Thi Quynh

Trang Vo

Mourad Baiou
email: mourad.baiou@uca.fr

Viet Hung Nguyen
email: viet_hung.nguyen@uca.fr

Paul Weng
email: paul.weng@sjtu.edu.cn

Improving Subtour Elimination Constraint Generation in Branch-and-Cut Algorithms for the TSP with Machine Learning

Keywords: Traveling Salesman Problem, Subtour elimination constraints, Branch-and-Cut, Cut generation, Machine Learning

come

Introduction

Branch-and-Cut (B&C) is a popular method for solving integer programming (IP) problems exactly. B&C is the combination of two methods: branch-andbound and cutting-plane. While branch-and-bound breaks down the problem into subproblems by a divide-and-conquer strategy, the cutting-plane method tightens these subproblems by adding valid inequalities. B&C contains a sequence of decision problems such as variable selection, node selection, and cut generation. Consequently, its performance heavily depends on decision-making strategies.

One of the critical components of B&C is the cutting-plane method that strengthens the linear programming (LP) relaxations (subproblems) of the IP problem by adding valid inequalities (a.k.a. cuts). More precisely, given a solution x * obtained by solving some LP relaxations of the IP problem, we solve a separation problem, which either asserts the feasibility of x * or generates a cut violated by x * . Adding cuts can remove a large portion of the infeasible region and improve the performance. In general, cuts are categorized into generalpurpose cuts obtained by the variable's integrality conditions and combinatorial cuts arising from the underlying combinatorial structure of the problem.

Generating cuts within B&C is a delicate task [START_REF] Santanu | Theoretical challenges towards cutting-plane selection[END_REF]. One of the design challenges of using cuts is balancing the separation routine's computational cost and the benefits of generated cuts. Generating cuts in a naive way can reduce the branchand-bound tree's size but potentially increase the overall computing time due to the time spent executing the separation routine and solving the LP relaxations in the search tree. Thus, learning a deft policy for cut generation is crucial. In spite of its importance, cut generation is less studied than other related decisionmaking problems in B&C. To the best of our knowledge, only a few simple heuristics [START_REF] Balas | Mixed 0-1 programming by lift-and-project in a branch-and-cut framework[END_REF][START_REF] Padberg | On the symmetric travelling salesman problem: a computational study[END_REF] have been proposed for cut generation, and concrete work has yet to be investigated to learn a cut generation policy.

In this paper, we focus on the generation of subtour elimination constraints (SECs)-a core class of cuts-for the Traveling Salesman Problem (TSP) in B&C. SECs were proposed by Dantzig, Fulkerson, and Johnson [START_REF] Dantzig | Solution of a large-scale traveling-salesman problem[END_REF] to ensure the biconnectivity of solutions. They are well-known facet-defining inequalities for the TSP polytope. Due to their exponential number, SECs are usually served as cuts in the course of B&C. The separation problem of SECs is solvable in polynomial time [START_REF] Padberg | On the symmetric travelling salesman problem: a computational study[END_REF] by using the Gomory-Hu procedure [START_REF] Ralph | Multi-terminal network flows[END_REF] to find a minimum cut in a graph. Although adding SECs is able to decrease the number of branching nodes, generating all possible SECs can decelerate the B&C performance, as the separation procedure of SECs is computationally expensive, especially for large-sized instances.

To improve SEC generation in B&C for the TSP, we propose an approach based on Machine Learning (ML) to handle two questions before executing the separation routine at a node of the branch-and-bound tree: 1) Do violated SECs exist? 2) If yes, is it worth generating them? The first question is to avoid solving redundant separation problems that do not provide any SEC. We treat this question as a binary classification problem and train a Graph Neural Network (GNN) in a supervised fashion. The second one is to predict the benefit of generating SECs compared to branching. To this end, we formulate the sequential decision-making process of SEC generation as a Markov decision problem and train a policy by reinforcement learning (RL). Our GNN-RL framework can leverage the underlying graph structure of fractional solutions to predict the SEC existence and capture the context of nodes in the search tree to make SEC generation decisions. Furthermore, it offers flexibility over instance size, namely that our model can be used for any instance (of arbitrary size) while being only trained with fixed-size graphs. Experimental results show that our trained policy for SEC generation significantly accelerates the B&C performance to solve the TSP, even on instances of different sizes from its training counterparts.

