver
CPLEX for solving the formulation (MIP − BTSP ) specified in Section 2.

Table 3 reports the results of the two algorithms on the initial test set.
Column “Size” indicates the number of vertices of instances, which are equal
to the numbers in instances’ names. The results of each algorithm in the table
contain the objective value (labeled “Obj”), the running time in seconds (labeled
“Time(s)”), and the number of nodes in the search tree (labeled “Nodes”). Notice
that the running time includes the time spent on the initialization steps and
the search tree exploration. Instances whose running times are marked with an
asterisk (∗) are instances that cannot be solved to optimality within the CPU
time limit, and their reported objective value is the best one found so far.
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Instance Size Our B&C CPLEX

Obj Time(s) Nodes Obj Time(s) Nodes

gr21 21 115 0.6 0 115 0.2 298
hk48 48 156 4.3 157 156 5.7 3389
eil76 76 2 6.2 390 2 5,241.6 470000
gr96 96 314 93.9 1130 314 143.1 12957
pr136 136 126 62.5 1126 126 243.8 15709
si175 175 7 150.6 3854 7 10,801.0∗ 113245
d198 198 1122 2424.5 16892 1122 10,801.4∗ 62677
tsp225 225 6 135.0 682 6 3,955.0 28550
a280 280 3 196.8 481 3 5,319.6 31856
lin318 318 31 499.3 1591 641 10,804.8∗ 43700
pcb442 442 27 9013.8 1592 283 10,805.6∗ 22712
d493 493 1193 4114.4 7399 1628 10,808.1∗ 8935

Average 1,391.8 2,941.2 5,744.2 67,835.7

Table 3 Comparison between the two algorithms on 12 TSPLIB instances

Numerical results illustrate that our branch-and-cut algorithm outperforms
CPLEX. Indeed, our algorithm can rapidly solve all 12 instances within the
time limit, whereas CPLEX can solve only 7 out of 12 cases. In detail, CPLEX
fails to prove the solution optimality for instances si175, d198 and find the
optimal solutions for instances lin318, pcb442, d493. Among the 12 instances,
there is only one instance (gr21) on which our algorithm performs slower; for
the rest, our algorithm solves the problems 4 times faster on average than
CPLEX. Moreover, our algorithm’s average tree size is 23 times smaller than
that of CPLEX.

7.2 Impact of the local cuts, lower bound and upper bound components

In this section, we aim to analyze the effectiveness of the three key components:
local bounding cuts, the lower bound algorithm, and the upper bound algorithm.
Four algorithm variants are created for this purpose. The first setting Full
corresponds to the full version, which uses all components. The setting Full x
represents the version excluding the component x, e.g., the setting Full Local
cuts is the version without local bounding cuts.

The computational results in Table 4 show that all components play impor-
tant roles in the branch-and-cut algorithm. Excluding one of the components
from the algorithm substantially raises the running time and makes the algo-
rithm cannot solve several instances to optimality within the time limit. When
using all components, the running time decreases by a factor of 3. We can order
the effectiveness of the components as follows: Upper bound > Lower bound >
Local cuts. The upper bound component yields the most improvement on the
CPU time (3.2 times faster), then the lower bound component (2.7 times) and
valid inequalities (1.6 times).

For a deeper analysis, we present in Table 5 the lower and upper bounds
obtained by our algorithm and CPLEX. It can be seen that the lower and
upper bounds found by our algorithm are extremely sharper than CPLEX’s
ones. Furthermore, the time spent finding the upper bounds of our algorithm
on average is also smaller than that of CPLEX.
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Instance Full Full Local cuts Full Lower bound Full Upper bound

Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes

gr21 0.6 0 0.5 0 0.6 15 0.6 668
hk48 4.3 157 3.8 280 3.8 213 16.5 5544
eil76 6.2 390 471.3 116330 1427.2 179590 251.0 45520
gr96 93.9 1130 57.1 6835 110.2 9586 151.1 11161
pr136 62.5 1126 94.0 4691 78.6 3085 161.8 9320
si175 150.6 3854 3169.5 103012 10806.9∗ 144123 3579.2 77106
d198 2,424.5 16892 1537.8 61366 10810.3∗ 99761 10824.9∗ 41125
tsp225 135.0 682 991.6 22267 3096.0 37827 4232.0 31270
a280 196.8 481 10826.9∗ 52096 10825.6∗ 147408 10074.2 47577
lin318 499.3 1591 461.8 1476 1014.8 6832 10835.7∗ 45920
pcb442 9,013.8 1592 10899.8∗ 16840 10858.9∗ 3401 10847.4∗ 7621
d493 4,114.4 7399 9118.0 14640 6568.6 4381 10862.8∗ 3100

