
HAL Id: hal-04102664
https://hal.science/hal-04102664v1

Preprint submitted on 22 May 2023 (v1), last revised 18 Dec 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy-based sequential sampling for low-rank
PSD-matrix approximation

Matthew Hutchings, Bertrand Gauthier

To cite this version:
Matthew Hutchings, Bertrand Gauthier. Energy-based sequential sampling for low-rank PSD-matrix
approximation. 2023. �hal-04102664v1�

https://hal.science/hal-04102664v1
https://hal.archives-ouvertes.fr


Energy-based sequential sampling
for low-rank PSD-matrix approximation

Matthew Hutchings
Cardiff University, School of Mathematics

Abacws, Senghennydd Road
Cardiff, CF24 4AG, United Kingdom

HutchingsM1@cardiff.ac.uk

Bertrand Gauthier
Cardiff University, School of Mathematics

Abacws, Senghennydd Road
Cardiff, CF24 4AG, United Kingdom

GauthierB@cardiff.ac.uk

Abstract

We introduce a pseudoconvex differentiable relaxation of the column-sampling
problem for the Nyström approximation of positive-semidefinite (PSD) matrices.
The relaxation is based on the interpretation of PSD matrices as integral operators,
and uses the supports of measures to characterise samples of columns. We describe
a class of gradient-based sequential sampling strategies which leverages the proper-
ties of the considered framework and demonstrate its ability to produce accurate
Nyström approximations. As an important feature, the proposed strategies rely on
an isometric representation of weighted PSD matrices as potentials to efficiently
handle matrices of very large scale.

Keywords: Nyström approximation, reproducing kernel Hilbert spaces, kernel quadrature, generalised
convexity, conditional gradient.

1 Introduction

The low-rank approximation of matrices through column sampling is a core technique in machine
learning and scientific computing. Such approximations provide a computationaly efficient framework
to reduce the cost of numerical strategies involving large-scale matrices, and the underlying sampling
problem is intrinsically related to feature extraction, clustering and dimensionality reduction. For
positive-semidefinite (PSD) matrices, the terminology Nyström approximation is used, and the
characterisation of samples of columns leading to accurate approximations is referred to as the column
sampling problem (CSP); see e.g. [24, 19, 1, 23, 22]. In practical applications, the combinatorial
nature of the CSP and the cost inherent to the evaluation of the approximation errors prevent the
implementation of sampling strategies based on direct minimisations, and as such, have motivated
the development of a wide variety of heuristic-based sampling strategies; see [5, 11, 9, 17, 4] and
references therein for an overview.
In this note, we characterise samples of columns by the nonnull entries of selection vectors (interest-
ingly, this alone leads to a convex, but nondifferentiable, relaxation of the CSP; see Theorem 2.1);
such selection vectors can be regarded as measures, and together with a PSD matrix, define integral
operators acting on the reproducing kernel Hilbert space (RKHS; see e.g. [16]) defined by this matrix.
Following [8, 7], we use the norm of the corresponding Hilbert-Schmidt (HS) space to discriminate
among selection vectors. Enforcing an invariance with respect to rescaling gives rise to a pseudocon-
vex differentiable error map 𝑅 on the selection-vector space, and the gradient of this map can then
be used to characterise samples of columns. We illustrate the ability of the proposed approach to
generate accurate Nyström approximations and to efficiently handle very large PSD matrices.
The main contributions of this work are the study of the properties error map 𝑅 (Theorem 2.2), and
the introduction of a general framework allowing for the implementation of accurate and numerically
efficient line-search-based sequential sampling strategies for Nyström approximation (Algorithm 1
and its variants). Sketches of the proofs of the main theoretical results are included in the body of
paper, and detailed versions of the proofs of all the presented results are provided in appendix, together
with additional numerical experiments.
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2 Overall framework and notations

Throughout this work, we use the classical matrix notation and identify a vector of 𝜶 ∈ ℂ𝑁 , 𝑁 ∈ ℕ,
as the 𝑁 × 1 column matrix defined by the coefficients of 𝜶 in the canonical basis of ℂ𝑁 . We
denote by [𝑁] the set of all integers between 1 and 𝑁 . For generality, we consider complex PSD
matrices; nevertheless, all the developments presented in this note also hold for real symmetric
positive-semidefinite (SPSD) matrices. We denote by 𝐌∗ the conjugate-transpose of a matrix 𝐌, and
by 𝐌 its conjugate.

2.1 Nyström approximation of PSD matrices

Let 𝐊 ∈ ℂ𝑁×𝑁 be a PSD matrix, with 𝑁 ∈ ℕ; we assume that all the diagonal entries of 𝐊 are
strictly positive (otherwise, the corresponding rows and columns of 𝐊 are null). For a subset 𝐼 ⊆ [𝑁]
of size 𝑚 ⩽ 𝑁 , the Nyström approximation of 𝐊 induced by the columns of 𝐊 with index in 𝐼 is the
PSD matrix

�̂�(𝐼) = 𝐊∙,𝐼 (𝐊𝐼,𝐼 )†𝐊𝐼,∙ ∈ ℂ𝑁×𝑁 , (1)
where 𝐊∙,𝐼 ∈ ℂ𝑁×𝑚 is the matrix defined by the columns of 𝐊 with index in 𝐼 , and where (𝐊𝐼,𝐼 )† is
the pseudoinverse of the 𝑚 ×𝑚 principal submatrix of 𝐊 defined by 𝐼 (and 𝐊𝐼,∙ = (𝐊∙,𝐼 )∗ consists of
rows of 𝐊); see e.g. [5, 18, 11, 9, 3]
The accuracy of a Nyström approximation is often assessed through the trace, Frobenius or spectral
norm of the approximation error, that is

