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Abstract. Branch-and-Cut is a widely-used method for solving integer
programming problems exactly. In recent years, researchers have been
exploring ways to use Machine Learning to improve the decision-making
process of Branch-and-Cut algorithms. While much of this research fo-
cuses on selecting nodes, variables, and cuts [11,9,26], less attention has
been paid to designing efficient cut generation strategies in Branch-and-
Cut algorithms, despite its large impact on the algorithm performance. In
this paper, we focus on improving the generation of subtour elimination
constraints, a core and compulsory class of cuts in Branch-and-Cut algo-
rithms devoted to solving the Traveling Salesman Problem, which is one
of the most studied combinatorial optimization problems. Our approach
takes advantage of Machine Learning to address two questions before
launching the separation routine to find cuts at a node of the search
tree: 1) Do violated subtour elimination constraints exist? 2) If yes, is it
worth generating them? We consider the former as a binary classification
problem and adopt a Graph Neural Network as a classifier. By formu-
lating subtour elimination constraint generation as a Markov decision
problem, the latter can be handled through an agent trained by reinforce-
ment learning. Our method can leverage the underlying graph structure
of fractional solutions in the search tree to enhance its decision-making.
Furthermore, once trained, the proposed Machine Learning model can
be applied to any graph of any size (in terms of the number of vertices
and edges). Numerical results show that our approach can significantly
accelerate the performance of subtour elimination constraints in Branch-
and-Cut algorithms for the Traveling Salesman Problem.

Keywords: Traveling Salesman Problem · Subtour elimination constraints
· Branch-and-Cut · Cut generation · Machine Learning.

1 Introduction

Branch-and-Cut (B&C) is a popular method for solving integer programming
(IP) problems exactly. B&C is the combination of two methods: branch-and-
bound and cutting-plane. While branch-and-bound breaks down the problem
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into subproblems by a divide-and-conquer strategy, the cutting-plane method
tightens these subproblems by adding valid inequalities. B&C contains a se-
quence of decision problems such as variable selection, node selection, and cut
generation. Consequently, its performance heavily depends on decision-making
strategies.

One of the critical components of B&C is the cutting-plane method that
strengthens the linear programming (LP) relaxations (subproblems) of the IP
problem by adding valid inequalities (a.k.a. cuts). More precisely, given a solu-
tion x∗ obtained by solving some LP relaxations of the IP problem, we solve
a separation problem, which either asserts the feasibility of x∗ or generates a
cut violated by x∗. Adding cuts can remove a large portion of the infeasible re-
gion and improve the performance. In general, cuts are categorized into general-
purpose cuts obtained by the variable’s integrality conditions and combinatorial
cuts arising from the underlying combinatorial structure of the problem.

Generating cuts within B&C is a delicate task [8]. One of the design challenges
of using cuts is balancing the separation routine’s computational cost and the
benefits of generated cuts. Generating cuts in a naive way can reduce the branch-
and-bound tree’s size but potentially increase the overall computing time due to
the time spent executing the separation routine and solving the LP relaxations in
the search tree. Thus, learning a deft policy for cut generation is crucial. In spite
of its importance, cut generation is less studied than other related decision-
making problems in B&C. To the best of our knowledge, only a few simple
heuristics [4,20] have been proposed for cut generation, and concrete work has
yet to be investigated to learn a cut generation policy.

In this paper, we focus on the generation of subtour elimination constraints
(SECs)—a core class of cuts—for the Traveling Salesman Problem (TSP) in
B&C. SECs were proposed by Dantzig, Fulkerson, and Johnson [7] to ensure the
biconnectivity of solutions. They are well-known facet-defining inequalities for
the TSP polytope. Due to their exponential number, SECs are usually served
as cuts in the course of B&C. The separation problem of SECs is solvable in
polynomial time [20] by using the Gomory-Hu procedure [10] to find a minimum
cut in a graph. Although adding SECs is able to decrease the number of branch-
ing nodes, generating all possible SECs can decelerate the B&C performance,
as the separation procedure of SECs is computationally expensive, especially for
large-sized instances.