Related work

Most approaches in the literature for cut generation exist in heuristic forms. Padberg and Rinaldi, in their research on B&C for large-scale TSP [START_REF] Padberg | Branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems[END_REF], empirically discovered the tailing-off phenomenon of cuts [START_REF] Padberg | Branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems[END_REF]Section 4.3], which shows the cut generator's inability to produce cuts that can assist the optimal LP solution to escape the corner of the polytope where it is "trapped". To deal with the tailing-off, the authors proposed to stop generating cuts if the objective value of the relaxed LP does not improve sufficiently within a given window and switch to branching. Another approach to control cut generation introduced by Balas et al. [START_REF] Balas | Mixed 0-1 programming by lift-and-project in a branch-and-cut framework[END_REF] is generating cuts at every k nodes of the search tree. The number k, named "skip factor" in [START_REF] Balas | Mixed 0-1 programming by lift-and-project in a branch-and-cut framework[END_REF], determines the frequency of generating cuts. It can be chosen either as a fixed constant or as an adaptive value varying throughout the search tree. Another commonly used strategy is the so-called cut-and-branch which only generates cuts at the root node of the search tree. Overall, despite its importance, the question of the branching versus cutting decision has yet to receive the attention it deserves.

In contrast, a closely-related problem to cut generation, cut selection, has been studied extensively in the literature. While cut generation decides whether to launch separation processes to generate cuts, cut selection requires selecting cuts from a candidate set obtained by solving separation problems. Cut selection is usually considered for general-purpose cuts whose separation procedure is computationally cheap and provides many cuts. Due to its definition, cut selection can be viewed as a ranking problem where cuts are sorted and chosen based on some criteria. This point of view opened up many different approaches based on many measurements of the cut quality. Among the most popular scores are efficacy [START_REF] Balas | Mixed 0-1 programming by lift-and-project in a branch-and-cut framework[END_REF], objective parallelism [START_REF] Achterberg | Constraint integer programming[END_REF], and integral support [START_REF] Wesselmann | Implementing cutting plane management and selection techniques[END_REF], to name a few. Another research line on cut selection is to use ML to learn the ranking of cuts. Most works of this approach fall into two categories: supervised learning and RL. In the former, cuts are scored (or labeled) by an expert, and a cut ranking function (usually a neural network) is trained to be able to choose the best ones [START_REF] Huang | Learning to select cuts for efficient mixed-integer programming[END_REF]. For the latter, one can formulate the problem of sequentially selecting cuts as a Markov decision process. An agent can then be trained to either directly optimize the objective value (RL) [START_REF] Tang | Reinforcement learning for integer programming: Learning to cut[END_REF] or mimic a look-ahead expert (imitation learning) [START_REF] Paulus | Learning to cut by looking ahead: Cutting plane selection via imitation learning[END_REF].

In recent years, using ML to enhance fundamental decisions in branch-andbound is an active research domain; we refer to [START_REF] Bengio | Machine learning for combinatorial optimization: a methodological tour d'horizon[END_REF] for a summary of this line of work. Specific examples contain learning to branch [START_REF] Khalil | Learning to branch in mixed integer programming[END_REF][START_REF] Alvarez | A machine learning-based approximation of strong branching[END_REF][START_REF] Gasse | Exact combinatorial optimization with graph convolutional neural networks[END_REF], learning to select nodes [START_REF] He | Learning to search in branch and bound algorithms[END_REF], and learning to run primal heuristics [START_REF] Elias B Khalil | Learning to run heuristics in tree search[END_REF][START_REF] Chmiela | Learning to schedule heuristics in branch and bound[END_REF]. Similar to cut selection, these problems can be reformulated as ranking [START_REF] Khalil | Learning to branch in mixed integer programming[END_REF][START_REF] Huang | Learning to select cuts for efficient mixed-integer programming[END_REF][START_REF] Gasse | Exact combinatorial optimization with graph convolutional neural networks[END_REF], regression [START_REF] Alvarez | A machine learning-based approximation of strong branching[END_REF], or classification problems [START_REF] Elias B Khalil | Learning to run heuristics in tree search[END_REF], and can then be treated correspondingly. Most of these reformulations are possible due to the existence of an expensive expert (for example, the strong branching expert for variable selection), which can be used to calculate the score, label the instances, or act as an agent to be mimicked. In the case of cut generation, such an expert is too expensive to obtain. To the best of our knowledge, our paper is the first work to build an ML framework for cut generation.

