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Abstract. This paper presents an efficient hybrid asynchronous three-dimensional (3D) perfectly matched
layer (PML) for modeling unbounded domains. The proposed unsplit explicit or implicit 3D PML formulation
is implemented in the framework of a heterogeneous asynchronous time integrator. It is fully versatile
in terms of time integrators and time step sizes according to partitions while conserving classical finite
element formulations in the elastic domain without complex-valued stretched coordinates. Examples of a
semi-infinite bar, Lamb’s test, and a soil–structure interaction problem with PML-truncated semi-infinite
heterogeneous media are investigated to illustrate the efficiency of the proposed PML in terms of accuracy
and CPU time.

Keywords. Three-dimensional perfectly matched layers (PMLs), Unbounded domains, Wave propagation,
Transient analysis, Subdomain coupling, Heterogeneous asynchronous time integrator (HATI).
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1. Introduction

One of the critical issues regarding the numerical simulation of wave propagation problems in
unbounded domains using the finite element method is finding a suitable technique to simu-
late infinite media. The simplest way is to consider a very large extended numerical mesh. How-
ever, this approach involves a high computational time, in particular when long-time simula-
tion is of interest. Hence, non-reflecting boundary conditions are required at the boundary of
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the truncated domain for mimicking infinite or semi-infinite media. Several kinds of artificial
boundaries have been developed for numerical methods to avoid spurious waves being reflected
at the boundary. They include infinite elements (Bettess [1], Houmat [2]), absorbing boundary
conditions (Enquist et al. [3]), absorbing layer methods (Kosloff and Kosloff [4], Semblat et al. [5],
Rajagopal et al. [6], Zafati et al. [7]), and perfectly matched layers (PMLs).

The PML proposed by Bérenger [8] for absorbing electromagnetic waves, and shortly after in-
terpreted by Chew [9] in terms of complex coordinate stretching, has been increasingly used for
dealing with infinite media in the context of finite difference, finite element, and spectral element
methods. The PML media, constructed by applying complex-valued coordinate stretching to the
elastic wave equation, provides the same attenuation for all frequencies and non-reflecting fea-
tures in the continuous setting for all angles of incidence at the interface. This makes it more effi-
cient than other absorbing layers. The first PML adapted to elastodynamic equations was formu-
lated according to a velocity–stress form in the framework of the finite difference method by using
a split procedure for the components of velocities with respect to the interface (Chew and Liu [10],
Collino and Tsogka [11]). The physical variable was partitioned into two components that were
orthogonal and parallel to the boundary, leading to an increase in the number of unknown pa-
rameters. Then, an unsplit formulation, known as C-PML, requiring the computation of convo-
lution integrals, was developed by Wang et al. [12]. Matzen [13] extended the C-PML approach
to the finite element method. For time-domain elastodynamics, Basu and Chopra [14, 15] also
proposed an unsplit formulation in two-dimensional (2D) problems, which was displacement-
based for straightforward finite element implementation. Here, convolution integrals were not
computed, but additional quantities such as integrals of stress and strain in time were required.
Later, Basu [16] extended this method to the three-dimensional (3D) case in explicit dynamics,
which was later implemented in finite element software such as LS-DYNA and DIANA [17, 18].
Recently, Brun et al. [19] have implemented Basu and Chopra’s formulation for 2D problems us-
ing a dual subdomain coupling approach. The issue of computing integrals of stress and strain
in time was circumvented by Kucukcoban and Kallivokas [20] by introducing a combined stress–
displacement formulation at the expense of increase in system size. This approach was finally
extended to 3D problems by Fathi et al. [21]. The present paper presents an efficient hybrid (dif-
ferent time integrators) asynchronous (different time steps) 3D PML for modeling unbounded
domains through a standard displacement-based finite element method, which is well suitable
for finite element implementation. The proposed unsplit 3D explicit/implicit PML formulation is
implemented in the framework of a heterogeneous asynchronous time integrator (HATI) [22,23],
which employs the dual approach with Lagrange multipliers for subdomain coupling. This en-
ables the PML to be treated independently using an explicit or implicit scheme with large time
steps while conserving classical finite element formulations in the elastic domain to optimize
computational efficiency.

In this paper, we first consider the strong form of 1D wave propagation in a PML medium
and present the classical design equation of the PML. This enables us to choose appropriate
parameters for the PML. The frequency-independent absorbing capabilities of the PML turn out
to be very similar to the case of absorbing layers based on Kosloff damping [4], but with the
advantage of being reflectionless at the interface between the non-dissipative interior domain
and the PML. Next, the strong and weak forms of 3D PML proposed by Basu [16] are rewritten.
For this purpose, first, the complex stretching function is changed so as to avoid introducing
the characteristic length. Second, a convenient expression of the internal force is developed for
integration using implicit or explicit time integration schemes. In Section 4, the weak formulation
of the coupled problem, including the interior and PML subdomains, is presented according to
a dual coupling approach requiring the introduction of Lagrange multipliers. The versatility of
the HATI framework enables the interior domain to be handled by the classical finite element

C. R. Mécanique — 2020, 348, no 12, 1003-1030



Sijia Li et al. 1005

formulation. Moreover, the PML is dealt with by complex-valued stretched coordinates and
an appropriate time integration scheme with its own time step to be chosen independent
of the time-stepping procedure adopted in the interior subdomain. Finally, various examples,
including a 3D semi-infinite bar, Lamb’s test, and soil–structure interaction (SSI) with different
soil layers, are investigated to illustrate the efficiency of the HATI formulation in terms of accuracy
and CPU time.

2. Design of a perfectly matched layer

The PML model is formulated by introducing the complex-valued stretching functions into the
classical elastodynamic equations in a frequency domain. The main idea is to replace the real
coordinate xi , which denotes the x, y , and z coordinates for the index equal to 1, 2, and 3, by the
complex coordinates x̃i :R→C.

The complex coordinates are defined by

∂x̃i

∂xi
=λi (xi ) = 1+ f e

i (xi )+ f p
i (xi )

iω
. (1)

In the above equation, ω denotes the circular frequency and f p
i is the attenuation function,

which is positive real-valued as a function of xi . The attenuation function serves to attenuate the
propagating waves in the xi direction, whereas the scaling function f e

i attenuates the evanescent
waves by stretching the coordinate variable xi [24]. It has to be noted that this expression is
different from that adopted by Basu and Chopra [14, 15] and Basu [16] so as to avoid introducing
a characteristic length of the problem under consideration.

In the following, we focus on the propagating waves in the 1D case to design the PML
attenuation performance. To this end, we study the effect of the damping function f p

i on the
attenuation in the PML as well as on the wave reflection at the interface between a non-
dissipative elastic medium and the dissipative PML. Indeed, the design of the PML aims at
damping out all the incident waves from the domain of interest while minimizing the spurious
waves reflected at the boundary of the truncated domain. For this purpose, the strong form
of wave propagation in 1D PML media is investigated. It will be shown that the attenuation
formulation proposed by Kosloff and Kosloff [4] shares the same absorbing and frequency-
independent capabilities of the PML as underlined by Carcione and Kosloff [25]. In addition, the
non-reflecting characteristic at the interface between a non-dissipative elastic medium and a
PML medium is shown by considering the continuous problem of wave propagation in contrast
to the Kosloffmedium, which in theory is not reflectionless at the interface [26].

2.1. 1D Wave propagation in PML medium

The governing equations in elastodynamics are modified by complex coordinate stretching. The
displacement in one-dimensional (1D) PML medium is governed by the modified equations

1

λ(x)

∂σ

∂x
=−ρω2u, (2)

ε= 1

λ(x)

∂u

∂x
, (3)

σ= Eε. (4)

Equations (2)–(4) constitute the strong form of the 1D PML medium in the frequency domain.
Parametersσ and ε are the complex values denoting the stress and the strain, respectively, ρ is the
density, and E is Young’s modulus for P waves. For S waves, by replacing Young’s modulus E by the
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shear modulus G , the same equations hold. It can be seen that the equation of motion and the
deformation equation have been modified by the introduction of a complex-valued stretching
function λ(x), and the elastic constitutive relationship remains intact.

We adopt the scaling and attenuation functions f e = 0, f p = γ, respectively, where γ is a
constant positive real value. It gives the expression of the constant complex-valued stretching
function

λ= 1− iγ

ω
. (5)

The deformation equation and the elastic constitutive relationship are used to replace the
stress term in the wave propagation equation as follows:

E
1

λ2

∂2u

∂x2 =−ρω2u. (6)

Introducing λ into the equation of motion,

E
∂2u

∂x2 = ρ(ωi)2u +2ρ(ωi)uγ+ρuγ2. (7)

The dependence of the complex coordinates on the factor iω allows an easy application of the
inverse Fourier transform when expressing the PML in the time domain. We apply the inverse
Fourier transform to obtain the wave propagation in the time domain of the PML medium as
follows:

E
∂2u

∂x2 = ρü +2ρu̇γ+ρuγ2. (8)

Here, it can be remarked that the above equation of motion is the same as the Kosloff
damping formulation originally proposed by Kosloff and Kosloff [4] before the seminal paper of
Bérenger [6] on PML for electromagnetic waves. As a result, it will be shown in the following that
the same attenuation capabilities will be derived for the Kosloff medium as those related to the
PML medium.