To improve SEC generation in B&C for the TSP, we propose an approach
based on Machine Learning (ML) to handle two questions before executing the
separation routine at a node of the branch-and-bound tree: 1) Do violated SECs
exist? 2) If yes, is it worth generating them? The first question is to avoid solving
redundant separation problems that do not provide any SEC. We treat this
question as a binary classification problem and train a Graph Neural Network
(GNN) in a supervised fashion. The second one is to predict the benefit of
generating SECs compared to branching. To this end, we formulate the sequential
decision-making process of SEC generation as a Markov decision problem and
train a policy by reinforcement learning (RL). Our GNN-RL framework can
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leverage the underlying graph structure of fractional solutions to predict the
SEC existence and capture the context of nodes in the search tree to make SEC
generation decisions. Furthermore, it offers flexibility over instance size, namely
that our model can be used for any instance (of arbitrary size) while being only
trained with fixed-size graphs. Experimental results show that our trained policy
for SEC generation significantly accelerates the B&C performance to solve the
TSP, even on instances of different sizes from its training counterparts.

2 Related work

Most approaches in the literature for cut generation exist in heuristic forms.
Padberg and Rinaldi, in their research on B&C for large-scale TSP [19], em-
pirically discovered the tailing-off phenomenon of cuts [19, Section 4.3], which
shows the cut generator’s inability to produce cuts that can assist the optimal
LP solution to escape the corner of the polytope where it is “trapped”. To deal
with the tailing-off, the authors proposed to stop generating cuts if the objective
value of the relaxed LP does not improve sufficiently within a given window and
switch to branching. Another approach to control cut generation introduced by
Balas et al. [4] is generating cuts at every k nodes of the search tree. The number
k, named “skip factor” in [4], determines the frequency of generating cuts. It can
be chosen either as a fixed constant or as an adaptive value varying throughout
the search tree. Another commonly used strategy is the so-called cut-and-branch
which only generates cuts at the root node of the search tree. Overall, despite
its importance, the question of the branching versus cutting decision has yet to
receive the attention it deserves.

In contrast, a closely-related problem to cut generation, cut selection, has
been studied extensively in the literature. While cut generation decides whether
to launch separation processes to generate cuts, cut selection requires selecting
cuts from a candidate set obtained by solving separation problems. Cut selec-
tion is usually considered for general-purpose cuts whose separation procedure is
computationally cheap and provides many cuts. Due to its definition, cut selec-
tion can be viewed as a ranking problem where cuts are sorted and chosen based
on some criteria. This point of view opened up many different approaches based
on many measurements of the cut quality. Among the most popular scores are
efficacy [4], objective parallelism [1], and integral support [27], to name a few.
Another research line on cut selection is to use ML to learn the ranking of cuts.
Most works of this approach fall into two categories: supervised learning and
RL. In the former, cuts are scored (or labeled) by an expert, and a cut ranking
function (usually a neural network) is trained to be able to choose the best ones
[13]. For the latter, one can formulate the problem of sequentially selecting cuts
as a Markov decision process. An agent can then be trained to either directly
optimize the objective value (RL) [26] or mimic a look-ahead expert (imitation
learning) [21].

In recent years, using ML to enhance fundamental decisions in branch-and-
bound is an active research domain; we refer to [5] for a summary of this line
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of work. Specific examples contain learning to branch [15,2,9], learning to select
nodes [11], and learning to run primal heuristics [16,6]. Similar to cut selection,
these problems can be reformulated as ranking [15,13,9], regression [2], or clas-
sification problems [16], and can then be treated correspondingly. Most of these
reformulations are possible due to the existence of an expensive expert (for ex-
ample, the strong branching expert for variable selection), which can be used to
calculate the score, label the instances, or act as an agent to be mimicked. In
the case of cut generation, such an expert is too expensive to obtain. To the best
of our knowledge, our paper is the first work to build an ML framework for cut
generation.