3 SEC generation in B&C for the TSP

IP formulation

Given an undirected graph G = (V, E) with a cost vector c = (c e) e∈E associated with E, the TSP seeks a Hamiltonian cycle (a.k.a. tour) that minimizes the total edge cost. For all edges e ∈ E, we denote by x e a binary variable such that x e = 1 if edge e occurs in the tour and x e = 0 otherwise. We denote by δ(S) the set of edges that have exactly one end-vertex in S ⊂ V ; δ({v}) is abbreviated as δ(v) for v ∈ V . Let x(F) = e∈F x e for F ⊆ E, the TSP can be formulated as an integer program as follows:

min c T x (1a) s.t. x(δ(v)) = 2 ∀ v ∈ V (1b) x(δ(S)) ≥ 2 ∀ ∅ ̸ = S ⊂ V (1c) x e ∈ {0, 1} ∀ e ∈ E (1d)
where x = (x e) e∈E . The objective function (1a) represents the total cost of edges selected in the tour. Constraints (1b) are degree constraints assuring that each vertex in the tour is the end-vertex of precisely two edges. Constraints (1c) are subtour elimination constraints, which guarantee the non-existence of cycles that visit only a proper subset of V . Finally, (1d) are integrality constraints.

Note that this formulation, introduced by Dantzig, Fulkerson, and Johnson [START_REF] Dantzig | Solution of a large-scale traveling-salesman problem[END_REF], is widely used in most B&C algorithms for the TSP.

B&C framework for the TSP

One of the most successful approaches for exactly solving the TSP is B&C. Intuitively, B&C starts by solving a relaxation of the TSP where all SECs are omitted and the integrality constraints are relaxed to x e ∈ [0, 1] ∀e ∈ E. At each node of the branch-and-bound tree, the LP relaxation is solved, and SECs violated by the optimal LP solution are generated as cuts through the separation routine. This principle of generating SECs is used in most B&C algorithms for the TSP, including Concorde-the acknowledged best exact algorithm for the TSP [START_REF] Applegate | Concorde TSP solver[END_REF].

We denote (α, β) an inequality α T x ≤ β, C a set of valid inequalities for the TSP and ⟨F 0 , F 1 ⟩ an ordered pair of disjoint edge sets. Let LP (C, F 0 , F 1) be the following LP problem:

min c T x s.t x(δ(v)) = 2 ∀v ∈ V α T x ≤ β ∀(α, β) ∈ C x e = 0 ∀e ∈ F 0 x e = 1 ∀e ∈ F 1 x e ∈ [0, 1] ∀e ∈ E.
A basic B&C framework based on SECs is sketched as follows:

1. Initialization. Set S = {⟨F 0 = ∅, F 1 = ∅⟩}, C = ∅, x = NULL and U B = +∞.
2. Node selection. If S = ∅, return x and terminate. Otherwise, select and remove an ordered pair ⟨F 0 , F 1 ⟩ from S. 3. Solve LP (C, F 0 , F 1). If the problem is infeasible, go to step 2; otherwise, let

x * be its optimal solution. If c T x * ≥ U B, go to step 2. 4. SEC verification. If x * is integer, verify SECs with x * . If x * satisfies all SECs, replace x by x * , U B by c T x * and go to step 2. Otherwise, add violated SECs to C and go to step 3. 5. Branching versus cut generation. Should SECs be generated? If yes, go to step 6, else go to step 7. 6. Cut generation. Solve the separation problem. If violated SECs are found, add them to C and go to step 3. 7. Branching. Pick an edge e such that 0 < x * e < 1. Add ⟨F 0 ∪ {e}, F 1 ⟩, ⟨F 0 , F 1 ∪ {e}⟩ to S and go to step 2.