By introducing the harmonic solution u(x, t ) = u0 exp(i(ω0t −kx)), the expression of the wave
number k can be obtained:

k = ω0

v

(
1− i

γ

ω0
,

)
(9)

where v denotes the velocity of P waves or S waves. The expression of the rightward propagating
wave in the 1D PML medium is

u(x, t ) = u0 exp(i(ω0t −k0x))exp
(
−γx

v

)
, k0 = ω0

v
. (10)

Using the previous expression in (10), the absorbing capability of PML is given in the form of
logarithmic decrement as a function of thickness and constant attenuation scalar of the PML:

δ= ln

( |u(x)|
|u(x +∆x)|

)
= γ∆x

v
. (11)

It can be seen that the wave frequency ω0 has no effect on the absorbing ability of the PML
with regard to the logarithmic decrement, which means that all waves with all frequencies can be
attenuated in the same way. Thus, PML turns out to be independent of frequency. The velocity of
P waves is higher than the velocity of S waves for the same medium. In other words, based on the
above relationships, to achieve the same logarithmic decrement, the layer thickness for damping
out S waves should be smaller than that related to P waves. Therefore, the velocity of P waves vp

is adopted for the design of the absorbing layer.
It should be remarked again that the PML medium has the same wave propagation form in the

time domain as in the Kosloffmedium because both media have the same equation of motion as
given in (8). However, the behavior of the PML medium at the interface with the non-dissipative
medium turns out to be better than that of the Kosloff medium. In comparison with the Kosloff
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Figure 1. Wave propagation from elastic medium to PML medium.

medium, the change in the deformation equation renders the PML reflectionless at the interface
between the elastic medium and the PML medium as demonstrated in the following.

2.2. Wave propagation from elastic medium to PML medium

The wave propagation problem from an elastic medium to a PML medium is considered below
in the case of 1D harmonic waves. As shown in Figure 1, three components have to be taken into
account: the incident wave u1, the transmitted wave u2, and the reflected wave uR .

u1(x, t ) = A exp

[
iω0

(
t − x

v1

)]
, (12)

u2(x, t ) = T exp

[
iω0

(
t − x

v2

)]
exp

[
−γx

v2

]
, (13)

uR (x, t ) = R exp

[
iω0

(
t + x

v1

)]
. (14)

Based on the continuity of displacements and equilibrium of stresses at the interface, we can
write

u2(x = 0, t ) = u1 +uR (x = 0, t ), (15)
E2

λ
∂x u2(x = 0, t ) = E1(∂x u1 +∂x uR )(x = 0, t ). (16)

From the continuity of displacements at interface (15), we have

T = A+R. (17)

By substituting (12)–(14) in (16) and using the definition of the complex stretching function
given in (6), the continuity of stresses can be expressed as

E2

1+ γ
iω0

[(
− iω0

v2

)
T +

(
− γ

v2

)
T

]
= E1

(
iω0

v1
R − iω0

v1
A

)
. (18)

Assuming the same Young’s modulus (E1 = E2) and wave velocities (v1 = v2) in both media,
the continuity of stresses at the interface can be simplified as

T = A−R. (19)

Finally, taking into account (17), we derive the remarkable property of the PML for all frequen-
cies:

T = A, R = 0. (20)

This means that the incident wave is equal to the transmitted wave; no reflected wave will
be produced at the interface. In other words, in theory, the PML is completely reflectionless,
and this is true for all non-zero constant attenuation parameters γ. As reported before, the dif-
ference between the PML and Kosloff media lies in the interface behavior, which is reflection-
less in the case of the PML in contrast to the Kosloff medium owing to the introduction of the
complex-valued stretching function into the deformation equation. Nonetheless, this property
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Figure 2. Evolution of the damping functions in PML subdomain.

is only valid in the theoretical derivation. Indeed, although there is no reflection at the inter-
face analytically, spatial discretization introduces spurious reflections at the interface. Therefore,
optimal PML parameters need to be applied for minimizing these numerical reflections. The real-
valued positive functions should be monotonically increasing and vanish at the interface so that
the contrast is minimized in the discrete setting between the physical domain and the unphysi-
cal PML. Classically, the damping function f p is written as a polynomial of degree mPML as fol-
lows [14–16, 20, 21, 27]:

γ(x) = γ0

( x −x0

L

)mPML
, (21)

where γ0 is a user-tunable scalar parameter. In fact, the larger the value of γ0, the larger the
discretization error. Namely, more reflected spurious waves are produced at the interface with
larger γ0 values as is shown in the following numerical investigations.

The logarithmic decrement of the PML domain δ is obtained by integrating (11) along the
thickness of the PML:

δ=
∫ x0+L

x0

γ0

vρ

( x −x0

L

)mPML
dx = γ0L

(mPML +1)vρ
. (22)

We define the attenuation coefficient Rattenution from the logarithmic decrement:

Rattenuation =
( |u(x +L)|

|u(x)|
)2

= e−2δ. (23)

For instance, if we want to reach a logarithmic decrement target of δ = ln(10), this means
that 90% of the amplitude of the incident wave is absorbed from the interface to the end of the
PML. Next, the attenuation also occurs for the reflection process from the end of the PML toward
the interface. Hence, the incident wave is attenuated by 99%, and the attenuation coefficient
Rattenution is theoretically equal to 1% before the space and time discretization.

C. R. Mécanique — 2020, 348, no 12, 1003-1030
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Finally, we can propose the general formula to design the PML based on the 1D harmonic wave
problem presented in the PML medium. After choosing the Rattenuation value, the total thickness
L and the power mPML of the damping function γ0 can be obtained:

γ0 = (mPML +1)

2L
× vρ × ln

(
1

Rattenuation

)
. (24)

3. Three-dimensional PML

In this section, the discrete formulation of the PML for 3D elastodynamics is presented, leading
to an efficient method for calculating the internal force in the PML domain. The main steps of
the PML development are resumed. The details about matrices related to the derivatives of the
shape functions of the hexahedral element, combined with attenuation and scaling functions of
the PML, can be found in Appendix A.

3.1. Strong form of the three-dimensional PML

As shown in Section 2.1, the PML formulation is obtained by modifying the governing equations
defined in the frequency domain. The frequency-domain equations for PML are obtained by
applying the complex-valued stretching functions related to three directions:∑

j

1

λ j (x j )

∂σi j

∂x j
=−ω2ρui , (25)

σi j =
∑
k,l

Ci j klεkl , (26)

εi j = 1

2

[
1

λ j (x j )

∂ui

∂x j
+ 1

λi (xi )

∂u j

∂xi

]
, (27)

where Ci j kl are the components of the elastic constitutive tensor.
Then, we introduce the following notation for the PML region. ΩPML is the region of the

PML bounded by ΓPML = ΓD
PML +ΓN

PML, where ΓD
PML ∩ΓN

PML = ∅, defining the decomposition of
the boundary conditions into Dirichlet and Neumann conditions. In addition, g

N
denotes the

prescribed traction force on ΓN
PML and J = [0,T ] is the time interval of interest.

Thanks to the introduction of the stretching functions expressed in (1), the inverse Fourier
transform can be easily applied to the previous frequency-domain equations, leading to the
following equations in the time domain:

div
(
σ F̃

ee +Σ F̃
ep + Σ̃ F̃

pp
)
= ρ fM ü +ρ fC u̇ +ρ fK u +ρ fHU , (28)

σ=C : ε, (29)

F eT ε̇ F e +
(
F pT ε F e +F eT ε F p

)
+F pT E F p

= 1

2

[
F eT (∇u̇)+ (∇u̇)T F e

]
+ 1

2

[
F pT (∇u)+ (∇u)T F p

]
. (30)

The first equation of the above system is the equation of motion in the PML, which is comple-
mented by clamped Dirichlet conditions and zero traction forces at the Neumann conditions:{

u = 0 on ΓD
PML(

σ F̃
ee +Σ F̃

ep + Σ̃ F̃
pp

)
n = 0 on ΓN

PML.
(31)

In addition to the stress tensor, the time-domain PML involves the time integral of the stress
tensor and the time integral of the time-integral stress tensor, which are defined as follows:

Σ=
∫ t

0
σdt , Σ̃=

∫ t

0
Σdt . (32)

C. R. Mécanique — 2020, 348, no 12, 1003-1030
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It is also noted that the equation of motion is now a third-order differential equation with four
fields: the classical displacement; velocity and acceleration fields, which are complemented by
the time integral of the displacement expressed as U = ∫ t

0 u dτ. The same equation of motion
has been obtained by Basu [16], where one multiplicative factor arises from a slightly different
choice of the stretching function as previously discussed. The second equation represents the
classical constitutive relationship for an elastic medium. The third equation is the PML strain–
deformation relationship identical to Basu’s formulation, which involves the strain rate and the
time integral of the strain tensor given by

E =
∫ t

0
εdt . (33)

All the matrices involved in (28) and (30) depend on scaling functions f e
i (xi ) and attenuation

functions f p
i (xi ). Their expressions are presented in Appendix A.