3 SEC generation in B&C for the TSP

3.1 IP formulation

Given an undirected graph G = (V,E) with a cost vector c = (ce)e∈E associated
with E, the TSP seeks a Hamiltonian cycle (a.k.a. tour) that minimizes the
total edge cost. For all edges e ∈ E, we denote by xe a binary variable such that
xe = 1 if edge e occurs in the tour and xe = 0 otherwise. We denote by δ(S) the
set of edges that have exactly one end-vertex in S ⊂ V ; δ({v}) is abbreviated as
δ(v) for v ∈ V . Let x(F ) =

∑
e∈F xe for F ⊆ E, the TSP can be formulated as

an integer program as follows:

min cTx (1a)
s.t. x(δ(v)) = 2 ∀ v ∈ V (1b)

x(δ(S)) ≥ 2 ∀ ∅ ̸= S ⊂ V (1c)
xe ∈ {0, 1} ∀ e ∈ E (1d)

where x = (xe)e∈E . The objective function (1a) represents the total cost of edges
selected in the tour. Constraints (1b) are degree constraints assuring that each
vertex in the tour is the end-vertex of precisely two edges. Constraints (1c) are
subtour elimination constraints, which guarantee the non-existence of cycles that
visit only a proper subset of V . Finally, (1d) are integrality constraints.

Note that this formulation, introduced by Dantzig, Fulkerson, and Johnson
[7], is widely used in most B&C algorithms for the TSP.

3.2 B&C framework for the TSP

One of the most successful approaches for exactly solving the TSP is B&C.
Intuitively, B&C starts by solving a relaxation of the TSP where all SECs are
omitted and the integrality constraints are relaxed to xe ∈ [0, 1] ∀e ∈ E. At
each node of the branch-and-bound tree, the LP relaxation is solved, and SECs
violated by the optimal LP solution are generated as cuts through the separation
routine. This principle of generating SECs is used in most B&C algorithms for
the TSP, including Concorde—the acknowledged best exact algorithm for the
TSP [3].
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We denote (α,β) an inequality αTx ≤ β, C a set of valid inequalities for the
TSP and ⟨F0, F1⟩ an ordered pair of disjoint edge sets. Let LP (C, F0, F1) be the
following LP problem:

min cTx

s.t x(δ(v)) = 2 ∀v ∈ V

αTx ≤ β ∀(α,β) ∈ C
xe = 0 ∀e ∈ F0

xe = 1 ∀e ∈ F1

xe ∈ [0, 1] ∀e ∈ E.

A basic B&C framework based on SECs is sketched as follows:

1. Initialization. Set S = {⟨F0 = ∅, F1 = ∅⟩}, C = ∅,x = NULL and UB = +∞.
2. Node selection. If S = ∅, return x and terminate. Otherwise, select and

remove an ordered pair ⟨F0, F1⟩ from S.
3. Solve LP (C, F0, F1). If the problem is infeasible, go to step 2; otherwise, let

x∗ be its optimal solution. If cTx∗ ≥ UB, go to step 2.
4. SEC verification. If x∗ is integer, verify SECs with x∗. If x∗ satisfies all SECs,

replace x by x∗, UB by cTx∗ and go to step 2. Otherwise, add violated SECs
to C and go to step 3.

5. Branching versus cut generation. Should SECs be generated? If yes, go to
step 6, else go to step 7.

6. Cut generation. Solve the separation problem. If violated SECs are found,
add them to C and go to step 3.

7. Branching. Pick an edge e such that 0 < x∗
e < 1. Add ⟨F0 ∪ {e}, F1⟩,

⟨F0, F1 ∪ {e}⟩ to S and go to step 2.

When the algorithm terminates, x is an optimal solution of the TSP. Notice
that the basic B&C framework stated above simply contains fundamental steps,
but it could be easily extended with additional techniques, such as the use of
other valid inequality classes for cut generation, branching strategies, and primal
heuristics. Any improvement for this basic B&C framework will also be valid for
the extensions.