‖𝐊 − �̂�(𝐼)‖tr , ‖𝐊 − �̂�(𝐼)‖F, or ‖𝐊 − �̂�(𝐼)‖sp, (2)
respectively, naturally raising questions related to the characterisation of subsets 𝐼 leading to accurate
approximations. In practice, a direct minimisation, as functions of 𝐼 , of the error norms (2) is made
difficult by the combinatorial nature of the underlying problems, and by the numerical cost inherent
to the evaluation of the corresponding norms.
Remark 2.1. In view of (1), for a subset 𝐼 of size 𝑚, the evaluation of a given entry of �̂�(𝐼)
requires the pseudoinversion of 𝐾𝐼,𝐼 , with complexity (𝑚3), combined with an algebraic operation
of complexity (𝑚2). In the case of multiple evaluations, the pseudoinversion can be mutualised, so
that in (2), the complexity of an evaluation of the trace norm is (𝑚3 + 𝑚2𝑁); it is (𝑚3 + 𝑚2𝑁2)
for the Frobenius norm, and (𝑚3 + 𝑚2𝑁2 +𝑁3) for the spectral norm. As [�̂�(𝐼)]∙,𝐼 = 𝐊∙,𝐼 , it is in
practice only necessary to compute the required entries of the (𝑁 −𝑚) × (𝑁 −𝑚) principal submatrix
[�̂�(𝐼)]𝐼𝑐 ,𝐼𝑐 , with 𝐼𝑐 the complement of 𝐼 in [𝑁]. ⊲
Remark 2.2. The entries of 𝐊 characterise the kernel of a RKHS of ℂ-valued functions on [𝑁]
(see e.g. [16]). This RKHS can be identified with the subspace  = span{𝐊} ⊆ ℂ𝑁 (the subset
of ℂ𝑁 spanned by the columns of 𝐊) endowed with the inner product ⟨𝒉 |𝒇⟩ = 𝒉∗𝐊†𝒇 , 𝒉 and
𝒇 ∈ . A subset 𝐼 ⊆ [𝑁] then defines a closed linear subspace 𝐼 = span{𝐊∙,𝐼} of , and
𝑃𝐼 = 𝐊∙,𝐼 (𝐊𝐼,𝐼 )†𝕀𝐼,∙ is the orthogonal projection from  onto 𝐼 , with 𝕀 the 𝑁 ×𝑁 identity matrix.
We then in particular have �̂�(𝐼) = 𝑃𝐼𝐊.
Denoting by  the Euclidean Hilbert space ℂ𝑁 (that is ⟨𝐮 | 𝐯⟩ = 𝐮∗𝐯, 𝐮 and 𝐯 ∈ ), the matrix 𝐊
may be regarded as an operator from, and to,  or  (four possibilities). In (2), the trace norm then
corresponds to the squared HS norm of the matrix 𝐊 − �̂�(𝐼) when interpreted as an operator from 
to ; and the Frobenius and spectral norms correspond to the HS and spectral norms, respectively, of
the matrix 𝐊 − �̂�(𝐼) when interpreted as an operator on  . See [7] for a further discussion. ⊲

2.2 First relaxation: selection vectors

For 𝝊 = (𝜐𝑖)𝑖∈[𝑁] ∈ ℝ𝑁 , we set 𝐼𝝊 = {𝑖 ∈ [𝑁]|𝜐𝑖 ≠ 0} and we refer to 𝐼𝝊 as the support of 𝝊 (we
may more generally assume that 𝝊 is complex, but this is not useful in the framework of this note).
Through its support, a selection vector 𝝊 naturally characterises a subset of columns of 𝐊. Following
Remark 2.2, we introduce the following simplified notations

�̂�(𝝊) = �̂�(𝐼𝝊), 𝝊 = 𝐼𝝊 and 𝑃𝝊 = 𝑃𝐼𝝊 .
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We then define the error maps
𝐶tr ∶ 𝝊 ↦ ‖𝐊 − �̂�(𝝊)‖tr , 𝐶F ∶ 𝝊 ↦ ‖𝐊 − �̂�(𝝊)‖2F and 𝐶sp ∶ 𝝊 ↦ ‖𝐊 − �̂�(𝝊)‖2sp;

notice that we consider the squared Frobenius and spectral norms in the definition of 𝐶F and 𝐶sp.
Theorem 2.1. The maps 𝐶tr , 𝐶F and 𝐶sp are convex on the convex cone ℝ𝑁

⩾0, and their directional
derivatives take values in the discrete set {−∞, 0}.

Sketch of proof. For 𝐽 ⊆ 𝐼 ⊆ [𝑁], we have ‖𝐊 − �̂�(𝐼)‖X ⩽ ‖𝐊 − �̂�(𝐽 )‖X, X ∈ {tr,F, sp}. Also,
for 𝝃 = 𝝊 + 𝜌(𝜼 − 𝝊), 𝝊, 𝜼 ∈ ℝ𝑁

⩾0, 𝜌 ∈ (0, 1), we have 𝐼𝝃 = 𝐼𝝊 ∪ 𝐼𝜼. The map 𝜌 ↦ 𝐶X(𝝊 + 𝜌[𝜼 − 𝝊])
is thus constant on the open interval (0, 1), and we have 𝐶X(𝝃) ⩽ 𝐶X(𝝊) and 𝐶X(𝝃) ⩽ 𝐶X(𝜼).
Theorem 2.1 illustrates that the error maps induced by (2) can be regarded as convex piecewise-
constant maps on ℝ𝑁

⩾0; see Figure 1 for an illustration. The selection-vector setting may to this extent
be regarded as a nondifferentiable convex relaxation of the CSP.
2.3 Second relaxation: kernel-quadrature setting

A selection vector 𝝊 ∈ ℝ𝑁 can be regarded as a signed measure on [𝑁], and as such, defines together
with 𝐊 an integral operator of the form 𝐊𝐕, with 𝐕 = diag(𝝊) ∈ ℂ𝑁×𝑁 the diagonal matrix with
diagonal 𝝊. We have 𝐊𝐕 = 𝑃𝝊𝐊𝐕 = 𝐊𝐕𝑃𝝊 = 𝑃𝝊𝐊𝐕𝑃𝝊, and both the matrices 𝐊𝐕 and �̂�(𝝊) have
range included in 𝝊.
Let 𝝎 ∈ ℝ𝑁 be another selection vector, and set 𝐖 = diag(𝝎). Denoting by HS() the Hilbert space
of all HS operators on , we have

⟨𝐊𝐖 |𝐊𝐕⟩HS() = 𝝎∗𝐒𝝊, (3)
where 𝐒 = 𝐊 ⊙ 𝐊 (element-wise product) is the 𝑁 × 𝑁 SPSD matrix with 𝑖, 𝑗 entry |𝐊𝑖,𝑗|

2, the
squared modulus of the 𝑖, 𝑗 entry of 𝐊; the real matrix 𝐒 is SPSD. We may in addition notice that
the Nyström approximation �̂�(𝝊) is the orthogonal projection, in HS(), of 𝐊 onto the closed linear
subspace of all matrices with range included in 𝝊. See [7] for an in-depth discussion.
Remark 2.3. Following Remark 2.2, the PSD matrix 𝐒 defines a RKHS that can be identified with
the vector space  = span{𝐒} ⊆ ℂ𝑁 endowed with the inner product ⟨𝒈 | 𝒋⟩ = 𝒈∗𝐒†𝒋, 𝒈 and 𝒋 ∈ .
In view of (3), we have

⟨𝐊𝐖 |𝐊𝐕⟩HS() = 𝝎∗𝐒𝝊 = 𝝎∗𝐒𝐒†𝐒𝝊 = ⟨𝐒𝝎 |𝐒𝝊⟩, 𝝊 and 𝝎 ∈ ℝ𝑁 .
so that the vector 𝐒𝝊 ∈  is an isometric representation of the matrix 𝐊𝐕 when interpreted as an HS
operator on . We refer to 𝐒𝝊 as the potential of 𝝊 in , and to ‖𝐒𝝊‖2 = ‖𝐊𝐕‖2HS() = 𝝊∗𝐒𝝊 as the
energy of 𝝊 with respect to 𝐒. The norm ‖𝐊𝐖 −𝐊𝐕‖HS() can then be interpreted as a generalised
integral probability metric, or maximum mean discrepancy (see e.g. [20, 15]), between the signed
measures on [𝑁] defined by 𝝎 and 𝝊 ∈ ℝ𝑁 . Introducing 1 = (1)𝑖∈[𝑁] ∈ ℝ𝑁 , we in particular have
diag(1) = 𝕀, and ‖𝐊‖