When the algorithm terminates, x is an optimal solution of the TSP. Notice that the basic B&C framework stated above simply contains fundamental steps, but it could be easily extended with additional techniques, such as the use of other valid inequality classes for cut generation, branching strategies, and primal heuristics. Any improvement for this basic B&C framework will also be valid for the extensions.

Separation routine for SECs. We now describe an exact separation algorithm to find violated SECs in polynomial time, proposed by Crowder and Padberg [START_REF] Padberg | On the symmetric travelling salesman problem: a computational study[END_REF]. The input of the separation algorithm is the optimal solution x * of the current LP relaxation. We then construct from x * the so-called support graph

G x * = (V, E x *) where E x * = {e ∈ E | x * e > 0}.
For each edge e in E x * , we set x * e as its capacity. Due to the construction of G x * , the value x(δ(S)) for S ⊂ V is precisely the capacity of the cut (S, V \ S) in G x * . Therefore, an SEC violated by x * is equivalent to a cut with a capacity smaller than 2 in G x * . Such a cut can be found by using the Gomory-Hu procedure [START_REF] Ralph | Multi-terminal network flows[END_REF] with |V | -1 maximum flow computations. Thus, it is computationally expensive, especially for instances with large-sized graphs.

Note that when executing the separation routine for SECs, one can either build the Gomory-Hu tree completely and get all violated SECs from the tree or terminate the process as soon as a violated SEC is found. Our experimental results show that the former is more efficient than the latter in terms of overall solving time. Hence, in our implementation, we generate all violated SECs from the Gomory-Hu tree each time the separation routine is called.

SEC generation problem

One of the primary decisions to make in B&C for the TSP is to decide whether to generate SECs or to branch in Step 5, which has a tremendous impact on the B&C performance. On the one hand, generating SECs can help tighten the LP relaxations, reduce the number of nodes in the branch-and-bound tree, and significantly improve computing time. On the other hand, SEC generation can also worsen the B&C performance. One reason is the computational cost of the SEC separation routine, which can be time-consuming when the instance size is large. Furthermore, not all separation processes can produce violated SECs, and thus launching the separation routine when the optimal LP solution satisfies all SECs is wasteful. Another reason is that generating SECs is useless at some nodes of the search tree where additional SECs may not provide new information to improve the LP relaxation.

To illustrate the impact of SEC generation on the B&C performance, we consider the following experimental example. We solve the TSP on the instance rat195 from TSPLIB [START_REF] Reinelt | Tsplib-a traveling salesman problem library[END_REF] by the commercial solver CPLEX 12.10 with three different SEC generation strategies in Step 5 of the basic B&C framework. In the first strategy (No cut), we do not generate any SECs; in the second one (Every node), SECs are generated at every node of the search tree. The last strategy, Sample cut, solves the separation problem exactly 100 times: at each node of the search tree, we will perform the separation routine with the probability 1/2 and stop doing so after solving the 100th (separation) problem. The CPU time limit is set to 3600 seconds. Table 1 shows the results of the strategies. Sample 1 and Sample 2 are two different runs of the strategy Sample cut. Column "CPU time" gives the running time in seconds of B&C, in which the time spent by the separation routine is shown in column "Separation time". Column "Nodes" reports the number of nodes in the search tree, and column "Cuts" indicates the number of generated SECs. Columns "Separations" and "Separations with cuts" give the number of separation routine executions and the number of executions that can obtain violated SECs, respectively.

Table 1 shows that the SEC generation strategies may significantly affect the algorithm performance. Obviously, generating SECs is crucial, as B&C cannot solve the instance to optimality without it under the given CPU time budget. In addition, adding SECs substantially reduced the search tree size. However, solving SEC separation problems might take a major portion of computing time, and only a few separation executions obtained violated SECs. For example, with the strategy generating SECs at every tree node, B&C spent 98% of the CPU time to execute separation routines, but only 134 out of 2992 executions yielded Table 1. The results of the SEC generation strategies on the instance rat195. The asterisk in the "CPU time" column indicates strategies that fail to solve the TSP within the time limit. Motivated by this issue, in this paper, we study the SEC generation problem stated as follows: "Given a fractional solution at a node of the search tree, decide whether to generate SECs or to branch".