Separation routine for SECs. We now describe an exact separation algorithm
to find violated SECs in polynomial time, proposed by Crowder and Padberg
[20]. The input of the separation algorithm is the optimal solution x∗ of the
current LP relaxation. We then construct from x∗ the so-called support graph
Gx∗ = (V,Ex∗) where Ex∗ = {e ∈ E | x∗

e > 0}. For each edge e in Ex∗ , we
set x∗

e as its capacity. Due to the construction of Gx∗ , the value x(δ(S)) for
S ⊂ V is precisely the capacity of the cut (S, V \ S) in Gx∗ . Therefore, an SEC
violated by x∗ is equivalent to a cut with a capacity smaller than 2 in Gx∗ .
Such a cut can be found by using the Gomory-Hu procedure [10] with |V | − 1
maximum flow computations. Thus, it is computationally expensive, especially
for instances with large-sized graphs.
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Note that when executing the separation routine for SECs, one can either
build the Gomory-Hu tree completely and get all violated SECs from the tree
or terminate the process as soon as a violated SEC is found. Our experimental
results show that the former is more efficient than the latter in terms of overall
solving time. Hence, in our implementation, we generate all violated SECs from
the Gomory-Hu tree each time the separation routine is called.

3.3 SEC generation problem

One of the primary decisions to make in B&C for the TSP is to decide whether
to generate SECs or to branch in Step 5, which has a tremendous impact on
the B&C performance. On the one hand, generating SECs can help tighten the
LP relaxations, reduce the number of nodes in the branch-and-bound tree, and
significantly improve computing time. On the other hand, SEC generation can
also worsen the B&C performance. One reason is the computational cost of the
SEC separation routine, which can be time-consuming when the instance size
is large. Furthermore, not all separation processes can produce violated SECs,
and thus launching the separation routine when the optimal LP solution satisfies
all SECs is wasteful. Another reason is that generating SECs is useless at some
nodes of the search tree where additional SECs may not provide new information
to improve the LP relaxation.

To illustrate the impact of SEC generation on the B&C performance, we
consider the following experimental example. We solve the TSP on the instance
rat195 from TSPLIB [24] by the commercial solver CPLEX 12.10 with three
different SEC generation strategies in Step 5 of the basic B&C framework. In the
first strategy (No cut), we do not generate any SECs; in the second one (Every
node), SECs are generated at every node of the search tree. The last strategy,
Sample cut, solves the separation problem exactly 100 times: at each node of
the search tree, we will perform the separation routine with the probability 1/2
and stop doing so after solving the 100th (separation) problem. The CPU time
limit is set to 3600 seconds. Table 1 shows the results of the strategies. Sample 1
and Sample 2 are two different runs of the strategy Sample cut. Column “CPU
time” gives the running time in seconds of B&C, in which the time spent by
the separation routine is shown in column “Separation time”. Column “Nodes”
reports the number of nodes in the search tree, and column “Cuts” indicates the
number of generated SECs. Columns “Separations” and “Separations with cuts”
give the number of separation routine executions and the number of executions
that can obtain violated SECs, respectively.

Table 1 shows that the SEC generation strategies may significantly affect the
algorithm performance. Obviously, generating SECs is crucial, as B&C cannot
solve the instance to optimality without it under the given CPU time budget.
In addition, adding SECs substantially reduced the search tree size. However,
solving SEC separation problems might take a major portion of computing time,
and only a few separation executions obtained violated SECs. For example, with
the strategy generating SECs at every tree node, B&C spent 98% of the CPU
time to execute separation routines, but only 134 out of 2992 executions yielded
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Table 1. The results of the SEC generation strategies on the instance rat195. The
asterisk in the “CPU time” column indicates strategies that fail to solve the TSP
within the time limit.