3.2. Weak form of the three-dimensional PML

The space discretization is displacement-based, following a standard finite element formulation.
The space and time discretization is summarized in the following before presenting the time
coupling of a hybrid multi-time-step PML with the physical domain. Let υ be the test function
belonging to an appropriate space. The weak formulation is obtained by integrating over the
PML domain:∫

Ω
ρ fMυ · ü dΩ+

∫
Ω
ρ fCυ · u̇ dΩ+

∫
Ω
ρ fK υ ·u dΩ+

∫
Ω
ρ fHυ ·U dΩ+

∫
Ω
ε̃ee : σdΩ

+
∫
Ω
ε̃ep : ΣdΩ+

∫
Ω
ε̃pp : Σ̃dΩ=

∫
ΓN

υ ·
(
σ F̃

ee +Σ F̃
ep + Σ̃ F̃

pp
)
·n dΓ. (34)

Here, taking into account the scaling and damping functions, the expressions of the modified
strain tensors are as follows: 

ε̃ee = 1
2

[
(∇υ)F̃

ee + F̃
eeT

(∇υ)T
]

ε̃ep = 1
2

[
(∇υ)F̃

ep + F̃
epT

(∇υ)T
]

ε̃pp = 1
2

[
(∇υ)F̃

pp + F̃
ppT

(∇υ)T
]

.

(35)

The internal force is expressed as follows:

pe
int =

∫
Ω
ε̃ee : σdΩ+

∫
Ω
ε̃ep : ΣdΩ+

∫
Ω
ε̃pp : Σ̃dΩ. (36)

3.3. Finite element discretization

In the following, we consider the space discretization for a classical eight-node hexahedral el-
ement with linear shape functions. The approximation of the displacement is given as fol-
lows: ue (x, y, z) = N(x, y, z)Ue of size 24 × 1, where Ue gathers the nodal displacements of the
eight nodes; the matrix N(x, y, z) of size 3 × 24 contains the nodal shape functions N(x, y, z) =
[N1I N2I · · · N8I], where I is the 3×3 identity matrix.

Introducing the finite element discretization into the weak form of the equation of motion
in (34), the semi-discrete equation of motion can be derived:

MÜ+CU̇+KU+K U+Pint = Pext. (37)

The inertial system matrices M, C, K, and K are assembled from their respective element-level
matrices. The element-level matrices are obtained by adopting a quadrature formula in every
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hexahedral element:

Me =
∫
Ωe
ρ fM NTNdΩ, (38)

Ce =
∫
Ωe
ρ fC NTNdΩ, (39)

Ke =
∫
Ωe
ρ fK NTNdΩ, (40)

K
e =

∫
Ωe
ρ fH NTNdΩ. (41)

Taking into account (35), the internal force term Pe
int can be written as

Pe
int =

∫
Ωe

B̃eeTσ̂dΩ+
∫
Ωe

B̃epTΣ̂dΩ+
∫
Ωe

B̃ppT ̂̃ΣdΩ, (42)

where the matrices B̃ee, B̃ep, and B̃pp depend on the derivatives of the shape functions and the
scaling and attenuation functions of the PML. Their expressions are presented in Appendix A.
In (42), we use the Voigt notation, where σ̂ represents the six-component vector of stresses and Σ̂
and ̂̃Σ are the successive time integrals of stresses.

For the time-stepping procedure over the time step [tn ; tn+1], additional relationships are
assumed:

Ên+1 = Ên + ε̂n∆t , Σ̂n+1 = Σ̂n + σ̂n∆t , ̂̃Σn+1 = ̂̃Σn + ̂̃Σ∆t , (43)̂̇εn+1 = ε̂n+1 − ε̂n

∆t
. (44)

Using the assumptions given in (44), the third equation of the system in (30) leads to the
expression of the strain ε̂n+1 at the end of the time step:

ε̂n+1 = 1

∆t

[
1

∆t
F̂εε̂n − F̂QÊn +BεU̇n+1 +BQUn+1

]
. (45)

The matrices F̂ε, F̂Q, Bε, and BQ depending on the derivatives of shape functions as well as
scaling and attenuation functions are defined in Appendix A. It has to be noted that the above
strain–deformation relationship in the 3D case is the same as that in the 2D case [15].

Here, we propose a convenient expression of the internal force, which is different from the
computation of the strain terms in the paper by Basu [16] for the 3D PML. The internal force is
decomposed into two parts. The first part of the internal force contains only known quantities
at time tn , whereas the second part contains the unknown quantities at time tn+1. Thus, the
element-wise internal force vector Pe

n+1 can be written in terms of the element velocity and
displacement vectors (U̇e

n+1 and Ue
n+1) as well as a term denoted as P(εe

n,Ee
n,Σe

n,Σ̃
e
n) depending

only on known quantities at the beginning of the time step. The element-wise internal force Pe
n+1

is written as

Pe
n+1 =

(∫
Ωe

B̃T 1

∆t
DBεdΩ

)
U̇n+1 +

(∫
Ωe

B̃T 1

∆t
DBQ dΩ

)
Un+1 +P

(
εe

n,Ee
n,Σe

n,Σ̃
e
n

)
, (46)

where the matrix B̃ is defined as a function of the previous matrices B̃ee, B̃ep, and B̃pp and the
time step as follows:

B̃ = B̃ee +∆t B̃ep +∆t 2B̃pp. (47)

The known part of the internal force at the beginning of the time step is given by

P(εe
n,Ee

n,Σe
n,Σ̃

e
n) =

(∫
Ωe

B̃T 1

∆t 2 DFεεn dΩ

)
−

(∫
Ωe

B̃T 1

∆t
DFQEn dΩ

)
+

(∫
Ωe

B̃epTΣn dΩ

)
+

(∫
Ωe

B̃ppTΣ̃n dΩ

)
+

(∫
Ωe

B̃ppT∆tΣn dΩ

)
. (48)
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To express the part of the internal force that has to be computed at the end of the time step
given by the first two terms in (46), the element-level matrices are defined as

C̃e =
∫
Ωe

B̃T 1

∆t
DBεdΩ, (49)

K̃e =
∫
Ωe

B̃T 1

∆t
DBQ dΩ. (50)

These two matrices can be viewed as one viscous matrix operating on velocities and one addi-
tional stiffness matrix operating on displacements. The proposed method for calculating the in-
ternal force can be employed in explicit and implicit time integration. Finally, after assembling
the element matrices given in (38)–(41) and (49)–(50), the space and time discrete equation of
motion is obtained at the end time tn+1:

MÜn+1 + (C+ C̃)U̇n+1 + (K+ K̃)Un+1 +K Un+1 +P(εn,En,Σn,Σ̃n) = Fext. (51)

The above equation is third-order in time, requiring a specific time integration procedure.
Here, a dual approach is preferred for coupling the elastic domain and PML. Indeed, the elastic
domain and the PML are integrated in time by using the powerful and flexible framework of HATI
to enable choosing in each partition the appropriate time integrator with its own time step while
conserving the classical finite element formulation in other subdomains.

4. Hybrid asynchronous coupling between the physical domain and PML

4.1. Weak form for subdomain coupling

Let Ω be a bounded domain belonging to R3 with a regular boundary. The time interval of
interest is J = [0,T ]. The domain Ω is divided into two parts Ω1 and Ω2 as shown in Figure 3:
Ω1

⋂
Ω2 = ∅ and ∂Ω1

⋂
∂Ω2 = ΓI . The parameter ΓI denotes the interface between the two

subdomains, subdomain Ω1 representing the non-dissipative medium (the domain of interest)
and subdomainΩ2 denoting the PML medium. Subdomain 1 is related to a linear elastic behavior
and subdomain 2 is related to the PML region that was presented previously. The subdomainΩ1

is characterized by its density ρ1; Young’s modulus E1; Poisson’s coefficient ν1; the body force
b1; the Dirichlet prescribed displacement on ΓD

1 , uD
1 ; and the traction force at the Neumann

condition on ΓN
1 , g N

1
. The subdomain Ω2 is characterized by its density ρ2; Young’s modulus E2;

Poisson’s coefficient ν2; the body force b2; the Dirichlet prescribed displacement on ΓD
2 , uD

2 ; and
the traction force at the Neumann condition on ΓN

2 , g N
2

.