2
HS() = 1∗𝐒1 = ‖𝐊‖

2
F. ⊲

Following (3) and Remark 2.3, we define the error map 𝐷 ∶ ℝ𝑁 → ℝ⩾0, such that
𝐷(𝝊) = ‖𝐊 −𝐊𝐕‖2HS() = (1 − 𝝊)∗𝐒(1 − 𝝊) = ‖𝐊‖

2
F + 𝝊∗𝐒𝝊 − 2𝖌∗𝝊, 𝝊 ∈ ℝ𝑁 , (4)

with 𝖌 = 𝐒1 ∈ ℝ𝑁 the potential of 1 in . The map 𝐷 is convex on ℝ𝑁 , and the gradient of 𝐷 at 𝝊
is given by ∇𝐷(𝝊) = 2𝐒(𝝊 − 1) = 2(𝐒𝝊 − 𝖌).
Remark 2.4. The numerical complexity of the computation of the target potential 𝖌 = 𝐒1 ∈ ℝ𝑁 is
(𝑁2); this operation can nevertheless be easily parallelised. From 𝖌, and assuming that the support
of 𝝊 is of size 𝑚 ⩽ 𝑁 , the complexity of the evaluation of 𝖌∗𝝊 is (𝑚). The complexity of the
evaluation of 𝝊∗𝐒𝝊 is (𝑚2). ⊲

Recalling that �̂�(𝐼) = 𝑃𝐼𝐊, 𝐼 ⊆ [𝑁], from Remark 2.2, we have
‖𝐊 − 𝑃𝐼𝐊‖

2
HS() = trace

(

𝐊[𝐊 − �̂�(𝐼)]
) and ‖𝐊 − 𝑃𝐼𝐊𝑃𝐼‖2HS() = ‖𝐊‖

2
F − ‖�̂�(𝐼)‖2F,
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which suggests the definition of the two additional error maps
𝐶P(𝝊) = trace

(

𝐊[𝐊 − �̂�(𝝊)]
) and 𝐶PP(𝝊) = ‖𝐊‖

2
F − ‖�̂�(𝝊)‖2HS(), 𝝊 ∈ ℝ𝑁 ;

these maps are of the same nature as the maps 𝐶X, X ∈ {tr,F, sp} (Corollary 2.1; see also [7]).
Corollary 2.1. The maps 𝐶P and 𝐶PP are convex on the convex cone ℝ𝑁

⩾0, and their directional
derivatives take values in the discrete set {−∞, 0}.

2.4 Invariance under rescaling

For 𝝊 ∈ ℝ𝑁 and 𝑐 > 0, we have 𝐼𝝊 = 𝐼𝑐𝝊, and the error maps 𝐶X, X ∈ {tr,F, sp,P,PP}, are
thus invariant under rescaling, that is, 𝐶X(𝑐𝝊) = 𝐶X(𝝊). To enforce a similar invariance within the
framework of (4), we introduce the error map

𝑅(𝝊) = min
𝑐⩾0

𝐷(𝑐𝝊) = 𝐷(𝑐𝝊𝝊), 𝝊 ∈ ℝ𝑁 ,

with 𝑐𝝊 = 𝝊∗𝐒1∕𝝊∗𝐒𝝊 if 𝝊 ∈ D = {𝝊 ∈ ℝ𝑁
|𝝊∗𝐒1 > 0}, and 𝑐𝝊 = 0 otherwise. In particular, for

𝝊 ∈ D , we have 𝑅(𝝊) = ‖𝐊‖

2
F − (𝝊∗𝐒1)2∕(𝝊∗𝐒𝝊). For 𝜼 ∈ ℝ𝑁 , the directional derivative Θ(𝝊; 𝜼) of

𝑅 at 𝝊 ∈ ℝ𝑁 in the direction 𝜼 − 𝝊 is
Θ(𝝊; 𝜼) = lim

𝜌→0+
1
𝜌
[

𝑅
(

𝝊 + 𝜌(𝜼 − 𝝊)
)

− 𝑅(𝝊)
]

=
{

−∞ if 𝝊 ∈ Z and 𝜼 ∈ D ,
2𝑐𝝊𝐒(𝑐𝝊𝝊 − 1) otherwise, (5)

with Z = {𝝊 ∈ ℝ𝑁
|𝐒𝝊 = 0}; in particular, since D ∩ Z = ∅, the gradient of 𝑅 at 𝝊 ∈ D is given

by ∇𝑅(𝝊) = 2𝑐𝝊𝐒(𝑐𝝊𝝊 − 1) = 2𝑐𝝊(𝑐𝝊𝐒𝝊 − 𝖌).
Theorem 2.2. The map 𝑅 is quasiconvex on ℝ𝑁 , and pseudoconvex on the convex cone D .

Sketch of proof. For 𝝃 = (1 − 𝜌)𝝊 + 𝜌𝜼, 𝝊 and 𝜼 ∈ ℝ𝑁 , 𝜌 ∈ [0, 1], there exist 𝜌′ ∈ [0, 1] and 𝑐 ⩾ 0
such that 𝑐𝝃 = (1 − 𝜌′)𝑐𝝊𝝊 + 𝜌′𝑐𝜼𝜼; we then obtain 𝑅(𝝃) ⩽ max{𝑅(𝝊), 𝑅(𝜼)} from the definition of
𝑅 and the convexity of 𝐷 (quasiconvexity).
For 𝝊 and 𝜼 ∈ D such that Θ(𝝊; 𝜼) ⩾ 0, we have (𝝊∗𝐒1)(𝜼∗𝐒𝝊) ⩾ (𝝊∗𝐒𝝊)(𝜼∗𝐒1) > 0. By the Cauchy-
Schwarz inequality, we then obtain 0 < (𝜼∗𝐒𝝊)2 ⩽ (𝝊∗𝐒𝝊)(𝜼∗𝐒𝜼), and combining these two sets of
inequalities gives (𝜼∗𝐒𝝊)2∕(𝜼∗𝐒𝜼) ⩽ (𝝊∗𝐒1)2∕(𝝊∗𝐒𝝊), that is 𝑅(𝝊) ⩽ 𝑅(𝜼) (pseudoconvexity).
By definition of 𝑅 and following [7], for all 𝝊 ∈ ℝ𝑁 , we have

𝐶sp(𝝊) ⩽ 𝐶F(𝝊) ⩽ 𝐶P(𝝊) ⩽ 𝐶PP(𝝊) ⩽ 𝑅(𝝊) ⩽ 𝐷(𝝊), (6)
and 𝑅(𝝊) ⩽ ‖𝐊‖

2
F. For all 𝑖 ∈ [𝑁], we also have 𝐶PP(𝒆𝑖) = 𝑅(𝒆𝑖), 𝑖 ∈ [𝑁], with 𝒆𝑖 the 𝑖-th vector of

the canonical basis of ℝ𝑁 . The appearance of the maps 𝐷, and 𝑅 and 𝐶F on the convex cone ℝ𝑁
⩾0 is

illustrated in Figure 1. The diagonal entries of 𝐊 being strictly positive, we have ℝ𝑁
⩾0∖{0} ⊂ D .