Strategy CPU
time

Separation
time Nodes Cuts Separations Separations

with cuts

No cut 3601.8∗ 0 1506514 0 0 0
Every node 2010.3 1340.5 4105 1116 2992 134
Sample 1 65.5 48.3 3834 359 100 21
Sample 2 114.5 39.5 10543 727 100 43

violated SECs. Table 1 also indicates that the effectiveness of the strategies relies
not only on the number of solved separation problems but also on specific nodes
where violated SECs are generated. Indeed, although the number of times the
separation problem is solved is the same, the difference in nodes generating SECs
makes the strategy Sample 1 outperform Sample 2.

Motivated by this issue, in this paper, we study the SEC generation problem
stated as follows: “Given a fractional solution at a node of the search tree, decide
whether to generate SECs or to branch".

4 The GNN-RL framework for SEC generation

In this section, we describe our GNN-RL framework to learn an SEC generation
strategy in B&C for the TSP. Our GNN-RL contains two separate components:
a cut detector (i.e., a GNN) to predict the existence of violated SECs and a cut
evaluator (i.e., a Q-value function) to decide whether to generate SECs or to
branch when the GNN has predicted the existence of SECs.

Figure 1 provides the flowchart of GNN-RL at a node of the search tree.
After obtaining an optimal solution to the LP relaxation at the node, the cut
detector predicts whether the solution violates SECs. If it predicts that no SEC
is violated, we skip to the branching step. Otherwise, the cut evaluator will assess
the effectiveness of additional SECs to select the next action to perform.

optimal
solution

solve LP
relaxation

exist cuts

no cut

solve separation
problem

generate
cuts

branch
no

yescut
detector

cut
evaluator

branch

have
violated SECs?

add SECs

Fig. 1. The flowchart of GNN-RL
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4.1 Cut detector

Given a fractional solution, the cut detector predicts whether there exists any
violated SEC. Therefore, one can view the cut detector as a binary classifier that
takes a fractional solution x as input and returns:

y =

{
1 if there exists any SEC violated by x,

0 otherwise.

We adopt a GNN [25], a message-passing (MP) neural network, for this classi-
fication task to take into account the underlying graph structure of fractional
solutions, which is critical for the separation problem. Furthermore, GNN pos-
sesses many properties which make it a natural choice for graph-related ML
problems, such as permutation invariance or independence from the instance
size.

We parameterize the cut detector as follows. Given a fractional solution x,
we construct from x its support graph Gx = (V,Ex) where the capacity we of
edge e is xe. For each node i ∈ V , we define the node feature as its degree di in
Gx, and embed di to a h-dimensional vector by a multi-layer perceptron (MLP):

h
(0)
i = W (0)di + b(0)

where W (0) ∈ Rh×1 and b(0) ∈ Rh. To update the node embeddings, we use two
MP layers [18]:

h
(l)
i = ReLU

W
(l)
1 h

(l−1)
i +W

(l)
2

∑
j∈N(i)

w(i,j) · h
(l−1)
j


where h

(l−1)
i is the representation of node i in layer l − 1, N (i) is the set of

i’s neighbors in Gx, W (l)
1 and W

(l)
2 are weight matrices in the l-th layer, and

w(i,j) is the capacity associated with edge (i, j). To obtain a representation of
the entire graph Gx, we apply a min-cut pooling [28] layer to assign nodes
into two clusters, compute the element-wise addition of all node vectors in each
cluster and concatenate the two cluster vectors. Finally, an MLP with a softmax
activation function is used to predict the probability of the solution’s labels, i.e.,
P (y = 0|x) and P (y = 1|x).

Our training dataset {(xi, yi)}Ni=1 is collected by solving several separation
problems on training instances generated randomly by Johnson and McGeoch’s
generator [14]. We train the cut detector’s parameters ΘG to minimize the cross-
entropy loss:

L(ΘG) = −
N∑
i=1

(
yi · logPΘG

(yi = 1|xi) + (1− yi) · log(1− PΘG
(yi = 0|xi))

)
.
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4.2 Cut evaluator

We now formulate SEC generation as a Markov decision process (MDP) [22].
Considering the IP solver as the environment and the cut evaluator as the agent,
we define the state space, action space, and transition and reward functions of
the MDP as follows.