Strategy

The GNN-RL framework for SEC generation

In this section, we describe our GNN-RL framework to learn an SEC generation strategy in B&C for the TSP. Our GNN-RL contains two separate components: a cut detector (i.e., a GNN) to predict the existence of violated SECs and a cut evaluator (i.e., a Q-value function) to decide whether to generate SECs or to branch when the GNN has predicted the existence of SECs.

Figure 1 provides the flowchart of GNN-RL at a node of the search tree. After obtaining an optimal solution to the LP relaxation at the node, the cut detector predicts whether the solution violates SECs. If it predicts that no SEC is violated, we skip to the branching step. Otherwise, the cut evaluator will assess the effectiveness of additional SECs to select the next action to perform.

Cut detector

Given a fractional solution, the cut detector predicts whether there exists any violated SEC. Therefore, one can view the cut detector as a binary classifier that takes a fractional solution x as input and returns: y = 1 if there exists any SEC violated by x, 0 otherwise.

We adopt a GNN [START_REF] Scarselli | The graph neural network model[END_REF], a message-passing (MP) neural network, for this classification task to take into account the underlying graph structure of fractional solutions, which is critical for the separation problem. Furthermore, GNN possesses many properties which make it a natural choice for graph-related ML problems, such as permutation invariance or independence from the instance size.

We parameterize the cut detector as follows. Given a fractional solution x, we construct from x its support graph G x = (V, E x) where the capacity w e of edge e is x e . For each node i ∈ V , we define the node feature as its degree d i in G x , and embed d i to a h-dimensional vector by a multi-layer perceptron (MLP):

h (0) i = W (0) d i + b (0)
where W (0) ∈ R h×1 and b (0) ∈ R h . To update the node embeddings, we use two MP layers [START_REF] Morris | Weisfeiler and leman go neural: Higher-order graph neural networks[END_REF]:

h (l) i = ReLU   W (l) 1 h (l-1) i + W (l) 2 j∈N (i) w (i,j) • h (l-1) j   where h (l-1) i is the representation of node i in layer l -1, N (i) is the set of i's neighbors in G x , W (l) 1 and W (l) 2
are weight matrices in the l-th layer, and w (i,j) is the capacity associated with edge (i, j). To obtain a representation of the entire graph G x , we apply a min-cut pooling [START_REF] Ying | Hierarchical graph representation learning with differentiable pooling[END_REF] layer to assign nodes into two clusters, compute the element-wise addition of all node vectors in each cluster and concatenate the two cluster vectors. Finally, an MLP with a softmax activation function is used to predict the probability of the solution's labels, i.e., P (y = 0|x) and P (y = 1|x).

Our training dataset {(x i , y i)} N i=1 is collected by solving several separation problems on training instances generated randomly by Johnson and McGeoch's generator [START_REF] Ds | Benchmark code and instance generation codes[END_REF]. We train the cut detector's parameters Θ G to minimize the crossentropy loss:

L(Θ G) = - N i=1 y i • log P Θ G (y i = 1|x i) + (1 -y i) • log(1 -P Θ G (y i = 0|x i)) .

Cut evaluator

We now formulate SEC generation as a Markov decision process (MDP) [START_REF] Martin L Puterman | Markov decision processes: discrete stochastic dynamic programming[END_REF]. Considering the IP solver as the environment and the cut evaluator as the agent, we define the state space, action space, and transition and reward functions of the MDP as follows.

State space. At iteration t, a state s t contains the information about the TSP instance and the current search tree, which comprises branching decisions, the lower and upper bounds, the LP relaxations at nodes with SECs added so far, and the considered node. A terminal state is achieved when the instance is solved to optimality.