𝝊 ↦ 𝐷(𝝊)

1𝜐1
𝜐2

𝝊 ↦ 𝑅(𝝊)

1𝜐1
𝜐2

𝝊 ↦ 𝐶F(𝝊)

1𝜐1
𝜐2

Figure 1: Schematic representation of the maps 𝐷, 𝑅 and 𝐶F on ℝ𝑁
⩾0; the red star represents the

target selection vector 1 ∈ ℝ𝑁 . The presented graphs correspond to a 2 × 2 matrix 𝐊 such that
𝐊1,1 = 1.225, 𝐊2,2 = 0.894 and 𝐊2,1 = 0.316. In the graphs of 𝑅 and 𝐶F, the point on the vertical
axis indicates the value of these maps at 𝝊 = 0 (that is ‖𝐊‖

2
F), and the bold lines indicate the constant

values taken by the maps along the horizontal axes.
For two selection vectors 𝝊 and 𝜼 ∈ D , we set 𝝊[𝜼] = 𝝊(𝝊∗𝐒𝜼)∕(𝝊∗𝐒𝝊) ∈ ℝ𝑁 . If Θ(𝝊; 𝜼) < 0 and
Θ(𝜼; 𝝊) ⩽ 0, then the function 𝜌↦ 𝑅

(

𝝊 + 𝜌(𝜼 − 𝝊)
), 𝜌 ∈ [0, 1], is minimum at 𝜌 = 𝑟 ∈ (0, 1], with

𝑟 =
(𝝊∗𝐒𝝊)𝖌∗(𝜼 − 𝝊[𝜼])

(𝝊∗𝐒𝝊)𝖌∗(𝜼 − 𝝊[𝜼]) + (𝜼∗𝐒𝜼)𝖌∗(𝝊 − 𝜼[𝝊])
, (7)
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providing the optimal step size for the minimisation of 𝑅 via a line search from 𝝊 in the direction
𝜼 − 𝝊; this descent leads to the improvement

(𝝊; 𝜼) = 𝑅(𝝊) − 𝑅
(

𝝊 + 𝑟(𝜼 − 𝝊)
)

=
(

𝖌∗(𝜼 − 𝝊[𝜼])
)2/(𝜼∗𝐒(𝜼 − 𝝊[𝜼])

)

⩾ 0. (8)

3 Line-search-based sequential sampling

For 𝐟 = (𝑓𝑖)𝑖∈[𝑁] ∈ ℝ𝑁
>0 and 𝜘 > 0, we introduce 𝐟 = {𝝊 ∈ ℝ𝑁

⩾0|𝐟
∗𝝊 = 𝜘} ⊂ D . The set 𝐟

is convex, and its extreme points are the vectors {𝝃𝑖}𝑖∈[𝑁], with 𝝃𝑖 = 𝜘𝒆𝑖∕𝑓𝑖 ∈ ℝ𝑁
⩾0. Due to the

invariance under rescaling of 𝑅, we may without loss of generality set 𝜘 = 1. Hereafter, we describe
a sequential column-sampling procedure based on the minimisation of 𝑅 over 𝐟 via line search with
optimal step size and Frank-Wolfe (FW) direction (c.f. conditional gradient). Many variants of the
proposed algorithm may be considered, see for instance Remarks 3.2 and 3.3. We may remark that
the selection vector 𝝊⋆ = 𝜘1∕(𝐟∗1) ∈ 𝐟 verifies 𝑅(𝝊⋆) = 0.
The procedure is initialised at 𝝊(1) = 𝝃𝑏 ∈ 𝐟 , with

𝑏 ∈ arg min
𝑖∈[𝑁]

𝑅(𝝃𝑖) = arg max
𝑖∈[𝑁]

𝔤2𝑖 ∕𝐒𝑖,𝑖 (with 𝔤𝑖 = 𝒆∗𝑖 𝖌 the 𝑖-th entry of 𝖌 = 𝐒1), (9)
and the selection vector at step 𝑞 ∈ ℕ is denoted by 𝝊(𝑞) ∈ 𝐟 . An iteration of our sampling procedure
consists of selecting a descent direction 𝝃𝑢 − 𝝊(𝑞), with 𝑢 ∈ [𝑁] such that Θ(𝝊(𝑞); 𝝃𝑢) < 0, and of
next performing a line search with the optimal step size 𝑟 given in (7). Such an iteration results in
increasing the weight of the 𝑢-th component of 𝝊(𝑞) while proportionally decreasing the weights of all
its other components. As descent direction, we consider the FW direction 𝝃𝑢 − 𝝊(𝑞), with

𝑢 ∈ arg min
𝑖∈[𝑁]

Θ(𝝊(𝑞); 𝝃𝑖) = arg min
𝑖∈[𝑁]

[∇𝑅(𝝊(𝑞))]𝑖∕𝑓𝑖. (10)
The initialisation of the descent via (9) ensures that if Θ(𝝊(𝑞); 𝝃𝑖) < 0, 𝑖 ∈ [𝑁], then Θ(𝝃𝑖; 𝝊(𝑞)) < 0,
so that the descent necessarily occurs in the framework of (7).
A pseudocode of the procedure is given in Algorithm 1. The algorithm produces a sequence
𝝊(1), 𝝊(2),⋯ of selection vectors with increasing support. At stage 𝑞 ∈ ℕ, the number 𝑚𝑞 of nonnull
entries of 𝝊(𝑞) verifies 𝑚𝑞 ⩽ min(𝑞,𝑁) , so that early stopping of the procedure ensures sparsity of
the resulting selection vector. The algorithm stops if 𝑅(𝝊(𝑞)) = 0 (that is, if 𝝊(𝑞) minimises 𝑅 over
𝐟 ; by pseudoconvexity, this condition is equivalent to the condition ∇𝑅(𝝊(𝑞)) = 0), or when 𝑞 = 𝑄,
with 𝑄 ∈ ℕ a given maximum number of iterations (different stopping rules could be considered).