State space. At iteration t, a state st contains the information about the TSP
instance and the current search tree, which comprises branching decisions, the
lower and upper bounds, the LP relaxations at nodes with SECs added so far,
and the considered node. A terminal state is achieved when the instance is solved
to optimality.

Due to the search tree complexity, we represent a state st as a collection of
the following elements:

– An optimal solution xt to the LP relaxation of the considered node. It is
used to provide information about the separation problem for the agent. We
represent this solution as its corresponding support graph Gxt

= (V,Ext
)

with edge capacities xt.
– The TSP instance. Encoding the TSP instance in the state representation

is essential, as SEC generation is naturally instance-dependent. Recall that
the TSP instance is an undirected graph G = (V,E) with edge costs c. We
define the node features as the node degrees in G. The edge features contain
the edge costs and information about the variables representing edges at
the considered node (values in the optimal LP solution, lower and upper
bounds), which is used to encode the context of the considered node in the
search tree.

– Features of the search tree. To enrich the information about the search tree in
the state representation, we design 11 tree features based on our experimen-
tal observations and inspired by hand-crafted input features for branching
variable selection proposed in [29]. The features are shown in Table 2. The
top four features correspond to the incumbent existence, the IP relative gap
(i.e., |L − U |/U where L,U are respectively the lower and upper bounds),
and the portions of processed and unprocessed nodes, which help to capture
the state of the search tree. The remaining features are extracted at the con-
sidered node to describe its context through depth, objective value, optimal
solution, and fixed variables. Each feature is normalized to the range [0, 1].

Action space. Given a non-terminal state st, the RL agent selects an action
at from the action space A = {generate SECs, branch}.

Transition. After selecting an action at, the new state st+1 is determined as
follows. If at is to branch, the solver selects a branching variable to create two
child nodes, picks the next node to explore, and solves the corresponding LP
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Table 2. The features extracted from the search tree

Feature
group

Feature Description Ref.

Tree (4) has_incumbent 1 if an integer feasible solution is found and 0 otherwise

IP_rel_gap (upper bound - lower bound) / upper bound [29]

processed_nodes the number of processed nodes /
the total nodes in the current search tree

[29]

unprocessed_nodes the number of unprocessed nodes /
the total nodes in the current search tree

[29]

Node (7) node_depth max(1, the node depth / |V|) [29]

obj_quality objective value / upper bound

vars_1 the number of variables equal to 1 in the solution / |V|

fixed_vars the number of fixed variables / |E|

unfixed_vars the number of unfixed variables / |E|

vars_fixed_1 the number of variables fixed to 1 / |V|

vars_fixed_0 the number of variables fixed to 0 / |E|

relaxation to get an optimal solution xt+1. Otherwise, if at is to generate SECs,
the solver launches the separation routine to yield SECs violated by xt, adds
them to the formulation, and solves the LP relaxation again with the new cuts
to obtain xt+1. If no cut is found, the next state st+1 is determined in the same
way as when performing the branching action.

Reward function. Since we want to solve the instance as fast as possible, we
consider the reduction of the IP relative gap to define the reward function. The
faster the IP relative gap drops, the faster the instance is solved. Formally, let
γt be the IP relative gap at iteration t, the reward at iteration t is defined as

rt = r(st, at, st+1) = γt − γt+1 . (3)

An issue of this reward function is its sparsity, namely that most rewards are 0;
thus, it rarely gives feedback to guide the agent. To deal with this issue, we add
additional rewards, a.k.a reward shaping, to provide more frequent feedback for
training the agent. In particular, to encourage the solver to terminate as soon as
possible, we set penalties for each additional iteration, and each solved redun-
dant separation problem in the cases where the cut detector predicts incorrectly.
Moreover, we also give a bonus for each SEC found by the separation routine.
Details of the additional rewards are shown in Table 3.