Due to the search tree complexity, we represent a state s t as a collection of the following elements:

-An optimal solution x t to the LP relaxation of the considered node. It is used to provide information about the separation problem for the agent. We represent this solution as its corresponding support graph

G xt = (V, E xt)
with edge capacities x t . -The TSP instance. Encoding the TSP instance in the state representation is essential, as SEC generation is naturally instance-dependent. Recall that the TSP instance is an undirected graph G = (V, E) with edge costs c. We define the node features as the node degrees in G. The edge features contain the edge costs and information about the variables representing edges at the considered node (values in the optimal LP solution, lower and upper bounds), which is used to encode the context of the considered node in the search tree. -Features of the search tree. To enrich the information about the search tree in the state representation, we design 11 tree features based on our experimental observations and inspired by hand-crafted input features for branching variable selection proposed in [START_REF] Zarpellon | Parameterizing branch-and-bound search trees to learn branching policies[END_REF]. The features are shown in Table 2. The top four features correspond to the incumbent existence, the IP relative gap (i.e., |L -U |/U where L, U are respectively the lower and upper bounds), and the portions of processed and unprocessed nodes, which help to capture the state of the search tree. The remaining features are extracted at the considered node to describe its context through depth, objective value, optimal solution, and fixed variables. Each feature is normalized to the range [0, 1].

Action space. Given a non-terminal state s t , the RL agent selects an action a t from the action space A = {generate SECs, branch}.

Transition. After selecting an action a t , the new state s t+1 is determined as follows. If a t is to branch, the solver selects a branching variable to create two child nodes, picks the next node to explore, and solves the corresponding LP processed_nodes the number of processed nodes / the total nodes in the current search tree [START_REF] Zarpellon | Parameterizing branch-and-bound search trees to learn branching policies[END_REF] unprocessed_nodes the number of unprocessed nodes / the total nodes in the current search tree relaxation to get an optimal solution x t+1 . Otherwise, if a t is to generate SECs, the solver launches the separation routine to yield SECs violated by x t , adds them to the formulation, and solves the LP relaxation again with the new cuts to obtain x t+1 . If no cut is found, the next state s t+1 is determined in the same way as when performing the branching action.

Reward function. Since we want to solve the instance as fast as possible, we consider the reduction of the IP relative gap to define the reward function. The faster the IP relative gap drops, the faster the instance is solved. Formally, let γ t be the IP relative gap at iteration t, the reward at iteration t is defined as

r t = r(s t , a t , s t+1) = γ t -γ t+1 . (3)
An issue of this reward function is its sparsity, namely that most rewards are 0; thus, it rarely gives feedback to guide the agent. To deal with this issue, we add additional rewards, a.k.a reward shaping, to provide more frequent feedback for training the agent. In particular, to encourage the solver to terminate as soon as possible, we set penalties for each additional iteration, and each solved redundant separation problem in the cases where the cut detector predicts incorrectly. Moreover, we also give a bonus for each SEC found by the separation routine. Details of the additional rewards are shown in Table 3.

Policy parametrization. We parameterize the cut evaluator (i.e., a Q-value function) as a neural network consisting of two parts: one to embed a state into a vector and one to approximate the Q-value of actions. In the first part, we use three separate models to encode the state components, i.e., a GNN for the optimal LP solution, another GNN for the TSP instance, and an MLP for the tree features. The state embedding is the concatenation of the outputs of these three models. We then pass this embedding to a 3-layer perceptron to get the Q-value approximation of actions. Figure 2 illustrates the cut evaluator architecture.

Training. To train the cut evaluator, we use the Deep Q-Network algorithm [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF], i.e., the parameters of the cut evaluator are updated to minimize an L2 loss defined with a target network using data sampled from a replay buffer filled with transitions generated during online interactions with the environment. For simplicity, an ϵ-greedy policy is used for exploration.

Experiments

In this section, we demonstrate the effectiveness of the GNN-RL framework in controlling SEC generation for the TSP in B&C algorithms.

Setup

All experiments are conducted on a computing server with AMD EPYC 7742 64-core CPU, 504GB of RAM, and an RTX A4000 GPU card with 48GB graphic memory.