Before writing the weak form of the coupled problem in Ω divided into two parts Ω1 and Ω2,
we classically introduce test functions v1 and v2, which belong to appropriate spaces: v1 ∈W ∗

1 =
{v1 ∈ (H 1(Ω1))d and v1 = 0 on ΓD

1 } and v2 ∈ W ∗
2 = {v2 ∈ (H 1(Ω2))d and v2 = 0 on ΓD

2 }, where d is
the space dimension equal to 3. The solutions belong to the following spaces: u1(t ) ∈ W1, W1 =
{u1 ∈ (H 1(Ω1))d and u1 = uD

1 on ΓD
1 }, u2(t ) ∈ W2, and W2 = {u2 ∈ (H 1(Ω2))d and u2 = uD

2 on ΓD
2 }.

According to the dual Schur approach, the introduction of the Lagrange multipliers allows us
to glue the velocities of the two subdomains at the interface ΓI [28, 29]. The Lagrange multi-
pliers belong to the adapted dual trace space related to the interface between the two subdo-
mains denoted by Q. All the space variables considered are assumed to be sufficiently smooth
and regular.
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Figure 3. DomainΩ divided into two subdomainsΩ1 andΩ2.

Next, using a dual Schur formulation, we can write the principle of virtual power for transient
dynamics. We find the solution u1(t ) ∈W1, u2(t ) ∈W2, and λ(t ) ∈Q for which the following weak
form is satisfied: ∀v1 ∈W ∗

1 , ∀v2 ∈W ∗
2 and ∀µ ∈Q.∫

Ω1

ρ1v1 · ü1 dΩ+
∫
Ω1

ε(v1) : σ
1

dΩ+
∫
Ω2

ρ fM v2 · ü2 dΩ+
∫
Ω2

ρ fC v2 · u̇2 dΩ

+
∫
Ω2

ρ fK v2 ·u2 dΩ+
∫
Ω2

ρ fH v2 ·U 2 dΩ

+
∫
Ω2

ε̃ee : σdΩ+
∫
Ω2

ε̃ep : ΣdΩ+
∫
Ω2

ε̃pp : Σ̃dΩ

+
∫
ΓI

v1 ·λdΓ+
∫
ΓI

v2 ·λdΓ+
∫
ΓI

µ · (u̇1 − u̇2

)
dΓ

=
∫
Ω1

v1 ·b1 dΩ+
∫
ΓN

1

v1 · g N
1

dΓ+
∫
ΓN

2

v2 ·
(
σF̃ ee +ΣF̃ ep + Σ̃F̃ pp

)
n dΓ. (52)

Then, we follow along the classical lines of finite element discretization. At the interface
between the subdomains, the continuity of velocities is imposed by the condition

L1U̇1 +L2U̇2 = 0, (53)

where L1 and L2 are the constraint matrices of Boolean type in the case of matching meshes at
the interface ΓI as presented in previous works [19,26]. From the weak form of the global problem
in (52), semi-discrete equations can be derived in space corresponding to the two equations
of motion related to the two subdomains, which are completed by a kinematic condition. In
the following, the hybrid integration of this set of equations is carried out to propose a 3D
hybrid asynchronous PML. For time discretization, the GC method proposed by Gravouil and
Combescure is employed [28, 30], which belongs to the HATI framework. Applying continuity
of velocities at the interface, it was demonstrated that the coupling GC method is stable for
all time integrators (implicit and explicit) belonging to the Newmark family [29], where their
own time steps depend on subdomains. Different time integrators with their own time steps

C. R. Mécanique — 2020, 348, no 12, 1003-1030



1014 Sijia Li et al.

can be adopted depending on the considered subdomain, rendering the proposed framework
very useful for coupling complex PML formulations, while conserving classical finite element
formulations and time integrators in other subdomains.

In the following, the subdomain Ω1 is integrated independently in time by a second-order-
accurate Newmark explicit time integration scheme. Moreover, the subdomain Ω2 is treated by
an extended third-order-accurate Newmark implicit time integration scheme [21] or a second-
order explicit time integration method following the central difference scheme.

4.2. Multi-time-step implicit PML

As illustrated in Figure 3, an explicit time integrator with a fine time step ∆t1 imposed by the
Courant–Friedrichs–Lewy (CFL) condition [31] is adopted for the subdomain Ω1. An implicit
time integrator with a large time step ∆t2 is used for the subdomain Ω2 because the implicit
scheme is unconditionally stable with ∆t2 = m∆t1, where m is the time step ratio between the
two subdomains. In this way, hybrid (different schemes) asynchronous (different time steps
depending on subdomains) absorbing layers can be obtained. The equilibrium of subdomain
2 is attained at time tm at the end of the large time step ∆t2 = [t0; tm], while the equilibrium
of subdomain 1 is attained at the end of every fine time step ∆t1 = [t j−1; t j ]. The gluing of the
velocities at the interface is defined at the fine time scale.

Finally, the weak form given in (52) together with the velocity continuity equation in (53) and
the expression of the interface terms as a function of Lagrange multipliers can be expressed in
the following discrete form in space and time:

M1Üj
1 +K1Uj

1 = Fext,j
1 −LT

1λ
j, (54)

M2Üm
2 + (C2 + C̃2)U̇m

2 + (K2 + K̃2)Um
2 +K2U

m
2 +P2(ε0,E0,Σ0,Σ̃0) = Fext,m

2 −LT
2λ̂

m
, (55)

L1U̇j
1 +L2U̇j

2 = 0. (56)

The first equation is the discrete in space equation of motion of the subdomain Ω1 defined
at the end of the fine time step ∆t1 = [t j−1; t j ]. The second equation is the discrete in space
equation of motion of the subdomain Ω2, corresponding to the PML medium, defined at the
end of the large time step ∆t2 = [t0; tm]. The third equation is the discrete velocity continuity at
the interface. The subdomainΩ1 is integrated in time by a Newmark explicit scheme (β1 = 0 and
γ1 = 1/2) with a lumped mass matrix M1. We define Uj−1,p

1 as the predictor displacement and

U̇j−1,p
1 as the predictor acceleration, which are classically introduced in approximate Newmark

formulas:

Uj−1,p
1 = Uj−1

1 +∆tU̇j−1
1 + ( 1

2 −β1
)
∆t 2Üj−1

1 , (57)

U̇j−1,p
1 = U̇j−1

1 +∆t (1−γ1)Üj−1
1 . (58)

The classical approximate Newmark formulas in terms of displacements and velocities at the
end of the time step t j are expressed in acceleration form as follows:

Uj
1 = Uj−1,p

1 +β1∆t 2Üj
1, (59)

U̇j
1 = U̇j−1,p

1 +γ1∆tÜj
1. (60)

Regarding the subdomain Ω2, we use an implicit third-order extended Newmark scheme as
proposed by Fathi et al. [21]. For the implicit third-order extended Newmark scheme, β2 and γ2

are the usual Newmark parameters related to the classical constant average acceleration scheme.
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These are equal to 1/4 and 1/2, respectively; α2 is an additional parameter required for the third-
order extended Newmark scheme, which is equal to 1/12. Velocities, displacements, and time
integrals of displacement are expressed as functions of predictors as follows:

U
m
2 = U

0,p
2 +α2∆t 3Üm

2 , (61)

Um
2 = U0,p

2 +β2∆t 2Üm
2 , (62)

U̇m
2 = U̇0,p

2 +γ2∆tÜm
2 . (63)

Here, the predictors U̇0,p
2 ,U0,p

2 , and U
0,p
2 are defined as follows:

U
0,p
2 = U

0
2 +∆tU0

2 +
∆t 2

2
U̇0

2 +
(

1

6
−α2

)
∆t 3Ü0

2, (64)

U0,p
2 = U0

2 +∆tU̇0
2 +

( 1
2 −β2

)
∆t 2Ü0

2, (65)

U̇0,p
2 = U̇0

2 + (1−γ2)∆tÜ0
2. (66)

Introducing the above approximate Newmark formulas into (54)–(55) leads to the equations
of motion whose unknown parameters to be solved are the acceleration terms written as follows:

M1Üj
1 = Fext,j

1 −K1Uj−1,p
1 −LT

1λ
j,

M̃2Üm
2 =−P2(ε0,E0,Σ0,Σ̃0)− (C2 + C̃2)U̇0,p

2 − (K2 + K̃2)U0,p
2 −K2U

0,p
2 −LT

2λ
m,

L1U̇j
1 +L2U̇j

2 = 0,

(67)

where the effective stiffness matrix M̃2 in the PML subdomain is defined as

M̃2 = M2 +γ2∆t (C2 + C̃2)+β2∆t 2(K2 + K̃2)+α2∆t 3K2. (68)

4.3. Multi-time-step explicit PML

The explicit version of the 3D PML is also proposed using the expression of the internal force
in (46). The discrete equations of motion become

M1Üj
1 = Fext,j

1 −K1Uj−1,p
1 −LT

1λ
j,

M2Üm
2 =−P2(ε0,E0,Σ0,Σ̃0)− (C2 + C̃2)U̇m−1/2

2 − (K2 + K̃2)Um
2 −K2U

m
2 −LT

2λ
m,

L1U̇j
1 +L2U̇j

2 = 0.