Policy parametrization. We parameterize the cut evaluator (i.e., a Q-value
function) as a neural network consisting of two parts: one to embed a state
into a vector and one to approximate the Q-value of actions. In the first part,
we use three separate models to encode the state components, i.e., a GNN for
the optimal LP solution, another GNN for the TSP instance, and an MLP for
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Table 3. The additional rewards for SEC generation

Additional reward Value

Penalty for each additional iteration -0.01

Penalty for solving redundant separation problem -0.10

Bonus for an SEC 0.01

the tree features. The state embedding is the concatenation of the outputs of
these three models. We then pass this embedding to a 3-layer perceptron to
get the Q-value approximation of actions. Figure 2 illustrates the cut evaluator
architecture.

Training. To train the cut evaluator, we use the Deep Q-Network algorithm
[17], i.e., the parameters of the cut evaluator are updated to minimize an L2
loss defined with a target network using data sampled from a replay buffer filled
with transitions generated during online interactions with the environment. For
simplicity, an ϵ-greedy policy is used for exploration.

Edge
capacity

Node
features

Tree features

Edge features E

XNode features

support graph

Q̂Θ(st, at)

state
representation

MLP

MLP

MLP

MLP

MLP

MP MP

MP MP

Pool

Pool

The optimal
LP solution

TSP instance
G = (V,E)

Fig. 2. The neural network architecture for the cut evaluator

5 Experiments

In this section, we demonstrate the effectiveness of the GNN-RL framework in
controlling SEC generation for the TSP in B&C algorithms.

5.1 Setup

All experiments are conducted on a computing server with AMD EPYC 7742
64-core CPU, 504GB of RAM, and an RTX A4000 GPU card with 48GB graphic
memory.
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B&C solver. We use the commercial solver CPLEX 12.10 as a backend solver,
and CPLEX UserCutCallback to generate SECs in the tree nodes and integrate
our method into the solver. We keep the CPLEX’s default settings which are
expertly tuned. However, to focus on evaluating the benefit of SECs, we switch
off the CPLEX’s cuts. The solver time limit is 3600 seconds per instance.

Benchmarks. We train and evaluate our method on random TSP instances
generated following Johnson and McGeoch’s generator used for DIMACS TSP
Challenge [14]. These instances are complete graphs. In particular, we train on
200 instances with graphs of 200 vertices and evaluate on three instance groups:
instances with graphs of 200 (small), 300 (medium), and 500 vertices (large) and
100 instances per group. Furthermore, we also assess the proposed method on 30
instances with graphs of 200 to 1000 vertices from TSPLIB [24], a well-known
library of sample instances for the TSP.

Neural network architecture. We describe here the model architectures for
encoding the state components. For the optimal LP solution, we use a GNN
with the same architecture as the cut detector without the last MLP layer. For
the TSP instance, since the edge features are 4-dimensional vectors, we use an
MLP layer to embed them into the same space of the node embeddings and the
modified GIN architecture introduced in [12] to integrate the edge features into
updating the node embeddings. Furthermore, since the used TSP instances are
complete graphs, we update the embedding of a node by its 10 nearest neighbors
in terms of edge costs. For the tree features, we use a two-layer perceptron model.
For all architectures, the feature dimension is 64.

Training. We train the cut detector and cut evaluator separately. For the train-
ing phase of the cut detector, we generate 96000 labeled fractional solutions
from 200 random instances. We train the cut detector within 100 epochs, and
the learning rate is 0.0001. For the cut evaluator, we train the Q-learning net-
work on the 200 training instances with one million steps using the package
stable-baselines3 [23].