Algorithm 1: Column sampling via line search with FW direction and optimal step size.
Input: matrix 𝐒; vector 𝐟 ; maximum number of iterations 𝑄 ∈ ℕ;

1 Initialisation: compute 𝑏 ∈ [𝑁] using (9); set 𝑞 = 1; 𝝊(1) = 𝝃𝑏 and 𝐼𝝊(1) = {𝑏};
2 while 𝑞 < 𝑄 and 𝑅(𝝊(𝑞)) > 0 do
3 compute 𝑢 ∈ [𝑁] using (10) with 𝝊 = 𝝊(𝑞);
4 compute the optimal step size 𝑟 from (7) with 𝜼 = 𝝃𝑢;
5 set 𝝊(𝑞+1) = (1 − 𝑟)𝝊(𝑞) + 𝑟𝝃𝑢 and 𝐼𝝊(𝑞+1) = 𝐼𝝊(𝑞) ∪ {𝑢}; increment: 𝑞 ← 𝑞 + 1;

Output: subset 𝐼𝝊(𝑞) ⊆ [𝑁];

Remark 3.1. The implementation of Algorithm 1 requires the preliminary computation of the target
potential 𝖌 = 𝐒1, with complexity (𝑁2); see Remark 2.4. Once 𝖌 is known, each iteration of
Algorithm 1 has complexity (𝑁). For 𝑞 ∈ ℕ, we have

𝐒𝝊(𝑞+1) = (1 − 𝑟)𝐒𝝊(𝑞) + 𝑟(𝜘∕𝑓𝑢)𝐒∙,𝑢,
so that sparse updates of the terms 𝐒𝝊, 𝝊∗𝐒𝝊 and 𝖌∗𝝊 can be easily implemented; furthermore, each
iteration of Algorithm 1 only requires access to a single column of 𝐒. ⊲

In view of (10), the sequences of subsets 𝐼𝝊(1) ⊆ 𝐼𝝊(2) ⊆ ⋯ ⊆ [𝑁] generated by Algorithm 1 depend
on the choice of the restriction vector 𝐟 . Our experiments suggest that considering 𝐟 = diag(𝐊), the
diagonal of 𝐊, appears as a relevant choice (in contrast and for instance, it seems that considering 𝐟 = 𝖌
should be avoided). A variant of Algorithm 1 returning sequences of subsets that are independent of
the choice of 𝐟 is described in Remark 3.2.
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Remark 3.2. Instead of considering the steepest conditional descent (10), we may combine the
information provided by (5) and (8) to characterise the conditional descent directions inducing the
best one-step-ahead improvements. In Algorithm 1, we may hence replace the FW direction (10) by
the best-improvement (BI) direction

𝑢 ∈ argmax
𝑖∈𝐺𝝊

(𝝊; 𝝃𝑖), with 𝐺𝝊 = {𝑖 ∈ [𝑁]|[∇𝑅(𝝊)]𝑖 < 0}.

The complexity of each iteration of the BI variant of Algorithm 1 is still (𝑁); however, in comparison
to FW, the resulting procedure is costlier as it requires, in addition to the gradient of𝑅, the computation
of the relevant improvement scores. The sequences of subsets produced by this algorithm are
independent of the choice of the restriction vector 𝐟 . ⊲
Remark 3.3. For a subset 𝐼 ⊆ [𝑁] of size 𝑚, we denote by �̌�(𝐼) ∈ ℝ𝑁

⩾0 the selection vector
minimising 𝐷 over the set of all nonnegative selection vectors 𝝊 ∈ ℝ𝑁

⩾0 such that 𝐼𝝊 ⊆ 𝐼 ; the
non-trivial entries [�̌�(𝐼)]𝐼 of �̌�(𝐼) are given by a solution to the quadratic program (QP) associated
with the minimisation of the function 𝒙 ↦ 𝒙∗𝐒𝐼,𝐼𝒙 − 2𝖌∗𝐼𝒙 over ℝ𝑚

⩾0. The rescaled selection vector
𝝊(𝐼) = 𝜘�̌�(𝐼)∕(𝐟∗�̌�(𝐼)) ∈ 𝐟 then minimises 𝑅 over the set of all selection vectors 𝝊 ∈ 𝐟 such that
𝐼𝝊 ⊆ 𝐼 . In Algorithm 1 and its BI variant, at all iterations 𝑞 ∈ ℕ, instead of performing a descent
with optimal step size, we may then set 𝝊(𝑞+1) = 𝝊(𝐼𝝊(𝑞) ∪ {𝑢}); we refer to this modified update rule
as weight optimisation (WO). In terms of numerical complexity and in comparison to a descent with
optimal step size, at step 𝑞, the WO variants involve the computation of a solution to a QP over ℝ𝑚𝑞+1

(and we may use 𝝊(𝑞) as a warm start). ⊲

4 Numerical experiments

We now illustrate the behaviour of Algorithm 1 and of its variants described in Remarks 3.2 and 3.3.
To assess the efficiency of the Nyström approximation induced by a subset 𝐼 ⊆ [𝑁] of size 𝑚 ⩽ 𝑁 ,
we introduce the approximation factors (see e.g. [3])

EP(𝐼) =
‖𝐊 − �̂�(𝐼)‖HS()

‖𝐊 −𝐊⋆
𝑚‖HS()

,EPP(𝐼) =
‖𝐊 − 𝑃𝐼𝐊𝑃𝐼‖HS()

‖𝐊 −𝐊⋆
𝑚‖HS()

and EX(𝐼) =
‖𝐊 − �̂�(𝐼)‖X
‖𝐊 −𝐊⋆

𝑚‖X
, (11)

X ∈ {tr,F, sp}, where 𝐊⋆
𝑚 is an optimal rank-𝑚 approximation of 𝐊 (that is, an approximation

obtained by spectral truncation). The values of the approximation factors are necessarily larger than
or equal to 1, and the smaller the value, the more accurate the approximation.
Remark 4.1. Denoting by 𝜆1 ⩾ ⋯ ⩾ 𝜆𝑁 ⩾ 0 the eigenvalues of 𝐊 (repeated with multiplicity), for
all 𝑚 < 𝑁 , we have ‖𝐊 − 𝐊⋆

𝑚‖
2
HS() = ‖𝐊 − 𝐊⋆

𝑚‖
2
F =

∑𝑁
𝑙=𝑚+1 𝜆

2
𝑙 , ‖𝐊 − 𝐊⋆

𝑚‖tr =
∑𝑁
𝑙=𝑚+1 𝜆𝑙 and

‖𝐊 −𝐊⋆
𝑚‖sp = 𝜆𝑚+1. ⊲

We implement Algorithm 1 (referred to as FW, for short) and its BI variant (referred to as BI); in
addition to the optimal-step-size update rule, for both the FW and BI descent directions, we also
implement the WO update rule (the resulting procedures are referred to as FW-WO and BI-WO).
The affine restrictions are defined with 𝐟 = diag(𝐊) and 𝜘 = 1. Due to the specificity of our
sampling procedures (which are based on early stopping of line-search-based strategies with sparse
initialisations and sparse descent directions), in all our experiments, we placed a special emphasis on
approximations involving a relatively small number of columns; in this range, we in particular have
𝑚𝑞 = 𝑞 (with 𝑚𝑞 the size of the support of 𝝊(𝑞)). We compare our procedures with random sampling
with respect to uniform weights and weights proportional to the diagonal of 𝐊, leverage-score-based
random sampling, and determinantal-point-process-based (DPP-based) random sampling; see for
instance [5, 11, 9, 13, 17, 4] for an overview.
4.1 Random PSD matrix

We consider a random PSD matrix 𝐊 ∈ ℂ𝑁×𝑁 , with𝑁 = 1,500; the eigenvalues of 𝐊 are independent
realisations of a log-normal distribution (𝜇 = −2.5 and 𝜎 = 3), and a set of associated eigenvectors is
defined using a random unitary matrix (multiplication-invariant Haar measure; see [14]).
The evolution of the error maps𝑅 and𝐶X,X ∈ {F,P,PP}, during the 100 first iterations of Algorithm 1
and its BI variant is illustrated in Figure 2. Following (6), the evolution of of 𝐶X, X ∈ {F,P,PP}, is
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Figure 2: For a (complex) random PSD matrix with 𝑁 = 1,500, evolution of the error maps 𝑅 and
𝐶X, X ∈ {F,P,PP}, during the 100 first iterations of Algorithm 1 (left) and its BI variant (right).

