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Abstract

We introduce a pseudoconvex differentiable relaxation of the column-sampling
problem for the Nyström approximation of positive-semidefinite (PSD) matrices.
The relaxation is based on the interpretation of PSD matrices as integral operators,
and relies on the supports of measures to characterise samples of columns. We
describe a class of gradient-based sequential sampling strategies which leverages the
properties of the considered framework, and demonstrate and its ability to produce
accurate Nyström approximations. The time-complexity of the stochastic variants
of the discussed strategies is linear in the number of columns of the considered
matrices, and the underlying computations can be easily parallelised.

Keywords: Nyström approximation, reproducing kernel Hilbert spaces, differentiable relaxation,
generalised convexity, conditional gradient.

1 Introduction

The low-rank approximation of matrices through column sampling is a core technique in scientific
computing and machine learning. For positive-semidefinite (PSD) matrices, the terminology Nyström
approximation is often used, and the characterisation of samples of columns leading to accurate
approximations is referred to as the column sampling problem (CSP); see e.g. [20, 1, 19, 18]. In
practical applications, the combinatorial nature of the CSP and the cost inherent to the evaluation of
the Nyström approximation errors prevent the implementation of sampling strategies based on direct
minimisations, and as such, have motivated the development of a wide variety of heuristic-based
sampling strategies; see [4, 9, 7, 13, 15, 3] and references therein for an overview.
In this work, we describe a class of sequential sampling strategies leveraging the properties of a
differentiable pseudoconvex relaxation of the CSP. We characterise samples of columns through
the nonnull entries of selection vectors (interestingly enough, this alone leads to a convex, but
nondifferentiable, relaxation of the CSP; see Theorem 2.1); such selection vectors can be regarded as
discrete measures, and together with the considered PSD matrix, define integral operators acting on
the reproducing kernel Hilbert space (RKHS; see e.g. [14]) defined by the matrix. Following [6], the
norm of the corresponding Hilbert-Schmidt (HS) space can be used to discriminate among selection
vectors, and enforcing an invariance with respect to the rescaling of selection vectors gives rise to a
pseudoconvex differentiable error map 𝑅 on the selection-vector space. The error map 𝑅 can hence
be minimised through gradient descents, and we describe sequential sampling strategies based on the
early stopping of minimisation procedures with sparse initialisations and sparse descent directions.
For a 𝑁 × 𝑁 PSD matrix 𝐊, our sampling strategies rely on a vector 𝖌 ∈ ℝ𝑁 , referred to as the
target potential, formed by computing the squared 𝓁2 norm of each row of 𝐊. The time-complexity of
forming 𝖌 is therefore quadratic in 𝑁 ; nevertheless, stochastic approximations of 𝖌 can be considered,
and the overall time complexity of the presented strategies is then linear in 𝑁 .
The manuscript is organised as follows. In Section 2, we describe the overall framework surrounding
the considered relaxation of the CSP. In Section 3, we present a class of gradient-based sequential
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column-sampling strategies, and stochastic variants of these strategies are discussed in Section 4.
Section 5 is devoted to numerical experiments, and Section 6 consists of a concluding discussion.
Proofs are gathered in appendix, together with some technical results and additional figures.

2 Overall framework and notations

Throughout this note, we use the classical matrix notation and identify a vector 𝜶 ∈ ℂ𝑁 , 𝑁 ∈ ℕ, as
the 𝑁 × 1 column matrix defined by the coefficients of 𝜶 in the canonical basis {𝐞𝑖}𝑖∈[𝑁] of ℂ𝑁 ; [𝑁]
stands for the set of all integers between 1 and 𝑁 . The conjugate and conjugate-transpose of a matrix
𝐌 are denoted by 𝐌 and 𝐌∗, respectively, and span{𝐌} stands for the linear space spanned by the
columns of 𝐌. Hermitian forms are assumed to be linear in their second argument.
2.1 Nyström approximation of PSD matrices

Let 𝐊 ∈ ℂ𝑁×𝑁 be a PSD matrix, with 𝑁 ∈ ℕ. For a subset 𝐼 ⊆ [𝑁] of size 𝑚 ⩽ 𝑁 , the Nyström
approximation of 𝐊 induced by 𝐼 is the PSD matrix

𝐊̂(𝐼) = 𝐊∙,𝐼 (𝐊𝐼,𝐼 )
†𝐊𝐼,∙ ∈ ℂ𝑁×𝑁 , (1)

where 𝐊∙,𝐼 ∈ ℂ𝑁×𝑚 is the matrix defined by the columns of 𝐊 with index in 𝐼 , and where (𝐊𝐼,𝐼 )
† is

the pseudoinverse of the 𝑚 ×𝑚 principal submatrix of 𝐊 defined by 𝐼 (and 𝐊𝐼,∙ = (𝐊∙,𝐼 )
∗ consists of

rows of 𝐊); see e.g. [4, 16, 9, 7, 2].
The accuracy of a Nyström approximation is often assessed through the trace, Frobenius or spectral
norm of the approximation error, that is

‖𝐊 − 𝐊̂(𝐼)‖tr , ‖𝐊 − 𝐊̂(𝐼)‖F, or ‖𝐊 − 𝐊̂(𝐼)‖sp, (2)
respectively, naturally raising questions related to the characterisation of subsets leading to accurate
approximations. In practice, a direct minimisation, as functions of 𝐼 , of the error norms (2) is made
difficult by the combinatorial nature of the underlying problems, and by the numerical cost inherent
to the evaluation of the corresponding norms. The following Remark 2.1 provides an important
insight into the theoretical framework surrounding the definition of Nyström approximations and the
assessment of their accuracy.
Remark 2.1. The entries of a PSD matrix 𝐊 ∈ ℂ𝑁×𝑁 characterise the kernel of a RKHS of ℂ-valued
functions on [𝑁]; see for instance [14, Chapter 2]. This RKHS can be identified with the subspace
 = span{𝐊} ⊆ ℂ𝑁 endowed with the inner product

⟨𝒉 |𝒇⟩ = 𝒉∗𝐊†𝒇 , 𝒉 and 𝒇 ∈ .
A subset 𝐼 ⊆ [𝑁] then defines a closed linear subspace 𝐼 = span{𝐊∙,𝐼} of , and 𝐊̂(𝐼) is the
reproducing kernel of 𝐼 . Introducing 𝑃𝐼 = 𝐊∙,𝐼 (𝐊𝐼,𝐼 )

†𝕀𝐼,∙ ∈ ℂ𝑁×𝑁 , with 𝕀 the 𝑁 ×𝑁 identity
matrix, we indeed have

𝐊̂(𝐼) = 𝑃𝐼𝐊 = 𝐊𝑃 ∗
𝐼 = 𝑃𝐼𝐊𝑃

∗
𝐼 ,and the matrix 𝑃𝐼 corresponds to the orthogonal projection from  onto 𝐼 (see Remark 2.2), that is

span{𝑃𝐼𝐊} = 𝐼 , 𝑃 2
𝐼 = 𝑃𝐼 and ⟨𝒉 |𝑃𝐼𝒇⟩ = ⟨𝑃𝐼𝒉 |𝒇⟩ , 𝒉 and 𝒇 ∈ .

Denoting by  the Euclidean Hilbert space ℂ𝑁 (with inner product ⟨𝐮 | 𝐯⟩ = 𝐮∗𝐯, 𝐮 and 𝐯 ∈ ), and
observing that for all 𝒉 ∈ , there exists 𝜶 ∈ ℂ𝑁 such that 𝒉 = 𝐊𝜶, we in particular have

⟨𝒉 |𝐊𝐯⟩ = ⟨𝒉 | 𝐯⟩ , 𝒉 ∈  and 𝐯 ∈  . (3)
The matrix 𝐊 can then be regarded as an operator from, and to,  or . In (2), the trace norm
corresponds to the squared HS norm of the PSD matrix 𝐊 − 𝐊̂(𝐼) when interpreted as an operator
from  to ; indeed, setting 𝑃0𝐼 = 𝕀 − 𝑃𝐼 (so that 𝐊 − 𝐊̂(𝐼) = 𝑃0𝐼𝐊 = 𝐊𝑃 ∗

0𝐼 ) and observing that
the matrix 𝑃0𝐼 is an orthogonal projection on , from (3), we obtain (see also Appendix A)

∑

𝑖∈[𝑁]
‖𝑃0𝐼𝐊𝐞𝑖‖

2
 =

∑

𝑖∈[𝑁]
⟨𝑃0𝐼𝐊𝐞𝑖 |𝐊𝐞𝑖⟩ =

∑

𝑖∈[𝑁]
⟨𝑃0𝐼𝐊𝐞𝑖 | 𝐞𝑖⟩ = trace(𝑃0𝐼𝐊).

The Frobenius and spectral norms correspond to the HS and spectral norms, respectively, of the matrix
𝐊 − 𝐊̂(𝐼) when regarded as an operator on  . ⊲
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2.2 First relaxation: selection vectors

For 𝝊 = (𝜐𝑖)𝑖∈[𝑁] ∈ ℝ𝑁 , we set 𝐼𝝊 = {𝑖 ∈ [𝑁]|𝜐𝑖 ≠ 0} and we refer to 𝐼𝝊 as the support of 𝝊.
Through its support, a selection vector 𝝊 characterises a subset of columns of 𝐊; following Remark 2.1,
we introduce the simplified notations

𝐊̂(𝝊) = 𝐊̂(𝐼𝝊), 𝝊 = 𝐼𝝊
and 𝑃𝝊 = 𝑃𝐼𝝊 .

We then define the error maps (notice the square in the definition of 𝐶F and 𝐶sp)
𝐶tr ∶ 𝝊 ↦ ‖𝐊 − 𝐊̂(𝝊)‖tr , 𝐶F ∶ 𝝊 ↦ ‖𝐊 − 𝐊̂(𝝊)‖2F and 𝐶sp ∶ 𝝊 ↦ ‖𝐊 − 𝐊̂(𝝊)‖2sp.

Theorem 2.1. The error maps 𝐶X, X ∈ {tr,F, sp}, are convex on the convex cone ℝ𝑁
⩾0, and for 𝝊

and 𝜼 ∈ ℝ𝑁
⩾0, we have lim𝜌→0+

1
𝜌

[

𝐶X
(

𝝊 + 𝜌(𝜼 − 𝝊)
)

− 𝐶X(𝝊)
]

∈ {−∞, 0}, that is, the directional
derivatives of these maps take values in the discrete set {−∞, 0}.