Baselines. We compare the performance of GNN-RL with the fixed and auto-
matic strategies proposed in [4], which generate cuts for every k nodes. For the
fixed strategies, we use k = 1 (FS-1) as the default strategy and k = 8 (FS-8),
which gave the best results in [4] and is one of the best skip factors in our own
experiments. For the automatic strategy (AS) where the skip factor is chosen
based on the instance to be solved, k is computed as follows:

k = min

{
KMAX,

⌈
f

cd log10 p

⌉}
where f is the number of cuts generated at the root node, d is the average
distance cutoff of these cuts (a distance cutoff of a cut is the Euclidean distance



Improving SEC Generation in B&C Algorithms for the TSP with ML 13

between the optimal solution and the cut [4]), p is the number of variables
in the formulation, and KMAX,c are constants. In our implementation, we set
KMAX= 32 as in [4] and c = 100 since the average distance cutoff of SECs is
small. Moreover, we experimentally observe that SECs are very efficient at the
root node and inefficient at the late stage of the computation. Thus, we always
generate SECs at the root node and stop generating SECs when the IP relative
gap is less than 1%, regardless of the strategies used.

5.2 Results

Table 4 shows the results of GNN-RL and the three baselines on both the random
and TSPLIB instances. For each instance group, we report the number of in-
stances that can be solved to optimality within the CPU time limit over the total
instances (column “Solved”), the average CPU time in seconds (including also the
running times of instances that cannot be solved to optimality within the CPU
time limit) (column “Time”), the average number of nodes in the search tree
(column “Nodes”), and the average number of generated SECs (column “Cuts”).
Recall that our goal in this paper is to accelerate the B&C algorithm; thus, the
main criterion for comparison is the CPU running time.

Table 4. The numerical results of the SEC generation strategies

Strategy Solved CPU Time Nodes Cuts

SMALL FS-1 100/100 109.9 2769.0 506.9
FS-8 100/100 56.8 3090.1 493.8
AS 100/100 48.1 3521.1 439.3
GNN-RL 100/100 34.4 3185.7 423.7

MEDIUM FS-1 96/100 511.1 11969.1 956.8
FS-8 98/100 424.6 15983.4 970.2
AS 96/100 441.0 26759.5 861.7
GNN-RL 99/100 288.5 17390.6 726.1

LARGE FS-1 32/100 2998.0 37698.9 2330.7
FS-8 35/100 2916.4 55882.8 2425.0
AS 33/100 2922.4 71455.1 2235.9
GNN-RL 37/100 2889.7 72160.1 1965.9

TSPLIB FS-1 15/30 2062.3 15114.4 2412.9
FS-8 14/30 2056.7 19797.6 2694.7
AS 13/30 2087.7 23202.5 2965.1
GNN-RL 15/30 1890.1 30995.7 2622.4

As shown in Table 4, our method outperforms all the baselines on all instance
groups. Indeed, GNN-RL solves more instances to optimality within a smaller
average CPU time. Compared to FS-8, GNN-RL is faster by 5% on average over
all random instances, i.e., is 39%, 32%, and 1% faster for small, medium, and
large instances, respectively. For the TSPLIB instances, GNN-RL is faster by
9%, 8%, and 8% compared to AS, FS-8, and FS-1.

As predicted, FS-1 has the smallest tree size on average over all instances, but
its running time is the highest due to the extra time spent on generating SECs.
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On the other hand, too few cuts might be detrimental to the B&C performance.
It can be seen in the comparison between FS-8 and AS strategies on large and
medium instances. Indeed, AS requires more computing time than FS-8 despite
generating fewer SECs. The numerical results give evidence that GNN-RL can
balance the separation cost and the benefit of generated SECs.

6 Conclusion

In this paper, we proposed a GNN-RL framework, the first ML-based approach,
to improve SEC generation in B&C for the TSP. Experimental results showed
that the policy learned by GNN-RL outperformed the previously proposed heuris-
tics for cut generation. Most importantly, the GNN-RL architecture allows the
trained policy to generalize to unseen instances with larger-sized graphs. Our fu-
ture work will extend this framework to other valid inequality classes for the TSP,
such as the comb and 2-matching inequalities. We will also integrate GNN-RL
into B&C algorithms for other combinatorial optimization problems, for exam-
ple, the max-cut and vehicle routing problems.
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