(69)

Here, it has to be noted that the known part of the internal force in the PML remains un-
changed with respect to the previous implicit formulation. In contrast to the previous implicit
case, the displacement Um

2 , the mid-step velocity U̇m−1/2
2 , and the integral in time of the dis-

placement U
m
2 are known using the classical central difference scheme given by

U̇m−1/2
2 = U̇m−3/2

2 +∆tÜm−1
2 , (70)

Um
2 = Um−1

2 +∆tU̇m−1/2
2 , (71)

U
m
2 = U

m−1
2 +∆tUm

2 . (72)

In (69), the damping term, given by (C2 + C̃2)U̇m−1/2
2 , is classically taken into account at the

mid-step velocity. This time lag in the velocity is introduced to avoid solving the system by a non-
diagonal matrix when the central difference scheme is adopted [32]. In fact, it can be observed
that (69) only involves the mass matrix, which can be lumped so as to speed up time stepping. It
is important to note that only the mass matrix M2 is lumped in our proposed explicit version
of the 3D PML and the other PML matrices are kept consistent. This approach is called the
“intermediate formulation” in Basu’s work [16].
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4.4. Interface problem

In the following, we deal with both implicit and explicit versions of the 3D PML. Following along
the lines of the coupling GC method [28, 30], the kinematic quantities are divided into two parts:
free and linked quantities. The free quantities, denoted by U̇free,j

1 and U̇free,j
2 , are calculated by

taking into account internal and external forces without considering interface forces. The linked
quantities are obtained from the interface loads given by the Lagrange multiplier vector λ.
The kinematic quantities of the subdomain Ω2 at t j U̇free,j

2 are interpolated between the free
quantities at the beginning and at the end of the large time step. It can be shown [28, 30] that
the velocity continuity at the interface, given in (56), leads to a reduced-size interface problem
whose unknown parameters are the Lagrange multipliers at the fine time scale:

Hλj = b j . (73)

Here, the interface operator and the right-hand-side vector are defined as follows:{
H = γ1∆tL1M−1

1 LT
1 +γ2∆tL2M̃−1

2 LT
2 ,

b j = L1U̇free,j
1 +L2U̇free,j

2 .
(74)

The parameter M̃2 is the effective stiffness matrix used in the implicit computation. The
explicit computation follows along the same lines by replacing M̃2 with the lumped mass matrix
M2. The interface operator H is called the Steklov–Poincaré operator, which can be viewed as the
condensed effective stiffness matrix of degrees of freedom belonging to the interface between the
two subdomains. The right-hand-side vector b j only depends on the free velocities computed
in both subdomains without considering the interface forces. It can be seen as a predictor value
projected to the degrees of freedom belonging to the interface. The detailed computational stages
are presented in Figure 4.

5. Numerical examples

5.1. Numerical test of a semi-infinite 3D elastic bar

The numerical model of a semi-infinite elastic bar subjected to horizontal displacement at the
free end is set up as shown in Figure 5. It simulates the propagation of P waves from a non-
dissipative elastic medium to a PML medium. The soil subdomain is assumed to be linear elastic
with the following material characteristics: ρ1 = 1700 kg/m3, E1 = 10 MPa, and ν1 = 0.24. The
velocity of P waves Cp is 83 m/s. The same material characteristics are applied in the PML
subdomain.

To investigate the effect of γ0 on the accuracy, the model is composed of a soil subdomain of
300 m and a PML subdomain with Rattenuation being equal to 0.01 and mPML being equal to 2.
Different PML lengths from 10 m to 300 m are investigated, leading to different γ0 values on the
basis of the general design formula given in (24). The observation point C is located 20 m from
the left end of the model. The simulation is conducted by using a homogeneous time step in both
subdomains. The results are compared to the reference results using an extended mesh.

To distinguish the difference between the PML results and the reference results, the error in
the PML solution is computed with respect to the reference results from the extended mesh as
follows:

Error (%) = maxn |up (tn)−uref(tn)|
maxn |uref(tn)| . (75)

Here, uref and up are the displacements of the extended mesh model and the PML model,
respectively. In fact, one part of the error arises from the reflections at the interface between the
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Figure 4. The algorithm for multi-subdomain coupling at the initialization stage and over
a large time step.

Figure 5. Numerical model of a semi-infinite elastic 3D bar subjected to horizontal dis-
placement.

soil and the PML subdomain because of spatial discretization. The other part arises from the
end of the PML model depending on Rattenution. Therefore, the error in the PML solution is the
maximum reflection between the two parts with respect to the amplitude of the incident wave. It
is called the maximum numerical reflection coefficient.

Non-harmonic waves are investigated by considering a Ricker incident wave defined as fol-
lows:

Ric(t , tp , ts ) = A

(
2π2 (t − ts )2

t 2
p

−1

)
exp

(
−π2 (t − ts )2

t 2
p

)
. (76)

In Figure 6, the Ricker wave plotted in the time and frequency domains has three parame-
ters: the fundamental period tp , the time shift ts , and the amplitude A. The chosen values are as
follows: tp = 3 s, ts = 3 s, and A = 1. Thus, the finite element size of the eight-node hexahedral
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Figure 6. Waveform and Fourier transform of the Ricker wavelet.

Figure 7. γ0 and maximum numerical reflection coefficient as a function of PML length.

elements in the longitudinal direction composing the mesh (displayed in Figure 5) has to be de-
signed to accurately reproduce the propagation of the input Ricker wave. To achieve sufficient ac-
curacy, the finite element size for linear finite elements should respect the following relationship:
LEF <λmin/20, where λmin is the minimal wavelength.

On the left of Figure 7, the value of the attenuation coefficient γ0, given in the design equation
of the PML in (24), is plotted as a function of the PML length for Rattenuation equal to 0.01 and
mPML equal to 2. On the right of Figure 7, the maximum numerical reflection is plotted as a
function of the PML length. It is obvious that the greater the length of the PML subdomain, the
smaller the necessary value of γ0. It is also clearly observed that with larger length and smaller γ0,
the maximum numerical reflection coefficient decreases and better accuracy can be achieved. In
fact, the larger the length, the more the elements existing in the PML to describe the attenuation
of the waves. Therefore, less spurious reflection is produced at the interface between the soil and
the PML subdomain.

The time history of wave propagation at the observation point C with a PML length of 200 m is
shown in Figure 8. The first reflection from the interface is 0.99%. The second reflection from the
end of the PML subdomain defined by an Rattenution value of 0.01 is 0.78%. In short, the principle
behind the design of the PML subdomain is to control the reflections from the interface and the
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Figure 8. Time history of wave propagation at the observation point C with a PML length
of 200 m.

end of the model. The reflections from the end can be easily controlled by Rattenution. In terms
of the reflections at the interface, an appropriate value of the length should be applied to obtain
satisfactory results.

5.2. Numerical test of a semi-infinite 3D elastic bar with a refined mesh in the middle

In the previous semi-infinite elastic bar, a detailed mesh is introduced locally into the middle
of the first elastic soil subdomain. The same observation point C is considered. The aim is to
investigate, through a very simple test, a representative case of a more complex SSI problem.
In this problem, a refined mesh is introduced into the soil mesh so as to model site effects and
vibrations of the structure in a localized near-field area. To simulate the refined mesh, the size
of the elements in the middle region of the soil subdomain is reduced by a factor of 100. As a
consequence, the time step satisfying the CFL condition, which is imposed by the mechanical
properties and the finite element size in the elastic soil subdomain, is reduced to ∆t1 = 0.0005 s.
This value is 50 times smaller than that in the previous test. Moreover, the finite element size at
the PML interface is kept unchanged. In the fully explicit calculation, the time step in the PML
subdomain is substantially reduced and leads to additional computational time. As a result, it is
more suitable to use hybrid asynchronous time integration, which is beneficial to optimize the
computational time with a fine time step in the soil subdomain and an independent large time
step in the other subdomain. The reference results are obtained by fully explicit computation
with the extended mesh using the fine time step imposed by the detailed mesh.

Regarding HATI computations, we investigate time step ratios m from 1 to 100 for the implicit
version of the PML and from 1 to 50 for the explicit version. The last value corresponds to the CFL
condition in the PML (∆t2 = 50∆t1 = 0.025 s). In Figure 9(a), the results obtained for the implicit
PML are compared to the reference results in terms of displacement at the observation point. It
is shown that a high time step ratio can be employed (m = 50) while maintaining the reflected
spurious wave at a low level. The advantage of the implicit PML is that it enables selecting a time
step higher than the CFL condition with a time step ratio equal to 100. In Figure 9(b), the case
of the explicit PML is also compared to the reference results. This figure highlights very good
behavior of the multi-time-step explicit PML even for a large time step (m = 50). The accuracy
and wall-clock times of both PML versions are listed in Tables 1 and 2.