Theorem 2.1 illustrates that the error maps induced by the trace, Frobenius and spectral norms are akin
to convex piecewise-constant functions on ℝ𝑁

⩾0; see Figure 1 for an illustration. The selection-vector
formulation can hence be regarded as a nondifferentiable convex relaxation of the CSP. Introducing
|𝝊| = (|𝜐𝑖|)𝑖∈[𝑁] ∈ ℝ𝑁

⩾0, we may observe that 𝐶X(𝝊) = 𝐶X(|𝝊|), X ∈ {tr,F, sp}.

2.3 Second relaxation: quadrature approximation

Following Remark 2.1, we introduce
HS() = {𝐌 ∈ ℂ𝑁×𝑁

| span{𝐌𝐊} ⊆ },

that is, a matrix 𝐌 belongs to HS() if and only if 𝐌𝒉 ∈  for all 𝒉 ∈ . Observing that for any
orthonormal basis (ONB) {𝒉𝑗}𝑗∈𝕁 of , 𝕁 ⊆ [𝑁], we have 𝐊 =

∑

𝑗∈𝕁 𝒉𝑗𝒉
∗
𝑗 (see e.g. [14]), we set

⟨𝐌 |𝐓⟩HS() =
∑

𝑗∈𝕁
⟨𝐌𝒉𝑗 |𝐓𝒉𝑗⟩ = trace(𝐊𝐌∗𝐊†𝐓), 𝐌 and 𝐓 ∈ HS(). (4)

Endowed with ⟨⋅ | ⋅⟩HS(), the linear space HS() is a semi-Hilbert space, and ‖𝐌‖HS() = 0 if and
only if 𝐌𝐊 = 0 (see Remark 2.2). If 𝐊 is invertible, then HS() is a Hilbert space.
Remark 2.2. When the matrix 𝐊 is singular, the matrices representing a given operator on  are
nonunique. Indeed, for 𝐯 ∈ ℂ𝑁 , with 𝐯 ≠ 0 such that 𝐊𝐯 = 0, we have 𝐯∗𝒉 = 0, 𝒉 ∈ ; for
𝐌 ∈ HS() and 𝐮 ∈ ℂ𝑁 , we obtain (𝐌 + 𝐮𝐯∗)𝒉 = 𝐌𝒉, so that the matrices 𝐌 and 𝐌 + 𝐮𝐯∗
represent the same operator on . ⊲

A selection vector 𝝊 ∈ ℝ𝑁 can be regarded as a signed measure on [𝑁], and as such, defines together
with 𝐊 a discrete integral operator of the form 𝐮 ↦ 𝐊𝐕𝐮, 𝐮 ∈ ℂ𝑁 , with 𝐕 = diag(𝝊) ∈ ℂ𝑁×𝑁 the
diagonal matrix with diagonal 𝝊; the matrix 𝐊𝐕 belongs to HS(). Let 𝝎 ∈ ℝ𝑁 be another selection
vector, and set 𝐖 = diag(𝝎). From (4), we have

⟨𝐊𝐖 |𝐊𝐕⟩HS() = trace(𝐊𝐖𝐊𝐊†𝐊𝐕) = trace(𝐊𝐖𝐊𝐕) = 𝝎∗𝐒𝝊, (5)
where 𝐒 = 𝐊⊙𝐊 (element-wise product) is the𝑁 ×𝑁 PSD matrix with 𝑖, 𝑗 entry |𝐊𝑖,𝑗|

2, the squared
modulus of the 𝑖, 𝑗 entry of 𝐊 (the matrix 𝐒 is real symmetric). Introducing 1 = (1)𝑖∈[𝑁] ∈ ℝ𝑁 , we
in particular have diag(1) = 𝕀 and ‖𝐊‖

2
HS() = 1

∗𝐒1 = ‖𝐊‖

2
F.

We denote by 𝐷 ∶ ℝ𝑁 → ℝ⩾0, the error map defined as
𝐷(𝝊) = ‖𝐊 −𝐊𝐕‖2HS() = (1 − 𝝊)∗𝐒(1 − 𝝊) = ‖𝐊‖

2
F + 𝝊∗𝐒𝝊 − 2𝖌∗𝝊, 𝝊 ∈ ℝ𝑁 , (6)

with 𝖌 = 𝐒1 ∈ ℝ𝑁
⩾0 (we refer to 𝖌 as the target potential; see Remark 2.3). The error map𝐷 is convex

on ℝ𝑁 , and the gradient of 𝐷 at 𝝊 is ∇𝐷(𝝊) = 2(𝐒𝝊 − 𝖌).
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Remark 2.3. Following Remark 2.1, the PSD matrix 𝐒 defines a RKHS that can be identified with
the vector space  = span{𝐒} ⊆ ℂ𝑁 endowed with the inner product ⟨𝒈 | 𝒋⟩ = 𝒈∗𝐒†𝒋, 𝒈 and 𝒋 ∈ .
In view of (5), we have

⟨𝐊𝐖 |𝐊𝐕⟩HS() = 𝝎∗𝐒𝝊 = 𝝎∗𝐒𝐒†𝐒𝝊 = ⟨𝐒𝝎 |𝐒𝝊⟩, 𝝎 and 𝝊 ∈ ℝ𝑁 .
We refer to 𝐒𝝊 as the potential of 𝝊 in , and to ‖𝐒𝝊‖2 = ‖𝐊𝐕‖2HS() = 𝝊∗𝐒𝝊 as the energy of 𝝊 with
respect to 𝐒. The map (𝝎, 𝝊) ↦ ‖𝐊𝐖 −𝐊𝐕‖HS() can then be interpreted as a generalised integral
probability metric, or maximum mean discrepancy (see e.g. [17, 12]). ⊲

2.4 Invariance under rescaling

For 𝝊 ∈ ℝ𝑁 and 𝑐 > 0, we have 𝐼𝝊 = 𝐼𝑐𝝊; the error maps 𝐶X, X ∈ {tr,F, sp}, are thus invariant
under rescaling, that is, 𝐶X(𝑐𝝊) = 𝐶X(𝝊). To enforce a similar invariance within (6), we introduce
the error map

𝑅(𝝊) = min
𝑐⩾0

𝐷(𝑐𝝊) =

{

‖𝐊‖

2
F − (𝖌∗𝝊)2∕(𝝊∗𝐒𝝊) if 𝖌∗𝝊 > 0,

‖𝐊‖

2
F otherwise, (7)

and we set D = {𝝊 ∈ ℝ𝑁
|𝖌∗𝝊 > 0}. From the Cauchy-Schwartz (CS) inequality, if 𝝊 ∈ D , then

𝝊∗𝐒𝝊 > 0; we indeed have |𝖌∗𝝊|2 = |1
∗𝐒𝝊|2 ⩽ (1∗𝐒1)(𝝊∗𝐒𝝊). We also have 𝑅(𝝊) = 𝐷(𝑐𝝊𝝊), with

𝑐𝝊 =
{

(𝖌∗𝝊)∕(𝝊∗𝐒𝝊) if 𝝊 ∈ D ,
0 otherwise.

For 𝜼 ∈ ℝ𝑁 , the directional derivative Θ(𝝊; 𝜼) of 𝑅 at 𝝊 ∈ ℝ𝑁 along 𝜼 − 𝝊 is given by

Θ(𝝊; 𝜼) = lim
𝜌→0+

1
𝜌
[

𝑅
(

𝝊 + 𝜌(𝜼 − 𝝊)
)

− 𝑅(𝝊)
]

=
{−∞ if 𝝊 ∈ Z and 𝜼 ∈ D ,
2𝑐𝝊(𝜼 − 𝝊)∗(𝑐𝝊𝐒𝝊 − 𝖌) otherwise, (8)

with Z = {𝝊 ∈ ℝ𝑁
|𝐒𝝊 = 0}. As D ∩Z = ∅, the gradient of𝑅 at 𝝊 ∈ D is ∇𝑅(𝝊) = 2𝑐𝝊(𝑐𝝊𝐒𝝊 − 𝖌).

We may observe that 𝝊∗(𝑐𝝊𝐒𝝊 − 𝖌) = 0, 𝝊 ∈ D .
Theorem 2.2. The map 𝑅 is quasiconvex on ℝ𝑁 , and pseudoconvex on the convex cone D .

For 𝝊⋆ = 𝑐1 + 𝝐, with 𝑐 > 0 and 𝝐 ∈ ℝ𝑁 such that 𝐒𝝐 = 0, we have 𝑅(𝝊⋆) = 0, and 𝑅 is thus
minimum at 𝝊⋆. For suitable step sizes, the pseudoconvexity of 𝑅 on D ensures the convergence
to such a minimum of any gradient descent starting from a vector in D . Lemma 2.1 provides an
analytical expression for the optimal step size and for the improvement induced by a descent with
optimal step size in the case of interest for Section 3.
Lemma 2.1. For 𝝊 ∈ D and 𝜼 ∈ ℝ𝑁 such that Θ(𝝊; 𝜼) < 0 and Θ(𝜼; 𝝊) ⩽ 0, the function
𝜌 ↦ 𝑅

(

𝝊 + 𝜌(𝜼 − 𝝊)
)

, 𝜌 ∈ [0, 1], is minimum at 𝜌 = 𝑟 ∈ (0, 1], with

𝑟 =
𝑇1

𝑇1 + 𝑇2
, 𝑇1 = (𝝊∗𝐒𝝊)(𝖌∗𝜼) − (𝖌∗𝝊)(𝝊∗𝐒𝜼) and 𝑇2 = (𝜼∗𝐒𝜼)(𝖌∗𝝊) − (𝖌∗𝜼)(𝝊∗𝐒𝜼); (9)

introducing (𝝊; 𝜼) = 𝑅(𝝊) − 𝑅
(

𝝊 + 𝑟(𝜼 − 𝝊)
)

⩾ 0, we have

(𝝊; 𝜼) =
(

𝜼∗(𝑐𝝊𝐒𝝊 − 𝖌)
)2/((𝜼∗𝐒𝜼) − (𝝊∗𝐒𝜼)2∕(𝝊∗𝐒𝝊)

)

. (10)
The appearance of the error maps 𝐷, 𝑅 and 𝐶F is illustrated in Figure 1.