B&C solver. We use the commercial solver CPLEX 12.10 as a backend solver, and CPLEX UserCutCallback to generate SECs in the tree nodes and integrate our method into the solver. We keep the CPLEX's default settings which are expertly tuned. However, to focus on evaluating the benefit of SECs, we switch off the CPLEX's cuts. The solver time limit is 3600 seconds per instance.

Benchmarks. We train and evaluate our method on random TSP instances generated following Johnson and McGeoch's generator used for DIMACS TSP Challenge [START_REF] Ds | Benchmark code and instance generation codes[END_REF]. These instances are graphs. In particular, we train on 200 instances with graphs of 200 vertices and evaluate on three instance groups: instances with graphs of 200 (small), 300 (medium), and 500 vertices (large) and 100 instances per group. Furthermore, we also assess the proposed method on 30 instances with graphs of 200 to 1000 vertices from TSPLIB [START_REF] Reinelt | Tsplib-a traveling salesman problem library[END_REF], a well-known library of sample instances for the TSP.

Neural network architecture. We describe here the model architectures for encoding the state components. For the optimal LP solution, we use a GNN with the same architecture as the cut detector without the last MLP layer. For the TSP instance, since the edge features are 4-dimensional vectors, we use an MLP layer to embed them into the same space of the node embeddings and the modified GIN architecture introduced in [START_REF] Hu | Strategies for pre-training graph neural networks[END_REF] to integrate the edge features into updating the node embeddings. Furthermore, since the used TSP instances are complete graphs, we update the embedding of a node by its 10 nearest neighbors in terms of edge costs. For the tree features, we use a two-layer perceptron model. For all architectures, the feature dimension is 64.

Training. We train the cut detector and cut evaluator separately. For the training phase of the cut detector, we generate 96000 labeled fractional solutions from 200 random instances. We train the cut detector within 100 epochs, and the learning rate is 0.0001. For the cut evaluator, we train the Q-learning network on the 200 training instances with one million steps using the package stable-baselines3 [START_REF] Raffin | Stable-baselines3: Reliable reinforcement learning implementations[END_REF].

Baselines. We compare the performance of GNN-RL with the fixed and automatic strategies proposed in [START_REF] Balas | Mixed 0-1 programming by lift-and-project in a branch-and-cut framework[END_REF], which generate cuts for every k nodes. For the fixed strategies, we use k = 1 (FS-1) as the default strategy and k = 8 (FS-8), which gave the best results in [START_REF] Balas | Mixed 0-1 programming by lift-and-project in a branch-and-cut framework[END_REF] and is one of the best skip factors in our own experiments. For the automatic strategy (AS) where the skip factor is chosen based on the instance to be solved, k is computed as follows:

k = min KMAX, f cd log 10 p
where f is the number of cuts generated at the root node, d is the average distance cutoff of these cuts (a distance cutoff of a cut is the Euclidean distance between the optimal solution and the cut [START_REF] Balas | Mixed 0-1 programming by lift-and-project in a branch-and-cut framework[END_REF]), p is the number of variables in the formulation, and KMAX,c are constants. In our implementation, we set KMAX= 32 as in [START_REF] Balas | Mixed 0-1 programming by lift-and-project in a branch-and-cut framework[END_REF] and c = 100 since the average distance cutoff of SECs is small. Moreover, we experimentally observe that SECs are very efficient at the root node and inefficient at the late stage of the computation. Thus, we always generate SECs at the root node and stop generating SECs when the IP relative gap is less than 1%, regardless of the strategies used.

Results

Table 4 shows the results of GNN-RL and the three baselines on both the random and TSPLIB instances. For each instance group, we report the number of instances that can be solved to optimality within the CPU time limit over the total instances (column "Solved"), the average CPU time in seconds (including also the running times of instances that cannot be solved to optimality within the CPU time limit) (column "Time"), the average number of nodes in the search tree (column "Nodes"), and the average number of generated SECs (column "Cuts"). Recall that our goal in this paper is to accelerate the B&C algorithm; thus, the main criterion for comparison is the CPU running time. As shown in Table 4, our method outperforms all the baselines on all instance groups. Indeed, GNN-RL solves more instances to optimality within a smaller average CPU time. Compared to FS-8, GNN-RL is faster by 5% on average over all random instances, i.e., is 39%, 32%, and 1% faster for small, medium, and large instances, respectively. For the TSPLIB instances, GNN-RL is faster by 9%, 8%, and 8% compared to AS, FS-8, and FS-1.