Average 1,391.8 2,941.2 3,136.0 33,319.4 4,633.5 53,018.5 5,153.1 27,161.0

Table 4 Computational results of the algorithm variants

Instance Our B&C CPLEX

LB LB Time UB UB Time LB LB Time UB UB Time

gr21 65 0.03 120 0.48 0 0.00 714 0.06
hk48 133 0.53 189 2.42 0 0.01 2612 0.06
eil76 2 0.06 5 1.23 0 0.01 60 0.04
gr96 281 6.30 561 5.04 0 0.02 5864 0.41
pr136 103 2.00 1149 3.23 0 0.06 12657 0.2
si175 5 0.82 21 5.70 0 0.06 303 1.92
d198 830 24.17 1355 9.23 0 0.08 2757 2.67
tsp225 6 1.57 21 14.76 0 0.48 494 16.78
a280 3 1.65 16 23.08 0 1.23 171 50.59
lin318 31 34.42 133 41.28 0 0.91 2929 45.89
pcb442 26 45.71 161 54.82 0 16.82 3790 3106.86
d493 34 57.87 1592 246.71 0 13.17 2947 1051.14

Average 132.18 15.92 473.00 37.05 0 2.99 3144.00 388.78

Table 5 Lower and upper bounds provided by the two algorithms

7.3 Comparison to the double-threshold-based algorithms

Finally, we present the results of the branch-and-cut algorithm on the entire
testbed with a comparison to the double-threshold-based (DT-based) algorithms
introduced in [9], i.e., the modified double-threshold (MDT) and iterative
bottleneck (IB) algorithms.

In Table 6, column “DT-based algorithm” reports the results of the DT-
based algorithms provided by [9]. Subcolumn “Obj” represents the best objective
value found by the MDT or IB algorithm. Subcolumn “Opt?” indicates whether
the solution is provably optimal, namely that the lower bound equals the
objective value. Subcolumn “Time” gives the total time for calculating the
lower bound and solving the instance by the MDT or IB algorithm. Notice that
the running time of the DT-based algorithms as reported in [9] and recopied
in Table 6 is measured with experiment settings differing from ours, i.e the
algorithms are coded in C programming language and tested on a PC with 3.40
GHz Pentium 4 CPU and 2 GB of RAM, and the time limit is 18000 seconds.
We present the running time here not for comparison purposes but for reference
only. As reported in [9], the DT-based algorithms converged to solutions within
10% optimality estimated based on lower bound values, in which 27 solutions
are provably optimal. The found solutions are the best solutions that can be
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Instance DT-based algorithm [9] Our B&C