2.5 Additional error maps and further properties

In HS(), the Nyström approximation of 𝐊 relates to the approximation of the underlying operator
on  through projections. For 𝝊 ∈ ℝ𝑁 , we have (see Lemma A.1 and (17), in appendix)

‖𝐊 − 𝑃𝝊𝐊‖

2
HS() = ⟨𝐊 − 𝐊̂(𝝊) |𝐊⟩F and ‖𝐊 − 𝑃𝝊𝐊𝑃𝝊‖

2
HS() = ‖𝐊‖

2
F − ‖𝐊̂(𝝊)‖2F,

4



𝝊 ↦ 𝐷(𝝊)

1𝜐1
𝜐2

𝝊 ↦ 𝑅(𝝊)

1𝜐1
𝜐2

𝝊 ↦ 𝐶F(𝝊)

1𝜐1
𝜐2

Figure 1: Schematic representation of the error maps 𝐷, 𝑅 and 𝐶F on ℝ𝑁
⩾0; the red star represents the

selection vector 1 ∈ ℝ𝑁 . The presented graphs correspond to a 2×2 matrix 𝐊 such that 𝐊1,1 = 1.225,
𝐊2,2 = 0.894 and 𝐊2,1 = 0.316. In the graphs of 𝑅 and 𝐶F, the point on the vertical axis indicates
the value of these maps at 𝝊 = 0 (that is ‖𝐊‖

2
F), and the bold lines indicate the constant values taken

by these maps along the horizontal axes.

with ⟨⋅ | ⋅⟩F the Frobenius inner product on ℂ𝑁×𝑁 . This observation suggests the definition of the
additional error maps

𝐶P(𝝊) = ⟨𝐊 − 𝐊̂(𝝊) |𝐊⟩F and 𝐶PP(𝝊) = ‖𝐊‖

2
F − ‖𝐊̂(𝝊)‖2F;

these maps are of the same type as the maps 𝐶X, X ∈ {tr,F, sp}, as illustrated by Proposition 2.1.
Proposition 2.1. The maps 𝐶P and 𝐶PP are convex on the convex cone ℝ𝑁

⩾0, and their directional
derivatives take values in the discrete set {−∞, 0}.

The following Lemma 2.2 shows that the error maps 𝐶X, X ∈ {F, sp,P,PP}, are upper-bounded by
𝑅. We may also notice that

𝐶X(1) = 𝑅(1) = 0,X ∈ {tr,F, sp,P,PP} and 𝐶X(0) = 𝑅(0) = ‖𝐊‖

2
F,X ∈ {F,P,PP}.

Lemma 2.2. For all 𝝊 ∈ ℝ𝑁 , we have 𝐶sp(𝝊) ⩽ 𝐶F(𝝊) ⩽ 𝐶P(𝝊) ⩽ 𝐶PP(𝝊) ⩽ 𝑅(𝝊) ⩽ 𝐷(𝝊); in
addition, 𝐶PP(𝐞𝑖) = 𝑅(𝐞𝑖), 𝑖 ∈ [𝑁].

In view of the above developments, we propose to use the error map 𝑅 as a differentiable surrogate for
the characterisation of samples of columns for Nyström approximation. In the forthcoming Section 3,
we describe a class of sequential sampling strategies driven by the gradient of 𝑅.

3 Gradient-based sequential sampling

From now on, we assume that the diagonal entries of 𝐊 are strictly positive, so that ℝ𝑁
⩾0∖{0} ⊂ D

(this assumption is nonrestrictive: if a diagonal entry of 𝐊 is null, then by CS, the corresponding row
and column of 𝐊 are also null). For 𝐟 = (𝑓𝑖)𝑖∈[𝑁] ∈ ℝ𝑁

>0 and 𝜘 > 0, we introduce
𝐟 = {𝝊 ∈ ℝ𝑁

⩾0|𝐟
∗𝝊 = 𝜘} ⊂ D ;

we refer to 𝐟 as the restriction vector. The set 𝐟 is convex, and its extreme points are the vectors
{𝝃𝑖}𝑖∈[𝑁], with 𝝃𝑖 = 𝜘𝐞𝑖∕𝑓𝑖 ∈ ℝ𝑁

⩾0. Below, we describe a column-sampling procedure based on the
minimisation of 𝑅 over 𝐟 via line search with sparse descent directions (specifically, the directions
defined by the extreme points of 𝐟 ). Many variants may be considered, see for instance Remarks 3.1,
3.2 and 3.3; and stochastic variants are discussed in Section 4. Due to the invariance under rescaling
of𝑅, the value of 𝜘 does not impact the sampling procedure (and we may thus set 𝜘 = 1, for instance).
The procedure is initialised at 𝝊(1) = 𝝃𝑏 ∈ 𝐟 , with

𝑏 ∈ arg min
𝑖∈[𝑁]

𝑅(𝝃𝑖) = arg max
𝑖∈[𝑁]

𝔤2𝑖 ∕𝐒𝑖,𝑖, with 𝔤𝑖 = 𝐞∗𝑖 𝖌 the 𝑖-th entry of 𝖌 = 𝐒1, (11)

and the selection vector at step 𝑞 ∈ ℕ is denoted by 𝝊(𝑞) ∈ 𝐟 . An iteration of our sampling procedure
consists of selecting a descent direction 𝝃𝑢 − 𝝊(𝑞), with 𝑢 ∈ [𝑁] such that Θ(𝝊(𝑞); 𝝃𝑢) < 0, and of next
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performing a descent with the optimal step size 𝑟 given by (9). As descent direction, we consider the
Frank-Wolfe (FW) direction 𝝃𝑢 − 𝝊(𝑞), with

𝑢 ∈ arg min
𝑖∈[𝑁]

Θ(𝝊(𝑞); 𝝃𝑖) = arg min
𝑖∈[𝑁]

[∇𝑅(𝝊(𝑞))]𝑖∕𝑓𝑖. (12)

The initialisation of the procedure via (11) ensures that if Θ(𝝊(𝑞); 𝝃𝑖) < 0, then Θ(𝝃𝑖; 𝝊
(𝑞)) < 0,

𝑖 ∈ [𝑁], so that the descents necessarily occur within the framework of Lemma 2.1.
A pseudocode of the procedure is given in Algorithm 1. The algorithm produces a sequence
𝝊(1), 𝝊(2),⋯ of selection vectors with increasing support. At stage 𝑞 ∈ ℕ, the number 𝑚𝑞 of nonnull
entries of 𝝊(𝑞) verifies𝑚𝑞 ⩽ min(𝑞,𝑁), so that early stopping ensures sparsity of the resulting selection
vector (see also Remark 3.2). The algorithm stops if 𝝊(𝑞) minimises𝑅 over 𝐟 , or when 𝑞 = 𝑄, where
𝑄 ∈ ℕ is a given maximum number of iterations, with in practice 𝑄 ≪ 𝑁 (different stopping rules
could be considered). We may observe that 𝝊⋆ = 𝜘1∕(𝐟∗1) ∈ 𝐟 verifies 𝑅(𝝊⋆) = 0.

Algorithm 1: Column sampling with FW direction and optimal step size.
Input: matrix 𝐒; vector 𝐟 ; number of iterations 𝑄 ∈ ℕ;

1 Preliminary: compute 𝖌 = 𝐒1 (stochastic approximations may be considered, see Section 4);
2 Initialisation: compute 𝑏 ∈ [𝑁] using (11); set 𝑞 = 1, 𝝊(1) = 𝝃𝑏 and 𝐼𝝊(1) = {𝑏};
3 while 𝑞 < 𝑄 and 𝑅(𝝊(𝑞)) > 0 do
4 compute 𝑢 ∈ [𝑁] using (12);
5 compute the optimal step size 𝑟 from (9) with 𝝊 = 𝝊(𝑞) and 𝜼 = 𝝃𝑢;
6 set 𝝊(𝑞+1) = (1 − 𝑟)𝝊(𝑞) + 𝑟𝝃𝑢 and 𝐼𝝊(𝑞+1) = 𝐼𝝊(𝑞) ∪ {𝑢}; increment 𝑞;

Output: subset 𝐼𝝊(𝑞) ⊆ [𝑁];

The implementation of Algorithm 1 involves the preliminary computation of the target potential
𝖌 = 𝐒1. Although easily parallelisable, this operation has a (𝑁2) worst-case time-complexity (it
requires reading every entry of 𝐒 once); this cost can nevertheless be reduced by considering stochastic
approximations of 𝖌, as discussed in Section 4. Once 𝖌 is known, each iteration of Algorithm 1 has a
(𝑁) time-complexity. For 𝑞 ∈ ℕ, we for instance have

𝐒𝝊(𝑞+1) = (1 − 𝑟)𝐒𝝊(𝑞) + 𝑟(𝜘∕𝑓𝑢)𝐒∙,𝑢,

so that sparse updates of the terms 𝐒𝝊, 𝝊∗𝐒𝝊 and 𝖌∗𝝊 can be easily implemented. Assuming that the
entries of 𝐒 can be accessed on demand, the space-complexity of Algorithm 1 is (𝑁).
In view of (12), the sequence of subsets 𝐼𝝊(1) ⊆ 𝐼𝝊(2) ⊆ ⋯ generated by Algorithm 1 depends on the
choice of the restriction vector 𝐟 . Our experiments suggest that considering 𝐟 = diag(𝐊), the diagonal
of 𝐊, appears to be a relevant choice. A variant of Algorithm 1 producing sequences of subsets that
are independent of the choice of 𝐟 is described in Remark 3.1.
Remark 3.1 (Best-improvement direction). Instead of considering the steepest conditional descent
directions (12), we may combine the information provided by (8) and (10) to characterise the condi-
tional descent directions inducing the best one-step-ahead improvements. In Algorithm 1, we may
hence replace the FW direction (12) by the best-improvement (BI) direction

𝑢 ∈ arg max
𝑖∈[𝑁]

{(𝝊(𝑞); 𝝃𝑖)|Θ(𝝊
(𝑞); 𝝃𝑖) < 0}.