0 100 200 300 400 500

0
10

0
30

0
50

0 Eigenvalues of K

0 20 40 60 80 100

1.0
1.5

2.0
2.5

m

ℰtr as function of m

0 20 40 60 80 100

1.0
2.0

3.0
4.0

m

ℰF as function of m

0 20 40 60 80 100

2
4

6
8

10

m

ℰsp as function of m

0 20 40 60 80 100

1
2

3
4

5
6

7
8

m

ℰP as function of m

0 20 40 60 80 100
2

4
6

8
10

m

ℰPP as function of m

Uniform-random Diagonal-random Leverage score FW FW-WO BI BI-WO

Figure 3: For a (complex) random PSD matrix with 𝑁 = 1,500, and for various sequential sampling
strategies, evolution of the five approximation factors (11) as functions of the number of columns 𝑚.
The 500 largest eigenvalues of 𝐊 are also represented. For the stochastic strategies, we present the
median, minimum and maximum of the approximation factors over 100 repetitions.

bounded by the decay of 𝑅 (these four error maps are considered since they take the same value at
𝝊 = 0). We observe a strong similarity between the evolution of these maps, further supporting the
use of 𝑅 as surrogate error map for Nyström approximation.
We then implement various sampling strategies, and compare the evolution of the five approximation
factors EX, X ∈ {tr,F, sp,P,PP}, as functions of𝑚 (number of columns). For the stochastic strategies,
100 repetitions are performed. The result are presented in Figure 3. In the considered regime (that
is, 𝑚 ≪ 𝑚), we observe that independently of the approximation factor considered, the Nyström
approximations induced by Algorithm 1 and its variants are more accurate than the ones obtained using
uniform random sampling, diagonal random sampling or leverage-score-based random sampling.
4.2 Abalone data set

We consider the Abalone data set (UCI Machine Learning Repository; see [6]). Two entries of the
data set appearing as outliers are removed, and the features are standardised; the resulting data set
consists of 𝑁 = 4,175 points in ℝ𝑑 , with 𝑑 = 8. We use this data set and a squared-exponential
kernel 𝐾(𝑥, 𝑥′) = 𝑒−𝛾‖𝑥−𝑥′‖2 , 𝑥, 𝑥′ ∈ ℝ𝑑 and 𝛾 > 0 (with ‖.‖ the Euclidean norm of ℝ𝑑), to generate
a PSD matrix 𝐊. To illustrate the impact of the decay of the spectrum of 𝐊 on the sampling process,
we consider different values of 𝛾 , namely 𝛾 = 0.1, 0.25 and 1, chosen so that the the eigenvalues of 𝐊
exhibit relatively steep, moderate and shallow decays, respectively; see Figure 4.
The accuracy of the approximations induced by the four variants of Algorithm 1 (namely FW,
BI, FW-WO, BI-WO) is compared with the accuracy of the approximations obtained via uniform
random sampling, leverage-score-based random sampling and 𝑘-DPP-based random sampling. The
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Figure 4: For kernel matrices defined from the Abalone data set and squared exponential kernels,
evolution of the approximation factors EF and EP as functions of the number of columns 𝑚. Each
column in the figure corresponds to a different value of the kernel parameter 𝛾 . For each 𝛾 , the 100
largest eigenvalues of 𝐊 are displayed, together with the decay, in logarithmic scale, of the error map
𝑅 during the 100 first iterations of the FW and BI variants of Algorithm 1, with both optimal-step-size
and WO update rules. The evolution of EF and EP are represented for the four variants of Algorithm 1,
as well as for random sampling strategies based on uniform weights, leverage scores and 𝑘-DPPs. For
stochastic methods, the solid line represents the median over 100 repetitions, and the shaded regions
indicate the corresponding maximum and minimum values.

experiments involving random sampling are repeated 100 times. The result are presented in Figure 4,
where we display the evolution of the approximation factors EF and EP up to 𝑚 = 100 (the evolution
of the other approximation factors in provided in appendix; in terms of behaviour, Etr and Esp appear
closely related to EF, while EPP shows similarities with EP). In comparison to the considered random-
sampling procedures, we observe that Algorithm 1 and its variants lead to accurate approximations,
especially in the range corresponding to the significant eigenvalues of 𝐊.
After a certain number of iterations (which appears to be related to the decay of the spectrum of 𝐊),
the accuracy of the approximations induced by Algorithm 1 and its BI variant deteriorate (this is
especially visible for 𝛾 = 0.1). This behaviour is related to the relatively slow asymptotic convergence
of conditional gradient descents (see e.g. [2, 12]); the deterioration is stronger for EF than for EP, and
the WO update rule appears to be able to mitigate this drop-off in accuracy.

4.3 HIGGS data set

We now illustrate the ability of the proposed approach to tackle matrices of very large scale. We con-
sider the HIGGS dataset (UCI Machine Learning Repository; see [6]), consisting of 𝑁 = 11,000,000
points in ℝ𝑑 , with 𝑑 = 21; all the features are standardised. To define a PSD matrix 𝐊, we use a
squared-exponential kernel (same expression as in Section 4.2) with 𝛾 = 0.2. In double-precision
floating-point format, storing all the entries of 𝐊 or 𝐒 would require more than 968 terabytes of
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Figure 5: For the HIGGS data set, decay of the the error map 𝑅 during the 50,000 first iterations of
Algorithm 1 (logarithmic scale). The main eigenvalues of the Nyström approximation of 𝐊 obtained
at 𝑞 = 1,000 are also presented.

memory; as an alternative, rather than being stored, the entries of the matrix 𝐒 are computed on
demand from the data set and the kernel (on-the-fly evaluation).
In Figure 5, we display the decay of the error map 𝑅 during the first 50,000 iterations of Algorithm 1.
The inequalities (6) ensures that the evolution of the error maps 𝐶X, X ∈ {sp,F,P,PP} is bounded
by the decay of 𝑅 (see Figure 2 for an illustration) We also present the eigenvalues of the Nyström
approximation �̂�(𝝊(𝑞)) of 𝐊 for 𝑞 = 1,000; this approximation involves 𝑚𝑞 = 1,000 columns of 𝐊.
Remark 4.2. For the HIGGS data set, both Algorithm 1 and a procedure to obtain the target potential
𝖌 = 𝐒1were implemented in C; both relied on on-the-fly evaluations of the entries of 𝐒. Using 50 CPU
threads (AMD Ryzen Threadripper 3990X @ 2.9GHz), the computation of the target potential 𝖌 took
approximately 63.5 hours. On a single thread, each iteration of Algorithm 1 then took approximately
0.234 seconds (average over the 500,000 first iterations of the algorithm). ⊲