In regard to CPU time for different time step ratios, as the time step ratio increases, the CPU
time decreases significantly. In other words, the proposed 3D hybrid asynchronous PML turns
out to be efficient in terms of accuracy and CPU time thanks to the versatility of the employed

C. R. Mécanique — 2020, 348, no 12, 1003-1030



1020 Sijia Li et al.

Figure 9. Time history of wave propagation at the observation point C: (a) multi-time-step
implicit PML (E/I); (b) multi-time-step explicit PML (E/E).

Table 1. Reflections and CPU times using different time step ratios for E/I co-simulations

Fully explicit E/I (m=5) E/I (m=10) E/I (m=30) E/I (m=50) E/I (m=100)
Reflection (%) 0.98 0.98 0.95 1.01 1.39 2.37
CPU time (s) 170.47 45.60 28.34 15.33 11.97 9.63

Table 2. Reflections and CPU times using different time step ratios for E/E co-simulations

Fully explicit E/E (m = 5) E/E (m = 10) E/E (m = 30) E/E (m = 50)
Reflection (%) 0.98 0.94 0.90 1.56 2.33
CPU time (s) 170.47 40.76 24.50 13.03 10.64

HATI framework. Finally, it should be noted that both PML versions are stable. It is recalled that
the explicit version of the PML in Basu’s work [16] is unstable when the mass matrix is lumped
and the other PML matrices are kept consistent (“intermediate formulation”). Here, the proposed
explicit 3D PML, also implemented by the “intermediate formulation”, is stable and endowed
with multi-time-step capabilities as shown in HATI computations.

5.3. 3D Lamb’s test

To evaluate the effectiveness of the hybrid asynchronous PML, Lamb’s test has been simulated.
In Lamb’s test, the concentrated load applied to the surface of an infinite half-space medium
generates three types of waves propagating through the soil: P, S, and Rayleigh waves [33].
Consequently, Lamb’s test can be considered as a good test for assessing the performance of the
PML. Non-harmonic waves are investigated by considering a Ricker incident wave as detailed in
Section 5.1. The chosen parameters are tp = 3 s, ts = 3 s, and A = 2 MN.

As illustrated in Figure 10, the numerical model is a quarter model of a PML-truncated semi-
infinite homogeneous medium subjected to a concentrated force. It is composed of bounded
soil (subdomain 1) of size 50 m and a PML (subdomain 2) of thickness 50 m. The same material
characteristics are adopted as in the previous numerical model of the semi-infinite elastic bar.
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Figure 10. 3D Lamb’s test modeled using PML. The quarter model of a PML-truncated
semi-infinite homogeneous medium subjected to a concentrated force.

The size of the eight-node hexahedral element (5 m×5 m×5 m) has been taken into account so
as to control the inherent wave dispersion. The reference results are computed from an extended
mesh. The PML design employs the following parameters: Rattenution value of 0.01 and mPML

value of 2. A recording point is located on the surface of the subdomain soil at 20 m from each
symmetric side.

In the case of a homogeneous time step, the time step satisfying the CFL condition imposed
by the mechanical properties in the soil subdomain and the finite element size is applied in both
subdomains. Namely, m = 1 and ∆t1 = ∆t2 = 0.025 s. We can observe that the displacement
obtained by the PML agrees with the reference results. The reflected spurious wave is 1.15%
in the X and Z directions and 2.82% in the Y direction as listed in Table 3. In this paper, the
bounded soil subdomain and the PML are limited to a size of 50 m, corresponding only to 1/5
of the P wavelength. By using a larger model, better accuracy can be achieved. Using the GC
method, the classical second-order Newmark explicit time integration scheme is conserved in
the soil subdomain without introducing complex-coordinate-stretched equations in the interior
domain. Moreover, thanks to the versatility and stability of the HATI adopted in this paper, it is
possible to use a larger time step in the PML domain as is done in the following.

In the case of heterogeneous time steps, the subdomain soil is integrated with a fine time
step ∆t1 = 0.025 s. The PML subdomain is integrated with a large time step ∆t2 = m∆t1 to
reduce the computational time. The time histories of displacements in the three directions at
the observation point with different time step ratios m (∆t2 = m∆t1) equal to 1, 3, and 5 are
shown in Figure 11. The errors in comparison to the reference results are presented in Table 3.
It can be noted that the different curves are quite close and reflections increase as the time step
ratio increases. In the X and Z directions, in comparison to the reference results, the amplitude
of the spurious wave varies from 1.15% to 5.31% with respect to the amplitude of the incident
wave. In the Y direction, the maximum reflection increases from 2.82% to 7.70%. The observed
decrease in accuracy as the time step ratio increases can be explained by the following points.
First, it is considered that the loss of accuracy can be mainly due to the additional first-order-
accurate assumptions made in (43)–(44) for performing the time integration of the complex
strain–deformation relation in (30). For a bigger time step, more numerical errors are introduced

C. R. Mécanique — 2020, 348, no 12, 1003-1030



1022 Sijia Li et al.

Figure 11. Displacements recorded at the observation point using different time step ratios.

Table 3. Displacement errors using different time step ratios

Displacement X (%) Displacement Y (%) Displacement Z (%)
m = 1 1.15 2.82 1.15
m = 3 3.18 5.24 3.18
m = 5 5.31 7.70 5.31

due to the approximation. Second, the GC coupling algorithm is known to be dissipative when
heterogeneous time steps are used between the subdomains, generating spurious waves at the
interface. It has been demonstrated that for the GC method, when adopting the same time step,
the second order of accuracy is achieved. When different time steps are adopted, the first order
of accuracy is achieved due to a slight spurious dissipation at the interface [28, 30].

The kinetic and internal energies of the soil subdomain are computed for different time step
ratios m as shown in Figure 12. The errors in comparison to the reference results are computed
using (75) and are presented in Table 4. It can be observed that the errors are small for different
time step ratios and that the errors increase with time step ratio. The CPU times for different
time step ratios m are listed in Table 5 in a normalized form divided by the CPU time of the
homogeneous time step. It shows that with increase in time step ratio, the CPU times decrease
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Figure 12. Time histories of kinetic and internal energies computed using different time
step ratios.

Table 4. Energy errors using different time step ratios

Kinetic energy (%) Internal energy (%)
m = 1 0.343 0.126
m = 3 0.554 0.213
m = 5 0.772 0.300

Table 5. Normalized CPU time for different time step ratios

m = 1 m = 3 m = 5
Normalized CPU time 1 0.334 0.189

significantly, highlighting the significance of hybrid asynchronous time integration. This implies
that by using explicit/implicit co-computation, not only the classical Newmark explicit time
integration scheme can be conserved in the soil subdomain without introducing complex-
coordinate-stretched equations but also large time steps can be adopted in the PML subdomain
for reducing the computational time.

5.4. 3D rigid foundation on a layered heterogeneous elastic half-space

The classical SSI problem of a rigid foundation on a heterogeneous half-space is investigated
as displayed in Figure 13. The load is defined by a Ricker wave with the same parameters as in
Lamb’s test. Three different subdomains are considered: the soil medium (subdomain 1), the PML
medium (subdomain 2), and rigid foundation (subdomain 3).

The soil subdomain is assumed to be linear elastic and is composed of two layers. The
thickness of each layer is 25 m with surface dimensions 50 m×50 m. A recording point is located
on the surface of the subdomain soil at 20 m from each symmetric side to assess the efficiency
of the PML layers for modeling an infinite heterogeneous half-space medium. The common
material parameters of the soil layers are ρ1 = 1700 kg/m3 and ν1 = 0.24. The second layer is
characterized by a Young’s modulus value that is twice greater than that of the first layer (10 MPa).
Similarly, to match the soil subdomain, the interface between the layers has to be taken into
account in the PML subdomain around the soil with a thickness of 50 m, leading to two PMLs
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Figure 13. Rigid foundation on a layered soil. The quarter model of a PML-truncated semi-
infinite heterogeneous medium subjected to a uniform force.

with the same material properties as those of the two soil layers. The PML is designed by using
the following parameters: Rattenution value of 0.01 and mPML value of 2.