The complexity of each iteration of the BI variant of Algorithm 1 is still (𝑁); however, in comparison
to FW, the resulting procedure is costlier as it requires, in addition to the gradient of𝑅, the computation
of the relevant improvement scores. The sequences of subsets produced by this algorithm are
independent of the choice of the restriction vector 𝐟 ; in the framework of Lemma 2.1, we may
indeed observe that (𝝊; 𝜼) = (𝝊; 𝑐𝜼), 𝑐 > 0. ⊲
Remark 3.2 (Enforcing the selection of new columns). In Algorithm 1, at step 𝑞 ∈ ℕ, the FW
direction (12) might lead to the selection of a column which already belongs to the sample, that is,
we may have 𝑢 ∈ 𝐼𝝊(𝑞) ; we refer to such an event as a correction step (a similar observation holds for
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the BI variant of the algorithm). To enforce the selection of a new column at each iteration, we may
replace the FW direction (12) by

𝑢 ∈ arg min
𝑖∈[𝑁]

{Θ(𝝊(𝑞); 𝝃𝑖)|𝑖 ∉ 𝐼𝝊(𝑞) and Θ(𝝊(𝑞); 𝝃𝑖) < 0}; (13)
if the set characterising (13) is empty, the sampling should stop (or an alternative direction should be
considered). Such a variant of Algorithm 1 ensures a faster, although less accurate, exploration of the
columns of 𝐊; it appears to be of particular interest in the stochastic setting of Section 4. ⊲

Remark 3.3 (Weight optimisation). For a subset 𝐼 ⊆ [𝑁] of size 𝑚 ∈, let 𝝊̃(𝐼) ∈ ℝ𝑁
⩾0 be a vector

minimising 𝐷 over the set of all selection vectors 𝝊 ∈ ℝ𝑁
⩾0 such that 𝐼𝝊 ⊆ 𝐼 (the entries of the

PSD matrix 𝐒 being nonnegative, such a vector always exists). The non-trivial entries [𝝊̃(𝐼)]𝐼 of
𝝊̃(𝐼) are provided by solutions to the quadratic program (QP) associated with the minimisation of
the function 𝒙 ↦ 𝒙∗𝐒𝐼,𝐼𝒙 − 2𝖌∗𝐼𝒙 over ℝ𝑚

⩾0. The rescaled vector 𝝊(𝐼) = 𝜘𝝊̃(𝐼)∕(𝐟∗𝝊̃(𝐼)) ∈ 𝐟 then
minimises 𝑅 over the set of all selection vectors 𝝊 ∈ 𝐟 such that 𝐼𝝊 ⊆ 𝐼 . In Algorithm 1 and its BI
variant, at iteration 𝑞 ∈ ℕ, rather than performing a descent with optimal step size, we may instead
set 𝝊(𝑞+1) = 𝝊(𝐼𝝊(𝑞) ∪ {𝑢}). We refer to this modified update rule as weight optimisation (WO); the
algorithm then converges in at most𝑁 iterations. In terms of numerical complexity and in comparison
to descents with optimal step sizes, for the WO variants, the computation of 𝝊(𝑞+1) involves solving a
QP over ℝ𝑚𝑞+1 (in practice, 𝝊̃(𝑞) may be used as a warm start for the computation of 𝝊̃(𝑞+1)). As a
technical remark, for 𝑞 ∈ ℕ, the support of 𝝊(𝑞+1) might sometimes be a strict subset of 𝐼𝝊(𝑞) ∪{𝑢}; this
situation occurs when some entries of the solution to the underlying QP are null. In the experiments of
Section 5, instead of the true support 𝐼𝝊(𝑞+1) , we keep track of the virtual support 𝐼𝝊(𝑞+1) = 𝐼𝝊(𝑞) ∪ {𝑢},
so that card(𝐼𝝊(𝑞) ) = 𝑞 for all 𝑞 ⩽ 𝑁 (that is, once a column of 𝐊 has been selected, it is kept inside
the sample even is its associated weight vanishes at some stages of the optimisation process). ⊲

4 Stochastic approximation of the target potential

In practical applications and due to its quadratic complexity in 𝑁 , the preliminary computation of the
target potential 𝖌 might be prohibitive. An alternative consists in relying on numerically affordable
stochastic approximations of 𝖌. Many approaches may be considered, and below, we simply describe
one possible way to proceed. We assume that 𝑁 > 1.
Direct Monte Carlo approximation. The entries of 𝖌 = 𝐒1 correspond to the row sums of 𝐒; as
such, they can be approximated by random sampling. The matrix 𝐒 being PSD, we handle its diagonal
separately and only sample off-diagonal entries of 𝐒; each row is sampled independently of the others,
with the same sample size 𝓁 ∈ ℕ. The sampling is performed uniformly, and for simplicity, with
replacement. For all 𝑖 ∈ [𝑁], that is, for each row of 𝐒, this operation amounts to forming a random
multiset 𝑖 of 𝓁 indices in [𝑁]∖{𝑖}. Denoting by 𝐅 the 𝑁 ×𝑁 random matrix whose 𝑖, 𝑗 entry counts
the number of times 𝑗 ∈ [𝑁] appears in 𝑖 (so that 𝐅1 = 𝓁1), the random vector

𝖌̂𝐅 = diag(𝐒) + (𝑁−1)
𝓁

(𝐒⊙ 𝐅)1, (14)
corresponds to an unbiased estimator of 𝖌. We may observe that the off-diagonal entries of 𝐅 follow
a binomial distribution with parameters 𝓁 and 1

𝑁−1 .

Accounting for the symmetry of 𝐒. In the framework of (14) and for 𝓁 fixed, the number of entries
of 𝐒 involved in the approximation of 𝖌 can be increased by accounting for the symmetry of 𝐒. Indeed,
if 𝑖 ∈ 𝑗 , 𝑖 and 𝑗 ∈ [𝑁], 𝑖 ≠ 𝑗, that is, if 𝐒𝑗,𝑖 appears in the approximation of 𝔤𝑗 (the 𝑗-th entry of 𝖌),
then 𝐒𝑖,𝑗 = 𝐒𝑗,𝑖 may be incorporated into the approximation of 𝔤𝑖. The corresponding entries of 𝐒
are provided by the matrix 𝐅∗, and the random vector 𝒍 = (𝑙𝑖)𝑖∈[𝑁] = 𝐅∗

1 indicates the number of
additional entries per row of 𝐒. The rows of 𝐅 being independent random vectors, for all 𝑖 ∈ [𝑁],
the random variables {𝐅∗

𝑖,𝑗}𝑗∈[𝑁]∖{𝑖} are independent, and 𝑙𝑖 follows a binomial distribution with
parameters 𝓁(𝑁 − 1) and 1

𝑁−1 . Observing that 𝔼(𝐅∗
𝑖,𝑗|𝑙𝑖) =

𝑙𝑖
𝑁−1 (conditional mean of 𝐅∗

𝑖,𝑗 given 𝑙𝑖;
see Lemma A.3), and denoting by (1∕𝒍) = (1∕𝒍) ∈ ℝ𝑁 the vector with 𝑖-th entry 1∕𝑙𝑖 if 𝑙𝑖 ≠ 0, and 0
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otherwise (element-wise pseudoinversion), the random vector
𝖌̂𝐅∗ = diag(𝐒) + (𝑁−1)

𝒍 ⊙
(

(𝐒⊙ 𝐅∗)1
)

is an unbiased estimator of 𝖌 (cf. Bernoulli sampling). From the independence between the rows of 𝐅,
for all 𝑖 ∈ [𝑁], the 𝑖-th entries of 𝖌̂𝐅 and 𝖌̂𝐅∗ are independent; by considering sample-size-dependent
convex combinations of these entries, we can form the following unbiased estimator of 𝖌:

𝖌̂sym = 𝓁
𝓁+𝒍 ⊙ 𝖌̂𝐅 + 𝒍

𝓁+𝒍 ⊙ 𝖌̂𝐅∗ = diag(𝐒) + 𝑁−1
𝓁+𝒍 ⊙

(

[𝐒⊙ (𝐅 + 𝐅∗)]1
)

,

where 𝓁 + 𝒍 is a simplified notation for 𝓁1 + 𝒍. Accounting for the symmetry of 𝐒 therefore results in
increasing the number of independent samples per row of 𝐒 at the cost of introducing a small residual
dependence between the entries of 𝖌̂sym (indeed, contrary to 𝖌̂𝐅, the entries of 𝖌̂𝐅∗ are dependent); the
mean of 𝒍 being 𝓁1, for each row, we in average double the sample size, hence reducing the variance
of the approximation.
Remark 4.1. Computing a realisation of 𝖌̂𝐅, 𝖌̂𝐅∗ or 𝖌̂sym involves sampling (𝓁 + 1)𝑁 entries of
𝐒, with in practice 𝓁 ≪ 𝑁 . If 𝓁 is chosen independently of 𝑁 , the time-complexity of forming
such approximations is linear in 𝑁 (here, we assume that the complexity of the considered random
generator does not depend on 𝑁). Assuming that the entries of 𝐒 can be accessed on demand, the
space-complexity of forming such approximations is also linear in 𝑁 , and the computation can in
addition be easily parallelised. ⊲

Sampling driven by an approximate potential. In (6) and (7), substituting 𝖌 with an approximation
𝖌̂ ∈ ℝ𝑁

⩾0∖{0} gives rise to approximate error maps 𝐷̂ and 𝑅̂. Let 1̂ ∈ ℝ𝑁
⩾0∖{0} be a vector minimising

𝐷̂ over ℝ𝑁
⩾0 (the nonnegativity of the entries of the PSD matrix 𝐒 ensures that such a vector always

exists). When 𝖌 is replaced by 𝖌̂, Algorithm 1 produces a sequence of selection vectors with increasing
supports converging to a vector minimising 𝑅̂ over 𝐟 , that is, a vector of the form 𝜘1̂∕(𝐟∗1̂). A
similar approximation scheme can be applied to the BI and WO variants of the algorithm. The same
approximation of 𝖌 is used throughout the optimisation process (alternative strategies, where the
approximation is updated during the optimisation process, could be considered).
Remark 4.2. When a realisation of 𝖌̂𝐅 or 𝖌̂sym is considered, for 𝓁 ≪ 𝑁 , our experiments suggest
that the underlying vector 1̂ is often sparse (that is, 1̂ has many null entries); the sparsity of 1̂ appears
to decrease as 𝓁 increases. These observations suggest that the sample size 𝓁 should be selected in
accordance with the number 𝑚 of columns of 𝐊 one wishes to extract; see Section 5 for illustrations.
Following Remark 3.2, for the stochastic variant of Algorithm 1, we also observe that considering
the modified FW direction (13) improves the behaviour of the sampling procedure by preventing the
apparition of early correction steps resulting from the sparsity of 1̂. Furthermore, in comparison to 𝖌̂𝐅,
the reduced variance of the estimator 𝖌̂sym appears to have a beneficial impact on the column-sampling
process. ⊲