5 Conclusion

We presented a class of gradient-based sequential sampling strategies for Nyström approximation
which leverages the properties of the differentiable surrogate error map 𝑅. The proposed strategies
are based on early stopping of line-search-type procedures with sparse initialisations and sparse
descent directions; as such, they are primarily intended to be used to extract relatively small samples
of columns (that is, 𝑚 ≪ 𝑁). In view of our experiments, and especially for the optimal-step-size
update rule, the range in which these strategies are able to maintain a high level of accuracy appears
to be related to the decay of the eigenvalues of 𝐊; gaining a deeper understanding of the mechanisms
at play could help to further improve the operating framework of this type of strategies.
From a numerical standpoint, the main bottleneck of the proposed framework is the computation of the
target potential 𝖌 ∈ ℝ𝑁 (quadratic complexity); this operation can nevertheless be easily parallelised.
Once 𝖌 is known, the complexity of each iteration of the considered strategies is linear in 𝑁 (and the
space complexity is also linear). Further, as they involves basic algebraic operations, to improve their
efficiency, Algorithm 1 and its variants could be implemented using GPUs; stochastic approximations
of 𝖌may also be considered. In complement to sequential sampling, other types of strategies leveraging
the properties of the energy setting may be considered, such as regularisation-based approaches and,
for kernel matrices specifically, particle-flow-based approaches; see e.g. [8, 10].
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A Details of the proofs

Complement to the proof of Theorem 2.1. As illustrated in the main body of the paper, the result follows
directly from the fact that if 𝐽 ⊆ 𝐼 ⊆ [𝑁], then ‖𝐊 − �̂�(𝐼)‖X ⩽ ‖𝐊 − �̂�(𝐽 )‖X, X ∈ {tr,F, sp}; we
shall thus merely focus on proving these inequalities. We denote by 0𝐼 the orthogonal complement
of 𝐼 in , so that 𝐊 − �̂�(𝐼) = 𝑃0𝐼𝐊, with 𝑃0𝐼 the orthogonal projection from  onto 0𝐼 ; we
similarly introduce the subspace 0𝐽 and the orthogonal projection 𝑃0𝐽 . We have 0𝐼 ⊆ 0𝐽 , and
we also denote by 𝑒 the orthogonal complement of 0𝐼 in 0𝐽 (so that 𝑃0𝐽 = 𝑃0𝐼 + 𝑃𝑒).
We first consider the trace norm. Let HS( ,) be the Hilbert space of all HS operators from  to .
Following Remark 2.3 and noticing that ⟨𝑃𝑒𝐊 |𝑃0𝐼𝐊⟩HS( ,) = 0, we have

‖𝐊 − �̂�(𝐽 )‖tr = ‖𝑃0𝐽𝐊‖

2
HS( ,) = ‖𝑃0𝐼𝐊‖

2
HS( ,) + ‖𝑃𝑒𝐊‖

2
HS( ,) ⩾ ‖𝐊 − �̂�(𝐼)‖tr ,

as expected.
We now consider the Frobenius and spectral norms, and we denote by HS() the Hilbert space of
all HS operators on  . We recall that if 𝑃 is an orthogonal projection on , then the PSD operator
on  related to 𝑃𝐊 and the PSD operator  related to 𝑃𝐊𝑃 have the same nonnegative eigenvalues
(this for instance follows by noticing that the natural embedding of  in  is HS, and that the
considered operators are both composites of this embedding; see e.g. [21, 7]); we then in particular
have ‖𝑃𝐊‖HS() = ‖𝑃𝐊𝑃‖HS(). As 0𝐼 and 𝑒 are orthogonal in , the operators related to
𝑃0𝐼𝐊𝑃0𝐼 , 𝑃𝑒𝐊𝑃𝑒, 𝑃0𝐼𝐊𝑃𝑒 and 𝑃𝑒𝐊𝑃0𝐼 are orthogonal in HS(); for the Frobenius norm, we obtain

‖𝐊 − �̂�(𝐽 )‖2F = ‖𝑃0𝐽𝐊‖

2
HS() = ‖𝑃0𝐽𝐊𝑃0𝐽‖2HS()

= ‖𝑃0𝐼𝐊𝑃0𝐼‖2HS() + ‖𝑃𝑒𝐊𝑃𝑒‖2HS() + ‖𝑃0𝐼𝐊𝑃𝑒‖2HS() + ‖𝑃𝑒𝐊𝑃0𝐼‖2HS()

⩾ ‖𝑃0𝐼𝐊𝑃0𝐼‖2HS() = ‖𝑃0𝐼𝐊‖

2
HS() = ‖𝐊 − �̂�(𝐼)‖2F,

providing the expected inequality. For the spectral norm, as 0𝐼 ⊆ 0𝐽 , we also get
‖𝐊 − �̂�(𝐽 )‖sp = max{⟨𝐯 |𝑃0𝐽𝐊𝐯⟩ |𝐯 ∈  , ‖𝐯‖ = 1}

= max{⟨𝒉 |𝑃0𝐽𝐊𝑃0𝐽𝒉⟩|𝒉 ∈ , ‖𝒉‖ = 1}
= max{⟨𝑃0𝐽𝒉 |𝐊𝑃0𝐽𝒉⟩|𝒉 ∈ , ‖𝒉‖ = 1}
= max{⟨𝒉 |𝐊𝒉⟩|𝒉 ∈ 0𝐽 , ‖𝒉‖ = 1}
⩾ max{⟨𝒉 |𝐊𝒉⟩|𝒉 ∈ 0𝐼 , ‖𝒉‖ = 1} = ‖𝐊 − �̂�(𝐼)‖sp,

as required.
Proof of Corollary 2.1. We simply need to show that if 𝐽 ⊆ 𝐼 ⊆ [𝑁], then

‖𝐊 − �̂�(𝐼)‖HS() ⩽ ‖𝐊 − �̂�(𝐽 )‖HS() and ‖𝐊 − 𝑃𝐼𝐊𝑃𝐼‖HS() ⩽ ‖𝐊 − 𝑃𝐽𝐊𝑃𝐽‖HS().