LB Obj Time Opt? LB UB Obj Time Nodes

burma14 120 134 0.2 120 134 134 0.3 0
ulysses16 837 868 0.4 173 868 868 0.5 0
gr17 94 119 0.1 80 129 119 0.5 8
gr21 110 115 0.1 65 120 115 0.6 0
ulysses22 837 868 1.7 157 868 868 0.6 0
gr24 33 33 0.1 yes 33 45 33 0.7 0
fri26 21 21 0.1 yes 21 25 21 0.5 0
bayg29 23 29 0.3 23 34 29 0.8 17
bays29 36 38 0.3 36 49 38 1.9 642
dantzig42 13 13 0.2 yes 13 21 13 1.7 140
swiss42 14 14 0.4 yes 14 32 14 1.7 179
att48 156 192 14.1 133 223 190↓ 3.9 303
gr48 46 46 2.3 yes 46 96 46 2.9 173
hk48 138 156 9.8 133 189 156 4.3 157
eil51 3 3 0.3 yes 3 6 3 1.5 10
berlin52 139 151 11.5 113 151 149↓ 5.5 573
brazil58 912 1125 19.8 912 1124 1097↓ 7.7 264
st70 5 5 1.9 yes 5 6 5 1.9 59
eil76 2 2 1.1 yes 2 5 2 6.2 390
pr76 498 522 25.5 498 1015 522 8.6 186
gr96 281 314 941.1 281 561 314 93.9 1130
rat99 5 5 3.1 yes 5 9 5 9.2 333
kroA100 137 137 93.2 yes 137 463 137 83 1200
kroB100 129 145 111.1 129 471 145 65.7 917
kroC100 120 133 136.0 120 509 133 72.7 2500
kroD100 140 140 67.2 yes 137 269 140 422 4811
kroE100 137 139 173.5 137 452 139 60.9 865
rd100 43 43 23.9 yes 43 53 43 10.3 205
eil101 2 2 2.4 yes 2 3 2 3.5 12
lin105 95 100 217.4 95 183 100 26.9 221
pr107 877 877 84.4 yes 53 3645 877 25.2 1007
gr120 27 31 50.4 27 94 31 67.9 1174
pr124 364 411 500.4 364 731 406↓ 93.2 949
bier127 2915 3084 493.8 874 3459 2925↓ 29.8 106
ch130 18 22 36.5 17 60 22 56.7 827
pr136 103 126 58.8 103 1149 126 62.5 1126
gr137 403 428 3,239.7 354 825 424↓ 256.3 2647
pr144 259 259 347.8 yes 259 449 259 43 333
ch150 17 17 18.6 yes 17 33 17 196.9 520
kroA150 89 91 330.4 89 452 91 122.2 1279
kroB150 103 109 356.0 100 454 109 83.7 708
pr152 59 59 230.5 yes 59 378 59 63.3 1326
u159 142 142 111.0 yes 135 822 142 1933.8 42815
si175 7 7 0.0 yes 5 21 7 150.6 3854
brg180 0 0 0.7 yes 0 0 0 2.8 0
rat195 4 4 16.7 yes 4 16 4 499.6 3920
d198 1105 1140 391.8 830 1355 1122↓ 2424.5 16892
kroA200 71 76 660.3 71 599 76 1607.7 2050
kroB200 81 82 620.9 81 522 82 1242.7 4070
gr202 778 927 4,813.1 69 933 787↓ 289.2 241
ts225 0 21 50.9 0 696 21 503.1 6148
tsp225 6 6 88.7 yes 6 21 6 135 682
pr226 450 504 1,575.3 450 704 504 123.5 0
gr229 675 742 14,936.8 622 1660 706↓ 849.3 230
gil262 3 3 69.5 yes 3 7 3 99.5 110
pr264 238 415 3,132.9 238 3255 340↓ 7386.6 5589
a280 3 3 49.5 yes 3 16 3 196.8 481
pr299 89 89 1,173.6 yes 89 363 89 4258.6 476
lin318 31 31 1,442.0 yes 31 133 31 499.3 1591
rd400 11 11 491.7 yes 11 17 11 243.3 171
fl417 199 317 2,318.3 82 359 229↓ 10931.2∗ 93800
gr431 1943 2230 42,966.3∗ 502 2876 1962↓ 6555.5 11805
pr439 810 1620 5,973.9 256 2583 994↓ 11254.4∗ 36687
pcb442 26 27 1,302.6 26 161 27 9013.8 1592
d493 1191 1459 9,416.0 34 1592 1193↓ 4114.4 7399

Table 6 Numerical results of the Branch-and-Cut algorithm on 65 TSPLIB instances.
Instances with the bold objective value are solved to optimality for the first time and
instances with objective values marked by ↓ are ones that our algorithm can produce better
solutions.
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found by the algorithms without regard to the CPU time limit, except for the
instance gr431.

Table 6 shows that our algorithm can solve to optimality 63 out of 65
instances within the time limit (10800 seconds), in which 36 instances are
solved to optimality for the first time. For 14 of the 65 problems - mainly
large-sized instances, our algorithm obtains solutions better than the DT-
based algorithms. Although the two instances fl417 and pr439 can not be
solved optimally within the time limit, their best objective values so far are
significantly smaller than the DT-based algorithms’ ones.

8 Conclusion

In this paper, we proposed a branch-and-cut algorithm for solving exactly
the BTSP. We strengthened the branch-and-cut algorithm by local bounding
cuts, edge elimination, and variable fixing. We also developed heuristics to
improve the lower and upper bounds of the algorithm. Several experiments on
TSPLIB instances with less than 500 vertices are conducted. For 63 out of 65
instances, we obtained optimal solutions and for 14 of the 65 instances - mainly
large-sized ones, our algorithm provided solutions with smaller objective values
comparing with the previous work in the literature [9]. For solving exactly large
scale instances of thousands vertices, more mechanisms of tightening lower and
upper bounds would be needed. Interesting directions for future research would
be the investigation for new classes of local cuts and the improvement of the
k−balanced algorithm.
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