5 Experiments

We now illustrate the behaviour of Algorithm 1 and its variants on a series of examples. To assess the
accuracy of the Nyström approximation induced by a subset 𝐼 ⊆ [𝑁] of size 𝑚 ⩽ 𝑁 , we consider the
approximation factors (see e.g. [2])

EP(𝐼) =
‖𝐊 − 𝐊̂(𝐼)‖HS()

‖𝐊 −𝐊⋆
𝑚‖HS()

,EPP(𝐼) =
‖𝐊 − 𝑃𝐼𝐊𝑃𝐼‖HS()

‖𝐊 −𝐊⋆
𝑚‖HS()

and EX(𝐼) =
‖𝐊 − 𝐊̂(𝐼)‖X
‖𝐊 −𝐊⋆

𝑚‖X
, (15)

X ∈ {tr,F, sp}, where 𝐊⋆
𝑚 is an optimal rank-𝑚 approximation of 𝐊 (that is, an approximation

obtained by spectral truncation). The values of the approximation factors are necessarily larger than
or equal to 1, and the smaller the value, the more accurate the approximation.
Remark 5.1. Denoting by 𝜆1 ⩾ ⋯ ⩾ 𝜆𝑁 ⩾ 0 the eigenvalues of 𝐊 (repeated with multiplicity), for
all 𝑚 < 𝑁 , we have ‖𝐊 − 𝐊⋆

𝑚‖
2
HS() = ‖𝐊 − 𝐊⋆

𝑚‖
2
F =

∑𝑁
𝑙=𝑚+1 𝜆

2
𝑙 , ‖𝐊 − 𝐊⋆

𝑚‖tr =
∑𝑁
𝑙=𝑚+1 𝜆𝑙 and

‖𝐊 −𝐊⋆
𝑚‖sp = 𝜆𝑚+1. ⊲
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We implement Algorithm 1 (referred to as FW, for short) and its BI variant (referred to as BI). In
addition to the optimal-step-size update rule, for both the FW and BI descent directions, we also
implement the WO update rule (the resulting procedures are referred to as FW-WO and BI-WO);
see Remarks 3.1 and 3.3. In the stochastic case, that is, when stochastic approximations of 𝖌 are
considered (see Section 4), we rely on the estimator 𝖌̂sym and implement the modified FW direction
(13); we refer to this variant as S-MFW. The affine restrictions are defined with 𝐟 = diag(𝐊) and
𝜘 = 1. Due to the specificity of our sampling procedures (which rely on early stopping of optimisation
procedures with sparse initialisations and sparse descent directions), in all our experiments, we placed
a special emphasis on approximations involving a relatively small number of columns.
We compare the resulting column samples with samples obtained through random sampling with
respect to uniform weights and weights proportional to the diagonal of 𝐊, leverage-score-based
random sampling, and determinantal-point-process-based (DPP-based) random sampling; see for
instance [4, 9, 7, 10, 15, 3] for an overview.

5.1 Random PSD matrix

We consider a random PSD matrix 𝐊 ∈ ℂ𝑁×𝑁 , with𝑁 = 1,500; the eigenvalues of 𝐊 are independent
realisations of a log-normal distribution (𝜇 = −2.5 and 𝜎 = 3), and a set of associated eigenvectors is
defined using a random unitary matrix (multiplication-invariant Haar measure; see [11]). In this first
experiment, we use the exact target potential 𝖌.
The evolution of the error maps𝑅 and𝐶X,X ∈ {F,P,PP}, during the 100 first iterations of Algorithm 1
and its BI variant is illustrated in Figure 2 (these four error maps are considered since they take the
same value at 𝝊 = 0); in accordance with Lemma 2.2, the error maps 𝐶X, X ∈ {F,P,PP} are bounded
by 𝑅. We observe a strong similarity between the evolution of these maps, further supporting the use
of 𝑅 as surrogate error map for Nyström approximation.
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Figure 2: For a random PSD matrix (𝑁 = 1,500), evolution of the value of the error maps 𝑅 and 𝐶X,
X ∈ {F,P,PP}, during the 100 first iterations of Algorithm 1 (left) and its BI variant (right). The
exact target potential 𝖌 is used.
We then compare, for various sampling strategies, the evolution of the five approximation factors
EX, X ∈ {tr,F, sp,P,PP}, as functions of 𝑚 (number of columns). For the stochastic strategies, 100
repetitions are performed. The results are presented in Figure 3. In the considered regime (that is,
𝑚 ≪ 𝑁), and for all the approximation factors, we observe that the Nyström approximations induced
by Algorithm 1 and its variants are more accurate than the ones obtained using uniform random
sampling, diagonal random sampling or leverage-score-based random sampling. For this particular
example, we may also notice the similarity and small variability of the approximation factors induced
by the considered stochastic procedures.

5.2 Abalone data set

We consider the Abalone data set (UCI Machine Learning Repository; see [5]). Two entries of the
data set appearing as outliers are removed, and the features are standardised; the resulting data set
consists of 𝑁 = 4,175 points in ℝ𝑑 , with 𝑑 = 8. We use this data set and a squared-exponential
kernel 𝐾(𝑥, 𝑥′) = 𝑒−𝛾‖𝑥−𝑥

′
‖

2 , 𝑥, 𝑥′ ∈ ℝ𝑑 and 𝛾 > 0 (with ‖.‖ the Euclidean norm of ℝ𝑑), to generate
a PSD matrix 𝐊. To illustrate the impact of the decay of the spectrum of 𝐊 on the sampling process,
we consider different values of 𝛾 , namely 𝛾 = 0.1, 0.25 and 1, chosen so that the the eigenvalues of 𝐊
exhibit relatively steep, moderate and shallow decays, respectively; see Figure 4.
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Figure 3: For a random PSD matrix (𝑁 = 1,500), and for various sampling strategies, evolution
of the five approximation factors (15) as functions of the number of columns 𝑚. The 200 largest
eigenvalues of 𝐊 are also displayed. For the stochastic methods, the solid line represents the median
over 100 repetitions, and the boundaries of the shaded regions indicate the corresponding maximum
and minimum values. The exact target potential 𝖌 is used.

5.2.1 Exact target potential

We first consider the exact target potential 𝖌 and compare the accuracy of the Nyström approximations
induced by four variants of Algorithm 1 (namely FW, BI, FW-WO, BI-WO) with the accuracy of the
approximations obtained via uniform random sampling, leverage-score-based random sampling and
𝑘-DPP-based random sampling. The experiments involving random sampling are repeated 100 times.
The results are presented in Figure 4, where we display the evolution of the approximation factors EFand EP up to 𝑚 = 100 (the evolution of the other approximation factors is provided in Figure 7, in
appendix; in terms of behaviour, Etr and Esp appear closely related to EF, while EPP shows similarities
with EP).
Remark 5.2. Following Remark 5.1, in Figure 4 (and in the complementary Figure 7, in appendix),
to illustrate the decay of the spectrum of 𝐊 we indicate the thresholds

𝜏X = min
{

𝑚 ∈ [𝑁]|
|

‖𝐊 −𝐊⋆
𝑚‖X ⩽ 0.01‖𝐊‖X

}

,X ∈ {tr,F, sp},

and with 𝜏P = 𝜏PP = 𝜏F. For a given X ∈ {tr,F, sp,P,PP}, the smaller 𝜏X is, the faster the decay. ⊲
In comparison to the considered random-sampling procedures, we observe that Algorithm 1 and its
variants lead to more accurate approximations, especially in the range corresponding to the significant
eigenvalues of 𝐊 (this range is illustrated by the thresholds 𝜏X, X ∈ {tr,F, sp,P,PP}, defined in
Remark 5.2). After a certain number of iterations (which appears to be related to the decay of the
spectrum of 𝐊), the relative accuracy of the approximations induced by Algorithm 1 and its BI variant
deteriorates (this is especially visible for 𝛾 = 0.1). The deterioration is stronger for EF (and Etr and
Esp) than for EP (and EPP), and the WO update rule appears to be able to mitigate this drop-off in
accuracy. Following Lemma 2.2, we recall that among the considered error maps, 𝐶P and 𝐶PP are the
ones that are the most closely related to 𝑅.

5.2.2 Approximate target potential

We now consider the stochastic variant S-MFW of Algorithm 1, that is, we use realisations of the
estimator 𝖌̂sym (see Section 4) in combination with the modified FW direction (13), and we investigate
the impact of the row-sample-size parameter 𝓁 on the accuracy of the induced Nyström approximations.
For the kernel parameter, we use 𝛾 = 0.25 (intermediate case, see Figure 4) and we consider three
different values of 𝓁, namely 𝓁 = 100, 250 and 500. The results are presented in Figure 5.
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Figure 4: For kernel matrices defined from the Abalone data set and squared exponential kernels,
evolution of the approximation factors EF and EP as functions of the number of columns 𝑚 (the
evolution of the other approximation factors in provided in Figure 7, in appendix). Each column
in the figure corresponds to a different value of the kernel parameter 𝛾 . For each 𝛾 , the 100 largest
eigenvalues of 𝐊 are displayed, together with the decay, in logarithmic scale, of the error map 𝑅
during the 100 first iterations of the FW and BI variants of Algorithm 1, with both optimal-step-size
and WO update rules (the exact target potential 𝖌 is used). The evolution of EF and EP are represented
for the four variants of Algorithm 1, as well as for random sampling strategies based on uniform
weights, leverage scores and 𝑘-DPPs. For the stochastic strategies, we present the median, minimum
and maximum of the approximation factors over 100 repetitions (see Figure 3). The vertical dashed
lines indicate the value of the thresholds 𝜏X, X ∈ {F,P}, defined in Remark 5.2 (when the threshold
is outside the plot window, we only report its value).