Using the same notations as in the proof of Theorem 2.1 and noticing that 0𝐼 and 𝑒 are orthogonal
in , we have

‖𝐊 − �̂�(𝐽 )‖2HS() = ‖𝑃0𝐽𝐊‖

2
HS() = ‖𝑃0𝐼𝐊‖

2
HS() + ‖𝑃𝑒𝐊‖

2
HS() ⩾ ‖𝐊 − �̂�(𝐼)‖2HS(),

as required. Next, if 𝑃 is an orthogonal projection on , then (see e.g. [7])
‖𝐊 − 𝑃𝐊𝑃‖2HS() = ‖𝐊‖

2
HS() − ‖𝑃𝐊𝑃‖2HS(). (12)

Denoting by 𝑟 the orthogonal complement of 𝐽 in 𝐼 and noticing that the operators related to
𝑃𝐽𝐊𝑃𝐽 , 𝑃𝑟𝐊𝑃𝑟, 𝑃𝐽𝐊𝑃𝑟 and 𝑃𝑟𝐊𝑃𝐽 are orthogonal in HS(), we obtain

‖𝑃𝐼𝐊𝑃𝐼‖2HS() = ‖𝑃𝐽𝐊𝑃𝐽‖2HS() + ‖𝑃𝑟𝐊𝑃𝐽‖2HS() + ‖𝑃𝐽𝐊𝑃𝑟‖2HS() + ‖𝑃𝑟𝐊𝑃𝑟‖2HS()

⩾ ‖𝑃𝐽𝐊𝑃𝐽‖2HS(),

giving, in combination with (12), the expected inequality. In both cases, we conclude by following
the same reasoning as in the sketch of the proof of Theorem 2.1.
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Complement to the proof of Theorem 2.2. We first discuss the quasiconvexity of 𝑅 on ℝ𝑁 . As
mentioned in the sketch of the proof, for 𝝃 = 𝝊 + 𝜌(𝜼 − 𝝊), 𝝊 and 𝜼 ∈ ℝ𝑁 , 𝜌 ∈ [0, 1], there exists
𝑐 ⩾ 0 and 𝜌′ ∈ [0, 1] such that 𝑐𝝃 = (1 − 𝜌′)𝑐𝝊𝝊 + 𝜌′𝑐𝜼𝜼; indeed:

• for 𝝊 ∉ D and 𝜼 ∉ D , the condition is verified for 𝑐 = 0 and for any 𝜌′ ∈ [0, 1];
• for 𝝊 ∉ D and 𝜼 ∈ D , the condition is verified for 𝑐 = 0 and 𝜌′ = 0;
• for 𝝊 ∈ D and 𝜼 ∉ D , the condition is verified for 𝑐 = 0 and 𝜌′ = 1;
• for 𝝊 ∈ D and 𝜼 ∈ D , we have coni{𝝊, 𝜼} = coni{𝑐𝝊𝝊, 𝑐𝜼𝜼} (with coni{𝝊, 𝜼} the conical

hull of {𝝊, 𝜼}), so that 𝝃 ∈ coni{𝑐𝝊𝝊, 𝑐𝜼𝜼} (in this case, 𝝃 ∈ D , and so 𝑐 > 0).
From the definition of 𝑅 and the convexity of 𝐷, we obtain

𝑅(𝝃) ⩽ 𝐷(𝑐𝝃) ⩽ (1 − 𝜌′)𝐷(𝑐𝝊𝝊) + 𝜌′𝐷(𝑐𝜼𝜼) = (1 − 𝜌′)𝑅(𝝊) + 𝜌′𝑅(𝜼) ⩽ max{𝑅(𝝊), 𝑅(𝜼)},

so that 𝑅 is quasiconvex on ℝ𝑁 .
We now prove the pseudoconvexity of 𝑅 on D . For 𝝊 ∈ D , we have 𝝊∗𝐒(𝑐𝝊𝝊 − 1) = 0, so that the
condition Θ(𝝊; 𝜼) ⩾ 0, 𝜼 ∈ D , reads 𝜼∗𝐒(𝑐𝝊𝝊 − 1) ⩾ 0, that is,

(𝝊∗𝐒1)(𝜼∗𝐒𝝊) ⩾ (𝝊∗𝐒𝝊)(𝜼∗𝐒1). (13)
As 𝝊 and 𝜼 ∈ D , we have 𝝊∗𝐒𝝊 > 0 and 𝜼∗𝐒1 > 0, and thus, from (13), 𝜼∗𝐒𝝊 > 0. The matrix
𝐒 being SPSD, the Cauchy-Schwarz inequality gives (𝜼∗𝐒𝝊)2 ⩽ (𝝊∗𝐒𝝊)(𝜼∗𝐒𝜼); combining the CS
inequality with (13), we obtain (note that we also have 𝜼∗𝐒𝜼 > 0)

(𝝊∗𝐒1)2

(𝝊∗𝐒𝝊)2
⩾

(𝜼∗𝐒1)2

(𝜼∗𝐒𝝊)2
⩾

(𝜼∗𝐒1)2
(𝝊∗𝐒𝝊)(𝜼∗𝐒𝜼)

.

We thus have (𝜼∗𝐒1)2∕(𝜼∗𝐒𝜼) ⩽ (𝝊∗𝐒1)2∕(𝝊∗𝐒𝝊), that is 𝑅(𝝊) ⩽ 𝑅(𝜼), and 𝑅 is therefore pseudo-
convex on D .

B Derivation of the optimal-step-size formula

For 𝝊 and 𝜼 ∈ D such that Θ(𝝊; 𝜼) < 0 and Θ(𝜼; 𝝊) ⩽ 0, and from the function 𝜌 ↦ 𝑅
(

𝝊+ 𝜌(𝜼− 𝝊)
),

𝜌 ∈ [0, 1], we introduce

𝑓 (𝑥) = − [𝑎 + 𝑥(𝑏 − 𝑎)]2

𝑐 + 𝑥2(𝑑 + 𝑐 − 2𝑒) + 2𝑥(𝑒 − 𝑐)
= −𝜑

2(𝑥)
𝜓(𝑥)

, 𝑥 ∈ [0, 1],

with 𝑎 = 𝝊∗𝐒1 > 0, 𝑏 = 𝜼∗𝐒1 > 0, 𝑐 = 𝝊∗𝐒𝝊 > 0, 𝑑 = 𝜼∗𝐒𝜼 > 0 and 𝑒 = 𝝊∗𝐒𝜼. We then have
𝑓 ′(𝑥) = 𝜑(𝑥)

𝜓2(𝑥)
[(

2𝑥(𝑑 + 𝑐 − 2𝑒) + 2(𝑒 − 𝑐)
)

𝜑(𝑥) − 2(𝑏 − 𝑎)𝜓(𝑥)
]

, 𝑥 ∈ [0, 1].

On ℝ, and if 𝑎 ≠ 𝑏, the function 𝜑 vanishes at 𝑥1 = 𝑎∕(𝑎 − 𝑏) ∉ [0, 1] (as 𝑎 > 0 and 𝑏 > 0). Also,
the function

𝑥↦
(

2𝑥(𝑑 + 𝑐 − 2𝑒) + 2(𝑒 − 𝑐)
)

𝜑(𝑥) − 2(𝑏 − 𝑎)𝜓(𝑥)
is a polynomial of degree 1 on ℝ which vanishes at

𝑥2 =
𝑏𝑐 − 𝑎𝑒

𝑏𝑐 − 𝑎𝑒 + 𝑎𝑑 − 𝑏𝑒
= 𝑟,

with 𝑟 given by (7), and the pseudoconvexity of 𝑅 on D ensures that 𝑟 ∈ (0, 1].

12



C Abalone data set: additional figure
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Figure 6: In complement to Figure 4 and for the various sampling strategies considered in Section 4.2,
evolution of the approximation factors EX, X ∈ {tr, sp,PP}, as functions of the number of columns
𝑚 (Abalone data set and squared-exponential kernel).
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