The rigid foundation on the soil is characterized by a thickness of 5 m, surface dimensions of
10 m×10 m, ρ3 = 1700 kg/m3, ν3 = 0.24, and E3 = 1000 MPa. The last value is 100 times greater
than the Young’s modulus value in the soil subdomain. Consequently, the time step satisfying the
CFL condition imposed by the mechanical properties of the rigid foundation is 0.0025 s, which
is 10 times smaller than the time step required in the soil subdomain. If the same explicit time
integration scheme is adopted for the soil subdomain and for the rigid foundation subdomain,
the time step in the soil subdomain is reduced, which leads to additional computational time.
As a result, it is of great importance to couple the soil subdomain and the rigid foundation by a
coupling algorithm and adopt an implicit time integration scheme for the rigid foundation sub-
domain. Finally, by using the subdomain coupling strategy, three different subdomains are cou-
pled within the multi-time-step explicit/implicit co-simulation. The soil medium is integrated
with a time step ∆t1. The rigid foundation is integrated using a classical second-order Newmark
implicit scheme. The PML is integrated using an extended third-order Newmark implicit scheme.
The time step is ∆t3 =∆t2 = m∆t1, where m denotes the time step ratio.

First, we consider the case with the time step ratio m = 1 and the time step ∆t1 = 0.025 s
satisfying the CFL condition imposed by the mechanical properties of the soil subdomain.
The displacements recorded at point C are compared with the reference results obtained from
an extended mesh. Here, the coupling is only between different time integrators because the
same time step size is adopted in all the subdomains. From Figure 15 and Table 6, it can be
observed that good agreement is achieved in comparison to the reference results. The reflected
spurious wave is 1.11% in the X and Z directions and 2.97% in the Y direction. The snapshots
of displacement magnitudes at different times are displayed in Figure 14. The first snapshot at
time 3.875 s shows the propagation of the maximum peak of Ricker incident waves. The second
snapshot at time 4.35 s shows that the maximum peak of the Ricker incident waves begins to be
absorbed in the PML region, which is followed by an additional smaller peak produced in the soil
subdomain. The third snapshot at time 5.05 s shows that the maximum peak has been absorbed
by the PML and that the absorption of the smaller peak begins. The last snapshot at 5.9 s reveals
that the absorption of waves in the PML region is almost completed. No obvious reflections can

C. R. Mécanique — 2020, 348, no 12, 1003-1030



Sijia Li et al. 1025

Figure 14. Snapshots of displacement magnitudes at different times.

Table 6. Displacement errors using different time step ratios and time steps

Displacement X (%) Displacement Y (%) Displacement Z (%)
m = 1, ∆t1 = 0.025 1.11 2.97 1.11
m = 3, ∆t1 = 0.025 6.55 5.26 6.55

m = 3, ∆t1 = 0.0025 1.51 1.87 1.51

be observed at the PML interface or from the boundaries, thereby indicating very satisfactory
performance of the PML.

In the case of heterogeneous time steps, two examples are demonstrated. The first is carried
out by using a time step ratio m = 3 and a time step ∆t1 = 0.025 s. As presented in Table 6, the
accuracy decreases with increasing time step ratio, which is similar to Lamb’s test. The other
computation is carried out with a finer time step size ∆t1 = 0.0025 s and a time step ratio m = 3.
In other words, the time step ∆t1 is taken as the CFL critical time step in the rigid foundation,
corresponding to the time step of fully explicit computation. As shown in Figure 15, the PML
results are in good agreement with the reference results, achieving an error of 1.51% in the X
and Z directions and 1.87% in the Y direction. In comparison to the first case with the time
step size ∆t1 = 0.025 s and the same time step ratio m = 3, this demonstrates that PML accuracy
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Figure 15. Displacements recorded at the observation point using different time step ratios
and time steps.

Table 7. Normalized CPU time for different time step ratios and time steps

m = 1, ∆t1 = 0.025 m = 3, ∆t1 = 0.025 m = 3, ∆t1 = 0.0025
Normalized CPU time 1 0.287 3.53

depends on the size of the time step. In short, the size of the time step has an important effect on
the accuracy of the PML. The smaller the time step in the PML, the better the accuracy.

In regard to the computational time normalized by the CPU time for the case with the time
step size ∆t1 = 0.025 s and the time step ratio m = 1, which is given in Table 7, an important
reduction in computational time can be obtained by using the time step size ∆t1 = 0.025 s and
the time step ratio m = 3. For a finer time step size ∆t1 = 0.0025 s corresponding to the time step
of fully explicit computation, more time steps should be calculated in the numerical simulation,
thereby resulting in a longer computational time.

6. Conclusion

A novel 3D PML, which is suitable for finite element implementation, has been proposed in this
paper for transient elastodynamics. The displacement-based PML, making use of the unsplit

C. R. Mécanique — 2020, 348, no 12, 1003-1030



Sijia Li et al. 1027

formulation and the convenient expression of the internal force in the PML domain, is integrated
into the heterogeneous (different time integrators) asynchronous (different time steps) time
integrator framework. This enables the PML to be dealt with independently by an explicit or an
implicit scheme with large time steps while conserving classical finite element formulations in
the elastic domain for optimizing computational efficiency.

A bar modeled by the 3D finite element method is demonstrated as the first example, which is
followed by more advanced examples such as Lamb’s test and SSI problems with PML-truncated
semi-infinite homogeneous and heterogeneous media. In addition to the straightforward imple-
mentation features in finite element and spectral element software, the proposed 3D hybrid asyn-
chronous PML turns out to be accurate, stable, and efficient in terms of CPU time thanks to the
versatility of the employed HATI framework. It is also shown that the stiffest subdomain in the SSI
problem, such as a rigid foundation on a multi-layered soil domain, can be dealt with by implicit
time integration without impacting the choice of time integrators and time steps in multi-layered
soil and PML media. Future work is in progress for applying the developed 3D hybrid asynchro-
nous PML to complex SSI problems such as wave barriers in heterogeneous media.

Appendix A.

In the following, we summarize the matrices expressed as a function of scaling and attenuation
functions f e and f p related to the PML.

F e =

1+ f e
1 (x1) 0 0

0 1+ f e
2 (x2) 0

0 0 1+ f e
3 (x3)

 , F p =

 f p
1 (x1) 0 0

0 f p
2 (x2) 0

0 0 f p
3 (x3)

 ,

F̃
ee =

 f ee
23 0 0

0 f ee
13 0

0 0 f ee
12

 , F̃
ep =

 f ep
23 0 0

0 f ep
13 0

0 0 f ep
12

 , F̃
pp =

 f pp
23 0 0

0 f pp
13 0

0 0 f pp
12

 , (77)

where 
f ee

i j = [1+ f e
i (xi )][1+ f e

j (x j )],

f ep
i j = [1+ f e

i (xi )] f p
j (x j )+ [1+ f e

j (x j )] f p
i (xi ),

f pp
i j = f p

i (xi ) f p
j (x j ).

(78)

The scalar values from the right-hand side of the equation of motion in (28) are as follows:

fM = [1+ f e
1 (x1)][1+ f e

2 (x2)][1+ f e
3 (x3)],

fC = [1+ f e
1 (x1)][1+ f e

2 (x2)] f p
3 (x3)+ [1+ f e

1 (x1)][1+ f e
3 (x3)] f p

2 (x2)

+ [1+ f e
2 (x2)][1+ f e

3 (x3)] f p
1 (x1),

fK = f p
1 (x1) f p

2 (x2)[1+ f e
3 (x3)]+ f p

2 (x2) f p
3 (x3)[1+ f e

1 (x1)]

+ f p
1 (x1) f p

3 (x3)[1+ f e
2 (x2)],

fH = f p
1 (x1) f p

2 (x2) f p
3 (x3).

(79)

Then, we introduce the element-wise finite element discretization for the weak form of the
internal force terms in (42). The matrices containing shape function derivatives of an eight-node
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hexahedral element combined with the previous scaling and attenuation functions are expressed
as follows:

B̃ee
I =



Ñ ee
I 1 0 0

0 Ñ ee
I 2 0

0 0 Ñ ee
I 3

Ñ ee
I 2 Ñ ee

I 1 0

Ñ ee
I 3 0 Ñ ee

I 1

0 Ñ ee
I 3 Ñ ee

I 2


, (80)

B̃ee = [
B̃ee

1 B̃ee
2 · · · B̃ee

8

]
. (81)

The components of the above derivative matrix are given for an index i = 1,2,3 without the
summation convention:

Ñ ee
I i = F̃ ee

i i NI ,i , Ñ ep
I i = F̃ ep

i i NI ,i , Ñ pp
I i = F̃ pp

i i NI ,i . (82)

In addition, B̃ep and B̃pp are defined similarly by replacing Ñ ee
I i with Ñ ep

I i and Ñ pp
I i , respectively.