We observe that as 𝓁 increases, the accuracy of the Nyström approximations induced by the S-MFW
procedure approaches that of the deterministic FW algorithm, and the variability in the approximation
factors decreases. In the considered range of values of 𝑚, the obtained column samples maintain a
high level of accuracy, even for small values of 𝓁. Following Remarks 3.2 and 4.2, the maximum
number of iterations of the S-MFW procedure tends to increase with 𝓁. For this particular example,
considering 𝓁 = 500 allows for a consistent exploration of the range 𝑚 ⩽ 100 (see Section 5.3 for a
further illustration of the link between 𝓁 and the maximum number of S-MFW iterations).

5.3 HIGGS data set

We now illustrate the ability of the proposed approach to handle large PSD matrices. We consider
the HIGGS dataset (UCI Machine Learning Repository; see [5]), consisting of 𝑁 = 11,000,000
points in ℝ𝑑 , with 𝑑 = 21; all the features are standardised. To define a PSD matrix 𝐊, we use a
squared-exponential kernel (same expression as in Section 5.2) with 𝛾 = 0.1. In double-precision
floating-point format, storing all the entries of 𝐊 or 𝐒 would require more than 968 terabytes of
memory; as an alternative, rather than being stored, the entries of the matrix 𝐒 are computed on
demand from the data set and the kernel (on-the-fly evaluation).
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Figure 5: For the kernel matrix defined from the Abalone data set and a squared exponential kernel
with 𝛾 = 0.25, evolution of the five approximation factors EX, X ∈ {tr,F, sp,P,PP}, as functions of
the number of columns 𝑚, for samples obtained using the S-MFW variant of Algorithm 1 (modified
FW direction with realisations of 𝖌̂sym; see Remark 3.2 and Section 4). Three different values of the
row-sample-size parameter 𝓁 are considered. For each value of 𝓁, we present the median, minimum
and maximum of the approximation factors over 100 repetitions. For comparison, the approximation
factors for the column samples obtained with Algorithm 1 (FW direction with exact target potential
𝖌) and through 𝑘-DPP-based random sampling (median over 100 repetitions) are also presented.
The bottom-right plot displays the distribution of the maximum number of iterations of the S-MFW
procedure for the considered values of 𝓁 (see Remark 3.2).
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Figure 6: For the HIGGS data set, decay of the the error map 𝑅 during the 50,000 first iterations
of Algorithm 1 (logarithmic scale). The nonnull eigenvalues of the Nyström approximation of 𝐊
obtained at 𝑞 = 1,000 are also presented.

In Figure 6, we display the decay of the error map 𝑅 during the first 50,000 iterations of Algorithm 1
(exact target potential). Lemma 2.2 ensures that the evolution of the error maps𝐶X, X ∈ {sp,F,P,PP}
is bounded by the decay of 𝑅 (see Figure 2 for an illustration). We also present the eigenvalues of the
approximation 𝐊̂(𝝊(𝑞)) of 𝐊 for 𝑞 = 1,000; this approximation involves 𝑚𝑞 = 1,000 columns of 𝐊.
We next implement the S-MFW variant of Algorithm 1 for 10 realisations of the estimator 𝖌̂sym with
𝓁 = 10,000. For these 10 realisations, the maximum number of S-MFW iterations is distributed
between 65,000 and 67,000 (see Remark 3.2). We extract 10 samples of columns of size 𝑚 = 1,000
and 2,000, and compare the trace errors of these samples with those of 10 random column samples of
the same sizes (uniform sampling); the relatively small values of 𝑚 are chosen to ensure a reasonably
fast computation of the trace errors. The results are presented in Table 1.
As observed in Sections 5.1 and 5.2, the samples of columns obtained using Algorithm 1 and its
S-MFW stochastic variant are noticeably more accurate than the ones obtained through random
uniform sampling, and for the considered values of 𝑚, the S-MFW variant is able to achieve an
accuracy that is on par with the deterministic FW variant at a fraction of the numerical cost (here,
𝑁∕𝓁 = 1,100).
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Table 1: For the HIGGS data set, summary statistics for the trace errors (rounded to the nearest
integer) of various Nyström approximations of 𝐊 for 𝑚 = 1,000 and 2,000. Results are presented for
10 random column samples (uniform sampling), and for 10 samples generated by the S-MFW variant
of Algorithm 1 with 𝓁 = 10,000 (stochastic approximations of 𝖌), as well as for the deterministic
column samples produced by Algorithm 1 (exact target potential 𝖌).

Method Number of Trace error
columns 𝑚 Minimum Median Maximum

Uniform-random 1,000 7,090,945 7,117,127 7,149,980
2,000 6,121,979 6,142,811 6,166,798

S-MFW (𝓁 = 10,000) 1,000 6,525,128 6,527,669 6,532,889
2,000 5,698,986 5,703,138 5,707,372

FW (exact 𝖌) 1,000 — 6,439,653 —
2,000 — 5,605,268 —

6 Concluding discussion

We gave a detailed description of the framework surrounding the definition of a pseudoconvex
differentiable relaxation of the CSP for PSD-matrix approximation, and described a class of gradient-
based sequential sampling strategies leveraging the properties of this relaxation. The considered
column-sampling procedures rely on the preliminary computation of a target potential, and we
described a stochastic approximation scheme to reduce the time-complexity of this operation. For
𝑁×𝑁 PSD matrices and when relying on such stochastic approximations, the overall time-complexity
of the discussed strategies in linear in 𝑁 ; for instance, the worst-case time-complexity of performing
𝑚 iterations of the S-MFW variant of Algorithm 1 is (𝑚2 + 𝑚𝑁 + 𝓁𝑁), with in practice 𝑚 and
𝓁 ≪ 𝑁 . Assuming that the entries of the considered matrices can be accessed on demand, the
space-complexity of the procedures is also linear in 𝑁 .
We presented a series of experiments which demonstrates the ability of the proposed sampling
strategies to produce accurate Nyström approximations while efficiently handling large PSD matrices.
Notably, the discussed strategies appear to be able to achieve high levels of accuracy in ranges
where other approaches (such as leverage-score and DPP-based sampling strategies) do not seem to
lead to significant improvements over naive random column-sampling techniques, hence offering
an interesting complement to the existing methodologies. The described procedures are in addition
straightforward to implement, and the involved computations can be easily parallelised.
In view of our experiments, and especially for the optimal-step-size update rule, the range in which the
discussed strategies are able to maintain high levels of accuracy appears to relate to the decay of the
spectrum of 𝐊; gaining a deeper understanding of the mechanisms at play could improve the operating
framework of the proposed procedures. In addition, although the error maps 𝐶X, X ∈ {sp,F,P,PP},
are upper-bounded by the surrogate error map 𝑅, obtaining tighter approximation bounds could help
further support the considered relaxation. The impact of the stochastic approximation of the target
potential on the column-sampling process could also warrant a more in-depth investigation. Finally,
in complement to sequential sampling procedures, other types of strategies leveraging the properties
of the energy setting may be considered, such as regularisation-based approaches and, for kernel
matrices specifically, particle-flow-based techniques; see for instance [6, 8].

A Technical results

In this section, we state and prove three technical lemmas. Following Remark 2.1, we introduce
HS( ,) = {𝐌 ∈ ℂ𝑁×𝑁

| span{𝐌} ⊆ }, and we set
⟨𝐌 |𝐓⟩HS( ,) =

∑

𝑖∈[𝑁]
⟨𝐌𝐞𝑖 |𝐓𝐞𝑖⟩ = trace(𝐌∗𝐊†𝐓), 𝐌 and 𝐓 ∈ HS( ,).

Endowed with ⟨⋅ | ⋅⟩HS( ,), the linear space HS( ,) is a Hilbert space (indeed, we have
‖𝐌‖HS( ,) = 0 if and only 𝐌𝐞𝑖 = 0 for all 𝑖 ∈ [𝑁], that is 𝐌 = 0).
Lemma A.1. Let 𝑃 and 𝑄 ∈ ℂ𝑁×𝑁 be two matrices corresponding to orthogonal projections onto
closed linear subspaces of . We have ‖𝑃𝐊𝑄‖2HS() = ⟨𝑃𝐊 |𝑄𝐊⟩F.
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Proof. We first observe that 𝑃𝐊 = 𝐊𝑃 ∗ = 𝑃𝐊𝑃 ∗ (a similar property holds for 𝑄). From (3), we
indeed have

𝐞∗𝑖 𝑃𝐊𝐞𝑗 = 𝐞∗𝑖𝐊𝐊†𝑃𝐊𝐞𝑗 = ⟨𝐊𝐞𝑖 |𝑃𝐊𝐞𝑗⟩ = ⟨𝑃𝐊𝐞𝑖 |𝐊𝐞𝑗⟩ = ⟨𝑃𝐊𝐞𝑖 | 𝐞𝑗⟩ = ⟨𝐊𝐞𝑖 |𝑃
∗𝐞𝑗⟩

= ⟨𝐊𝐞𝑖 |𝐊𝑃
∗𝐞𝑗⟩ = 𝐞∗𝑖𝐊𝐊†𝐊𝑃 ∗𝐞𝑗 = 𝐞∗𝑖𝐊𝑃

∗𝐞𝑗 , 𝑖 and 𝑗 ∈ [𝑁];
in particular, the equality 𝐞∗𝑖 𝑃𝐊𝐞𝑗 = 𝐞∗𝑖𝐊𝐊†𝑃𝐊𝐞𝑗 follows by noticing that since 𝑃𝐊𝐞𝑗 ∈ , there
exists 𝜶 ∈ ℂ𝑁 such that 𝑃𝐊𝐞𝑗 = 𝐊𝜶. We then obtain

‖𝑃𝐊𝑄‖2HS() = trace(𝐊𝑄∗𝐊𝑃 ∗𝐊†𝑃𝐊𝑄) = trace(𝐊𝑄∗𝑃𝐊𝐊†𝐊𝑃 ∗𝑄)
= trace(𝑃𝐊𝑃 ∗𝑄𝐊𝑄∗) = trace(𝐊𝑃 ∗𝑄𝐊),

completing the proof.
Lemma A.2. For 𝐽 ⊆ 𝐼 ⊆ [𝑁], we have ‖𝐊 − 𝐊̂(𝐼)‖X ⩽ ‖𝐊 − 𝐊̂(𝐽 )‖X, X ∈ {tr,F, sp}.