As predicted, FS-1 has the smallest tree size on average over all instances, but its running time is the highest due to the extra time spent on generating SECs.

On the other hand, too few cuts might be detrimental to the B&C performance. It can be seen in the comparison between FS-8 and AS strategies on large and medium instances. Indeed, AS requires more computing time than FS-8 despite generating fewer SECs. The numerical results give evidence that GNN-RL can balance the separation cost and the benefit of generated SECs.

Conclusion

In this paper, we proposed a GNN-RL framework, the first ML-based approach, to improve SEC generation in B&C for the TSP. Experimental results showed that the policy learned by GNN-RL outperformed the previously proposed heuristics for cut generation. Most importantly, the GNN-RL architecture allows the trained policy to generalize to unseen instances with larger-sized graphs. Our future work will extend this framework to other valid inequality classes for the TSP, such as the comb and 2-matching inequalities. We will also integrate GNN-RL into B&C algorithms for other combinatorial optimization problems, for example, the max-cut and vehicle routing problems.

Fig. 1 .

 1 Fig. 1. The of GNN-RL

 variables equal to 1 in the solution / |V| fixed_vars the number of fixed variables / |E| unfixed_vars the number of unfixed variables / |E| vars_fixed_1 the number of variables fixed to 1 / |V| vars_fixed_0 the number of variables fixed to 0 / |E|

Fig. 2 .

 2 Fig. 2. The neural network architecture for the cut evaluator

 Table 1also indicates that the effectiveness of the strategies relies not only on the number of solved separation problems but also on specific nodes where violated SECs are generated. Indeed, although the number of times the separation problem is solved is the same, the difference in nodes generating SECs makes the strategy Sample 1 outperform Sample 2.

		CPU time	Separation time	Nodes Cuts Separations	Separations with cuts
	No cut	3601.8 *	0	1506514	0	0	0
	Every node 2010.3	1340.5	4105	1116	2992	134
	Sample 1	65.5	48.3	3834	359	100	21
	Sample 2	114.5	39.5	10543	727	100	43
	violated SECs.					

Table 2 .

 2 The features extracted from the search tree

	Feature	Feature	Description	Ref.
	group			
	Tree (4)	has_incumbent	1 if an integer feasible solution is found and 0 otherwise	
		IP_rel_gap	(upper bound -lower bound) / upper bound	[29]

Table 3 .

 3 The additional rewards for SEC generation

	Additional reward

Table 4 .

 4 The numerical results of the SEC generation strategies

		Strategy	Solved	CPU Time	Nodes	Cuts
	SMALL	FS-1	100/100	109.9	2769.0	506.9
		FS-8	100/100	56.8	3090.1	493.8
		AS	100/100	48.1	3521.1	439.3
		GNN-RL	100/100	34.4	3185.7	423.7
	MEDIUM	FS-1	96/100	511.1	11969.1	956.8
		FS-8	98/100	424.6	15983.4	970.2
		AS	96/100	441.0	26759.5	861.7
		GNN-RL	99/100	288.5	17390.6	726.1
	LARGE	FS-1	32/100	2998.0	37698.9	2330.7
		FS-8	35/100	2916.4	55882.8	2425.0
		AS	33/100	2922.4	71455.1	2235.9
		GNN-RL	37/100	2889.7	72160.1	1965.9
	TSPLIB	FS-1	15/30	2062.3	15114.4	2412.9
		FS-8	14/30	2056.7	19797.6	2694.7
		AS	13/30	2087.7	23202.5	2965.1
		GNN-RL	15/30	1890.1	30995.7	2622.4

Acknowledgements

This work has been supported in part by the program of National Natural Science Foundation of China (No. 62176154).