The Voigt notation is adopted for the stress and strain tensors, thereby giving the following
vectors:

σ̂=



σ11

σ22

σ33

σ12

σ13

σ23


, ε̂=



ε11

ε22

ε33

2ε12

2ε13

2ε23


. (83)

The constitutive relationship for an isotropic elastic medium is

σ̂= Dε̂, (84)

where D is the material constitutive matrix expressed as follows:

D =



k +4µ/3 k −2µ/3 k −2µ/3
k −2µ/3 k +4µ/3 k −2µ/3
k −2µ/3 k −2µ/3 k +4µ/3

µ 0 0
0 µ 0
0 0 µ

 . (85)

Furthermore, additional matrices have to be defined for the strain–deformation relationship
given in (45). We express the F̂ε and Bε matrices depending on shape function derivatives as well
as scaling and attenuation functions:

F̂
ε =



(F ε
11)2 0 0 0 0 0

0 (F ε
22)2 0 0 0 0

0 0 (F ε
33)2 0 0 0

0 0 0 F ε
11F ε

22 0 0

0 0 0 0 F ε
11F ε

33 0

0 0 0 0 0 F ε
22F ε

33


, (86)
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Bε =



F ε
11N l

I 1 0 0

0 F ε
22N l

I 2 0

0 0 F ε
33N l

I 3

F ε
11N l

I 2 F ε
22N l

I 1 0

F ε
22N l

I 3 0 F ε
33N l

I 1

0 F ε
22N l

I 3 F ε
33N l

I 2


, (87)

with the matrices

F l =
[

F p +
F e

∆t

]−1

, F ϵ = F e F l . (88)

Moreover, the component in the Bε matrix is given by N l
I i = F l

i i NI ,i for i = 1,2,3. Finally, F̂
εQ

and BQ are defined similarly by replacing F ϵ with F Q , where F Q = F p F l .

Supplementary data

Supporting information for this article is available on the journal’s website under https://doi.org/
10.5802/crmeca.59 or from the author.

References

[1] P. Bettess, “Infinite elements”, Int. J. Numer. Meth. Eng. 11 (1977), p. 53-64.
[2] A. Houmat, “Mapped infinite p-element for two-dimensional problems of unbounded domains”, Comput. Geotech.

35 (2008), p. 608-615.
[3] B. Enquist B, A. Majda, “Absorbing boundary conditions for the numerical simulation of waves”, Math. Comput. 31

(1977), p. 629-651.
[4] D. Kosloff, R. Kosloff, “Absorbing boundaries for wave propagation problems”, J. Comput. Phys. 63 (1986), p. 363-376.
[5] J. F. Semblat, L. Lenti, A. Gandomzadeh, “A simple multi-directional absorbing layer method to simulate elastic wave

propagation in unbounded domains”, Int. J. Numer. Meth. Eng. 85 (2011), p. 1543-1563.
[6] P. Rajagopal, M. Drozdz, E. A. Skelton, “On the use of the absorbing layers to simulate the propagation of elastic

waves in unbounded isotropic media using commercially available finite element packages”, NDT and E Int. 51
(2012), p. 30-40.

[7] E. Zafati, M. Brun, I. Djeran-Maigre, F. Prunier, “Design of an efficient multi-directional explicit/implicit Rayleigh
absorbing layer for seismic wave propagation in unbounded domain using a strong form formulation”, Int. J. Numer.
Meth. Eng. 106 (2015), p. 83-112.

[8] J. P. Bérenger, “A perfectly matched layer for the absorption of electromagnetic waves”, J. Comput. Phys. 114 (1994),
p. 185-200.

[9] W. C. Chew, W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched
coordinates”, Microw. Opt. Technol. Lett. 7 (1994), p. 599-604.

[10] W. C. Chew, Q. H. Liu, “Perfectly matched layers for elastodynamics: a new absorbing boundary condition”, J. Com-
put. Acoust. 4 (1996), p. 341-359.

[11] F. Collino, C. Tsogka, “Application of the perfectly matched absorbing layer model to the linear elastodynamic
problem in anisotropic heterogeneous media”, Geophysics 66 (2001), p. 294-307.

[12] T. Wang, X. Tang, “Finite-difference modeling of elastic wave propagation: a nonsplitting perfectly matched ap-
proach”, Geophysics 68 (2003), p. 1749-1755.

[13] R. Matzen, “An efficient finite element time-domain formulation for the elastic second-order wave equation: A non
split complex frequency shifted convolutional PML”, Int. J. Numer. Meth. Eng. 88 (2011), p. 951-973.

[14] U. Basu, A. Chopra, “Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory
and finite-element implementation”, Comput. Meth. Appl. Mech. Eng. 192 (2003), p. 1337-1375.

[15] U. Basu, A. Chopra, “Perfectly matched layers for transient elastodynamics of unbounded domains”, Int. J. Numer.
Meth. Eng. 59 (2004), p. 1039-1074.

[16] U. Basu, “Explicit finite element perfectly matched layer for transient three-dimensional elastic waves”, Int. J. Numer.
Meth. Eng. 77 (2009), p. 151-176.

[17] LS-DYNA, LS-DYNA Keyword User’s Manual, Livermore Software Technology Corporation, 2019.

C. R. Mécanique — 2020, 348, no 12, 1003-1030

https://doi.org/10.5802/crmeca.59
https://doi.org/10.5802/crmeca.59


1030 Sijia Li et al.

[18] J. Mamie, W. P. Kikstra, DIANA User’s Manual, DIANA FEA BV, 2016, Version 10.1.
[19] M. Brun, E. Zafati, I. Djeran-Maigre, F. Prunier, “Hybrid asynchronous perfectly matched layer for seismic wave

propagation in unbounded domains”, Finite Elem. Anal. Des. 122 (2016), p. 1-15.
[20] S. Kucukcoban, L. F. Kallivokas, “Mixed perfectly-matched-layers for direct transient analysis in 2D elastic heteroge-

neous media”, Comput. Meth. Appl. Mech. Eng. 200 (2011), p. 57-76.
[21] A. Fathi, B. Poursartip, L. F. Kallivokas, “Time-domain hybrid formulations for wave simulations in three-dimensional

PML-truncated heterogeneous media”, Int. J. Numer. Meth. Eng. 101 (2015), p. 165-198.
[22] M. Brun, A. Gravouil, A. Combescure, “Two FETI-based heterogeneous time step coupling methods for Newmark

and α-schemes derived from the energy method”, Comput. Meth. Appl. Mech. Eng. 283 (2015), p. 130-176.
[23] A. Gravouil, A. Combescure, M. Brun, “Heterogeneous asynchronous time integrators for computational structural

dynamics”, Int. J. Numer. Meth. Eng. 102 (2015), p. 202-232.
[24] Q. H. Liu, “Perfectly matched layers for elastic waves in cylindrical and spherical coordinates”, J. Acoust. Soc. Am.

105 (1999), p. 2075-2084.
[25] J. M. Carcione, D. Kosloff, “Representation of matched-layer kernels with viscoelastic mechanical models”, Int. J.

Numer. Anal. Model. 10 (2013), p. 221-232.
[26] S. Li, M. Brun, I. Djeran-Maigre, S. Kuznetsov, “Hybrid asynchronous absorbing layers based on Kosloff damping for

seismic wave propagation in unbounded domains”, Comput. Geotech. 109 (2019), p. 69-81.
[27] I. Harari, U. Albocher, “Studies of FE/PML for exterior problems of time-harmonic elastic waves”, Comput. Meth.

Appl. Mech. Eng. 195 (2006), p. 3854-3879.
[28] A. Gravouil, A. Combescure, “A multi-time-step explicit–implicit method for non-linear structural dynamics”, Int. J.

Numer. Meth. Eng. 50 (2001), p. 199-225.
[29] N. M. Newmark, “A method of computation for structural dynamics”, J. Eng. Mech. Div. (ASCE) 85 (1959), p. 67-94.
[30] A. Combescure, A. Gravouil, “A numerical scheme to couple subdomains with different time-steps for predominantly

linear transient analysis”, Comput. Meth. Appl. Mech. Eng. 191 (2002), p. 1129-1157.
[31] T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall,

Englewood Cliffs, NJ, 1987.
[32] T. Belytschko, W. K. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures, Wiley, New York, 2000.
[33] H. Lamb, Proceedings of the 38th Royal Society of London, vol. 72, Royal Society of London, London, 1903, 128-

130 pages.

C. R. Mécanique — 2020, 348, no 12, 1003-1030


	1. Introduction
	2. Design of a perfectly matched layer
	2.1. 1D Wave propagation in PML medium
	2.2. Wave propagation from elastic medium to PML medium

	3. Three-dimensional PML
	3.1. Strong form of the three-dimensional PML
	3.2. Weak form of the three-dimensional PML
	3.3. Finite element discretization

	4. Hybrid asynchronous coupling between the physical domain and PML
	4.1. Weak form for subdomain coupling
	4.2. Multi-time-step implicit PML
	4.3. Multi-time-step explicit PML
	4.4. Interface problem

	5. Numerical examples
	5.1. Numerical test of a semi-infinite 3D elastic bar
	5.2. Numerical test of a semi-infinite 3D elastic bar with a refined mesh in the middle
	5.3. 3D Lamb's test
	5.4. 3D rigid foundation on a layered heterogeneous elastic half-space

	6. Conclusion
	Appendix A. 
	Supplementary data
	References