Proof. Let 0𝐼 be the orthogonal complement of 𝐼 in ; we set 𝑃0𝐼 = 𝕀 − 𝑃𝐼 . The matrix 𝑃0𝐼
corresponds to the orthogonal projection from  onto 0𝐼 (and 𝐊 − 𝐊̂(𝐼) = 𝑃0𝐼𝐊). We similarly
introduce the subspace 0𝐽 and the matrix 𝑃0𝐽 . Since 𝐽 ⊆ 𝐼 , we have 𝐽 ⊆ 𝐼 , and we denote by
𝑒 the orthogonal complement of 𝐽 in 𝐼 ; the matrix 𝑃𝑒 = 𝑃𝐼 − 𝑃𝐽 corresponds to the orthogonal
projection from  onto 𝑒.
Trace norm. Noticing that ⟨𝑃𝑒𝐊 |𝑃0𝐼𝐊⟩HS( ,) = 0, we have

‖𝐊 − 𝐊̂(𝐽 )‖tr = ‖𝑃0𝐽𝐊‖

2
HS( ,) = ‖𝑃0𝐼𝐊‖

2
HS( ,) + ‖𝑃𝑒𝐊‖

2
HS( ,) ⩾ ‖𝐊 − 𝐊̂(𝐼)‖tr .

Frobenius norm. Since 0𝐼 and 𝑒 are orthogonal in , the matrices 𝑃0𝐼𝐊𝑃0𝐼 , 𝑃𝑒𝐊𝑃𝑒, 𝑃0𝐼𝐊𝑃𝑒and 𝑃𝑒𝐊𝑃0𝐼 are orthogonal in HS(). Lemma A.1 then gives
‖𝐊 − 𝐊̂(𝐽 )‖2F = ‖𝑃0𝐽𝐊‖

2
F = ‖𝑃0𝐽𝐊𝑃0𝐽‖

2
HS()

= ‖𝑃0𝐼𝐊𝑃0𝐼‖
2
HS() + ‖𝑃𝑒𝐊𝑃𝑒‖

2
HS() + ‖𝑃0𝐼𝐊𝑃𝑒‖

2
HS() + ‖𝑃𝑒𝐊𝑃0𝐼‖

2
HS()

⩾ ‖𝑃0𝐼𝐊𝑃0𝐼‖
2
HS() = ‖𝑃0𝐼𝐊‖

2
F = ‖𝐊 − 𝐊̂(𝐼)‖2F.

Spectral norm. We first observe that if 𝑃 ∈ ℂ𝑁×𝑁 is an orthogonal projection on , then the PSD
operator on  related to 𝑃𝐊 and the PSD operator on  related to 𝑃𝐊𝑃 have the same strictly-positive
eigenvalues. Indeed, if 𝑃𝐊𝐯 = 𝜆𝐯, with 𝐯 ∈  , 𝐯 ≠ 0 and 𝜆 > 0, then 𝑃𝑃𝐊𝐯 = 𝜆𝑃 𝐯 = 𝑃𝐊𝐯 = 𝜆𝐯,
and so 𝜆(𝑃𝐯 − 𝐯) = 0; as 𝜆 > 0, we obtain 𝐯 = 𝑃𝐯 ∈  and 𝑃𝐊𝑃𝐯 = 𝜆𝐯. Reciprocally, if
𝑃𝐊𝑃𝒉 = 𝜆𝒉, with 𝒉 ∈ , 𝒉 ≠ 0 and 𝜆 > 0, then 𝑃𝑃𝐊𝑃𝒉 = 𝜆𝑃𝒉 = 𝑃𝐊𝑃𝒉 = 𝜆𝒉 and so
𝜆(𝑃𝒉 − 𝒉) = 0; as 𝜆 > 0, we have 𝑃𝒉 = 𝒉 and 𝑃𝐊𝒉 = 𝜆𝒉. Observing that 0𝐼 ⊆ 0𝐽 , we get

‖𝐊 − 𝐊̂(𝐽 )‖sp = max{⟨𝐯 |𝑃0𝐽𝐊𝐯⟩ |𝐯 ∈  , ‖𝐯‖ = 1}
= max{⟨𝒉 |𝑃0𝐽𝐊𝑃0𝐽𝒉⟩|𝒉 ∈ , ‖𝒉‖ = 1}
= max{⟨𝑃0𝐽𝒉 |𝐊𝑃0𝐽𝒉⟩|𝒉 ∈ , ‖𝒉‖ = 1}
= max{⟨𝒉 |𝐊𝒉⟩|𝒉 ∈ 0𝐽 , ‖𝒉‖ = 1}
⩾ max{⟨𝒉 |𝐊𝒉⟩|𝒉 ∈ 0𝐼 , ‖𝒉‖ = 1} = ‖𝐊 − 𝐊̂(𝐼)‖sp,

completing the proof.
Lemma A.3. Let 𝑋 and 𝑌 be two independent random variables following binomial distributions
with size parameters 𝑚 and 𝑛 ∈ ℕ, respectively, and with same probability parameter 𝑝 ∈ [0, 1]. We
have 𝔼(𝑋|𝑋 + 𝑌 ) = 𝑚

𝑚+𝑛 (𝑋 + 𝑌 ).

Proof. We set 𝑋 =
∑𝑚
𝑖=1 𝐵𝑖 and 𝑌 =

∑𝑚+𝑛
𝑖=𝑚+1 𝐵𝑖, with {𝐵𝑖}𝑖∈[𝑚+𝑛] a set of independent random

variables following a Bernoulli distribution with parameter 𝑝. We have

𝑋 + 𝑌 = 𝔼(𝑋 + 𝑌 |𝑋 + 𝑌 ) =
𝑚+𝑛
∑

𝑖=1
𝔼(𝐵𝑖|𝑋 + 𝑌 ) = (𝑚 + 𝑛)𝔼(𝐵1|𝑋 + 𝑌 ),

and 𝔼(𝑋|𝑋 + 𝑌 ) =
∑𝑚
𝑖=1 𝔼(𝐵𝑖|𝑋 + 𝑌 ) = 𝑚𝔼(𝐵1|𝑋 + 𝑌 ). The result follows.
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B Proofs

This section gathers the proofs of the results presented in the main body of the paper.

Proof of Theorem 2.1. For 𝝃 = 𝝊 + 𝜌(𝜼 − 𝝊), 𝝊 and 𝜼 ∈ ℝ𝑁
⩾0, 𝜌 ∈ (0, 1), we have 𝐼𝝃 = 𝐼𝝊 ∪ 𝐼𝜼, and

the maps 𝜌 ↦ 𝐶X(𝝊 + 𝜌[𝜼 − 𝝊]), X ∈ {tr,F, sp}, are thus constant on the open interval (0, 1). From
Lemma A.2, we also have 𝐶X(𝝃) ⩽ 𝐶X(𝝊) and 𝐶X(𝝃) ⩽ 𝐶X(𝜼), concluding the proof.

Proof of Theorem 2.2. We first show the quasiconvexity of 𝑅 on ℝ𝑁 . For 𝝃 = 𝝊 + 𝜌(𝜼 − 𝝊), 𝝊 and
𝜼 ∈ ℝ𝑁 , 𝜌 ∈ [0, 1], there always exists 𝑐 ⩾ 0 and 𝜌′ ∈ [0, 1] such that 𝑐𝝃 = (1 − 𝜌′)𝑐𝝊𝝊 + 𝜌′𝑐𝜼𝜼;
indeed:

• for 𝝊 ∉ D and 𝜼 ∉ D , the condition is verified for 𝑐 = 0 and for any 𝜌′ ∈ [0, 1];
• for 𝝊 ∉ D and 𝜼 ∈ D , the condition is verified for 𝑐 = 0 and 𝜌′ = 0;
• for 𝝊 ∈ D and 𝜼 ∉ D , the condition is verified for 𝑐 = 0 and 𝜌′ = 1;
• for 𝝊 ∈ D and 𝜼 ∈ D , we have coni{𝝊, 𝜼} = coni{𝑐𝝊𝝊, 𝑐𝜼𝜼} (with coni{𝝊, 𝜼} the conical

hull of {𝝊, 𝜼}), so that 𝝃 ∈ coni{𝑐𝝊𝝊, 𝑐𝜼𝜼} (in this case, 𝝃 ∈ D and 𝑐 > 0).
From the definition of 𝑅 and the convexity of 𝐷, we obtain

𝑅(𝝃) ⩽ 𝐷(𝑐𝝃) ⩽ (1 − 𝜌′)𝐷(𝑐𝝊𝝊) + 𝜌
′𝐷(𝑐𝜼𝜼) = (1 − 𝜌′)𝑅(𝝊) + 𝜌′𝑅(𝜼) ⩽ max{𝑅(𝝊), 𝑅(𝜼)},

and 𝑅 is therefore quasiconvex on ℝ𝑁 .
We now show the pseudoconvexity of 𝑅 on D . Let 𝝊 and 𝜼 ∈ D be such that Θ(𝝊; 𝜼) ⩾ 0. As
𝝊∗𝐒(𝑐𝝊𝝊 − 1) = 0, the condition Θ(𝝊; 𝜼) ⩾ 0 reads 𝜼∗𝐒(𝑐𝝊𝝊 − 1) ⩾ 0, that is,

(𝝊∗𝐒1)(𝜼∗𝐒𝝊) ⩾ (𝝊∗𝐒𝝊)(𝜼∗𝐒1). (16)
As 𝝊 and 𝜼 ∈ D , we have 𝝊∗𝐒1 > 0, 𝝊∗𝐒𝝊 > 0 and 𝜼∗𝐒1 > 0, and so, from (16), 𝜼∗𝐒𝝊 > 0. The
matrix 𝐒 being PSD, the CS inequality gives (𝜼∗𝐒𝝊)2 ⩽ (𝝊∗𝐒𝝊)(𝜼∗𝐒𝜼); combining the CS inequality
with (16), we get (note that we also have 𝜼∗𝐒𝜼 > 0 as 𝜼 ∈ D)

(𝝊∗𝐒1)2

(𝝊∗𝐒𝝊)2
⩾

(𝜼∗𝐒1)2

(𝜼∗𝐒𝝊)2
⩾

(𝜼∗𝐒1)2

(𝝊∗𝐒𝝊)(𝜼∗𝐒𝜼)
.

We hence obtain (𝜼∗𝐒1)2∕(𝜼∗𝐒𝜼) ⩽ (𝝊∗𝐒1)2∕(𝝊∗𝐒𝝊), that is 𝑅(𝝊) ⩽ 𝑅(𝜼), and 𝑅 is therefore
pseudoconvex on D .
Proof of Lemma 2.1. We set 𝑎 = 𝖌∗𝝊 > 0, 𝑏 = 𝖌∗𝜼, 𝑐 = 𝝊∗𝐒𝝊 > 0, 𝑑 = 𝜼∗𝐒𝜼 and 𝑒 = 𝝊∗𝐒𝜼. For
𝑥 ∈ ℝ, we also set 𝝃𝑥 = 𝝊 + 𝑥(𝜼 − 𝝊), and we introduce the functions

𝜑(𝑥) = 𝖌∗𝝃𝑥 = 𝑥(𝑏 − 𝑎) + 𝑎 and 𝜓(𝑥) = 𝝃∗𝑥𝐒𝝃𝑥 = 𝑥2(𝑐 + 𝑑 − 2𝑒) + 2𝑥(𝑒 − 𝑐) + 𝑐.

The condition Θ(𝝊; 𝜼) < 0 ensures that the degree-2 polynomial 𝜓 is strictly positive; indeed, 𝜓 is
nonnegative and admits a real root if and only if 𝑒2 = 𝑐𝑑, that is, from the CS inequality, if 𝜼 = 𝛼𝝊+𝝐,
with 𝛼 ∈ ℝ and 𝝐 ∈ ℝ𝑁 such that 𝐒𝝐 = 0, and we would in this case have Θ(𝝊; 𝜼) = 0.
We define 𝑓 (𝑥) = −𝜑2(𝑥)∕𝜓(𝑥), 𝑥 ∈ ℝ, so that if 𝝃𝑥 ∈ D , then 𝑓 (𝑥) = 𝑅(𝝃𝑥) − ‖𝐊‖

2
F. We have

𝑓 ′(𝑥) = 2 𝜑(𝑥)
𝜓2(𝑥)

[

𝑥
(

(𝑏𝑐 − 𝑎𝑒) + (𝑎𝑑 − 𝑏𝑒)
)

− (𝑏𝑐 − 𝑎𝑒)
]

, 𝑥 ∈ ℝ,

so that 𝑓 admits at most two stationary points onℝ. The conditions on 𝝊 and 𝜼 and the pseudoconvexity
of 𝑅 on D ensure that the function 𝜌 ↦ 𝑅(𝝃𝜌) admits a minimum on (0, 1]; the argument of this
minimum is the optimal step size 𝑟 and corresponds to a stationary point of 𝑓 . If 𝑎 = 𝑏, the function
𝜑 is constant and strictly positive (as 𝑎 > 0). If 𝑎 ≠ 𝑏, for 𝑥1 = 𝑎∕(𝑎 − 𝑏), we have 𝜑(𝑥1) = 0, and
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so 𝑓 ′(𝑥1) = 0. However, we then have 𝖌∗𝝃𝑥1 = 0, and so 𝑅(𝝃𝑥1 ) = ‖𝐊‖

2
F > 𝑅(𝝊); we can therefore

conclude that 𝑟 ≠ 𝑥1. Canceling the linear function 𝑥 ↦ 𝑥
(

(𝑏𝑐 − 𝑎𝑒) + (𝑎𝑑 − 𝑏𝑒)
)

− (𝑏𝑐 − 𝑎𝑒), we
obtain 𝑓 ′(𝑥2) = 0 with

𝑥2 =
𝑏𝑐 − 𝑎𝑒

𝑏𝑐 − 𝑎𝑒 + 𝑎𝑑 − 𝑏𝑒
;

we therefore necessarily have 𝑟 = 𝑥2, and (𝝊; 𝜼) = 𝑓 (0) − 𝑓 (𝑥2) = (𝑏𝑐 − 𝑎𝑒)2∕
(

𝑐(𝑐𝑑 − 𝑒2)
).

Proof of Proposition 2.1. We follow the proof of Theorem 2.1, and show that if 𝐽 ⊆ 𝐼 ⊆ [𝑁], then
‖𝐊 − 𝑃𝐼𝐊‖HS() ⩽ ‖𝐊 − 𝑃𝐽𝐊‖HS() and ‖𝐊 − 𝑃𝐼𝐊𝑃𝐼‖HS() ⩽ ‖𝐊 − 𝑃𝐽𝐊𝑃𝐽‖HS().

Using the same notations as in the proof of Lemma A.2 and noticing that 0𝐼 and 𝑒 are orthogonal
in , we have

‖𝐊 − 𝐊̂(𝐽 )‖2HS() = ‖𝑃0𝐽𝐊‖

2
HS() = ‖𝑃0𝐼𝐊‖

2
HS() + ‖𝑃𝑒𝐊‖

2
HS() ⩾ ‖𝐊 − 𝐊̂(𝐼)‖2HS(),

as required. Next, if 𝑃 is an orthogonal projection on , then ⟨𝐊 |𝑃𝐊𝑃 ⟩HS() = ‖𝑃𝐊𝑃‖2HS() and
‖𝐊 − 𝑃𝐊𝑃‖2HS() = ‖𝐊‖

2
HS() − ‖𝑃𝐊𝑃‖2HS(). (17)

Observing that the matrices 𝑃𝐽𝐊𝑃𝐽 , 𝑃𝑒𝐊𝑃𝑒, 𝑃𝐽𝐊𝑃𝑒 and 𝑃𝑒𝐊𝑃𝐽 are orthogonal in HS(), we obtain
‖𝑃𝐼𝐊𝑃𝐼‖

2
HS() = ‖𝑃𝐽𝐊𝑃𝐽‖

2
HS() + ‖𝑃𝑒𝐊𝑃𝐽‖

2
HS() + ‖𝑃𝐽𝐊𝑃𝑒‖

2
HS() + ‖𝑃𝑒𝐊𝑃𝑒‖

2
HS()

⩾ ‖𝑃𝐽𝐊𝑃𝐽‖
2
HS(),

giving, in combination with (17), the expected inequality.

Proof of Lemma 2.2. The inequality 𝐶sp(𝝊) ⩽ 𝐶F(𝝊) follows from the relation between the Frobenius
and spectral norms. From Lemma A.1, we have (with ℜ(𝑧) the real part of 𝑧 ∈ ℂ)
𝐶F(𝝊) = ‖𝐊‖

2
F + ‖𝐊̂(𝝊)‖2F − 2ℜ

(

⟨𝐊 | 𝐊̂(𝝊)⟩F
)

= ‖𝐊‖

2
F + ‖𝑃𝝊𝐊𝑃𝝊‖

2
HS() − 2‖𝑃𝝊𝐊‖

2
HS(). (18)

We introduce 𝑃0𝝊 = 𝕀 − 𝑃𝝊. The matrix 𝑃0𝝊 correspond to the orthogonal projection from  onto the
orthogonal complement of 𝝊 in , and so

‖𝑃𝝊𝐊‖

2
HS() = ‖𝑃𝝊𝐊𝑃𝝊‖

2
HS() + ‖𝑃𝝊𝐊𝑃0𝝊‖

2
HS() ⩾ ‖𝑃𝝊𝐊𝑃𝝊‖

2
HS(). (19)

Combining (18) and (19), we obtain
𝐶F(𝝊) ⩽ ‖𝐊‖

2
F − ‖𝑃𝝊𝐊‖

2
HS() = 𝐶P(𝝊) ⩽ ‖𝐊‖

2
F − ‖𝑃𝝊𝐊𝑃𝝊‖

2
HS() = 𝐶PP(𝝊).

We next observe that𝐊𝐕𝒉 = 𝑃𝝊𝐊𝐕𝑃𝝊𝒉, 𝒉 ∈  (indeed, we have span{𝐊𝐕} ⊆ 𝝊, and 𝐞∗𝑖 𝑃𝝊𝒉 = 𝐞∗𝑖 𝒉for all 𝑖 ∈ 𝐼𝝊), and so ⟨𝐊 − 𝑃𝝊𝐊𝑃𝝊 |𝑃𝝊𝐊𝑃𝝊 −𝐊𝐕⟩HS() = 0. We hence obtain
‖𝐊 −𝐊𝐕‖2HS() = ‖𝐊 − 𝑃𝝊𝐊𝑃𝝊‖

2
HS() + ‖𝑃𝝊𝐊𝑃𝝊 −𝐊𝐕‖2HS(),

and so 𝐶PP(𝝊) ⩽ 𝐷(𝝊). Observing that 𝐶PP(𝝊) ⩽ ‖𝐊‖

2
F = 𝑅(0) and that 𝑅(𝝊) = min𝑐⩾0𝐷(𝑐𝝊), we

necessarily have 𝐶PP(𝝊) ⩽ 𝑅(𝝊) ⩽ 𝐷(𝝊), completing the expected sequence of inequalities.
We conclude the proof by observing that if 𝐒𝑖,𝑖 > 0, 𝑖 ∈ [𝑁], then ‖𝐊̂(𝐞𝑖)‖

2
F = (𝖌∗𝐞𝑖)

2∕𝐒𝑖,𝑖, and if
𝐒𝑖,𝑖 = 0, then ‖𝐊̂(𝐞𝑖)‖

2
F = 0 and 𝐞𝑖 ∉ D .

C Abalone data set: additional figure

Figure 7 complements Figure 4 by providing the evolution, as functions of the number of columns 𝑚,
of the approximation factors EX, X ∈ {tr, sp,PP}, for the various sampling strategies considered in
Section 5.2.1 (exact target potential 𝖌).
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Figure 7: In complement to Figure 4 and for the various sampling strategies considered in Section 5.2.1,
evolution of the approximation factors EX, X ∈ {tr, sp,PP}, as functions of the number of columns
𝑚 (Abalone data set and squared-exponential kernel). The values of the corresponding thresholds 𝜏X,
X ∈ {tr, sp,PP} are also indicated (see Remark 5.2).
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