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Abstract 

Complex respiratory diseases are a significant challenge for the livestock industry worldwide. 

These diseases cause severe economic losses but also have a considerable impact on animal 

health and welfare. One of the first lines of pathogen defense combines the respiratory tract 

mucus, a highly viscous material primarily formed by mucin, and a thriving multi-kingdom 

microbial ecosystem, referred to herein as the mucin-microbiome axis. This axis can be 

considered a mighty two-edged sword, as its usual function is to protect from unwanted 

substances and organisms at one arm’s length, while its dysfunction may be a clue for pathogen 

infection and respiratory disease onset. We further learned that the structure and function of this 

axis might be modulated by noncoding regulatory RNAs (e.g., microRNAs, long RNAs). This 

opinion paper unearths the current understanding of the triangular relationship of mucins, 

holobiont, and noncoding RNAs and the wide range of functions exhibited by the mucin-

microbiome axis under respiratory infection settings. There is a need to look at these molecular 

underpinnings that dictate distinct health and disease outcomes to implement effective 

prevention, surveillance, and timely intervention strategies tailored to the different 

epidemiological contexts.  
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Introduction 

Complex respiratory diseases are a significant problem in livestock production, particularly in 

intensive systems. These diseases can cause significant economic losses due to reduced 

productivity, increased morbidity, premature mortality, treatment costs, and severe consequences 

for public health and the environment 
1–5

. In livestock physiopathology, there is a growing 

awareness that infectious agents frequently do not operate alone, and their virulence can be 

affected by multispecies synergic interactions 
1–4,6–8

. Consequently, a central finding of disease 

complexes involves interactions among holobionts (the host and the many other microorganisms 

living in or around it 
9
) and multiple etiological agents 

5
.  

 

Undoubtedly, complex respiratory diseases entail multifactorial processes whose mechanisms are 

still not fully understood. New evidence has shown that the airway microbiota, defined as the 

complex community of microorganisms living in the respiratory tract, including bacteria, 

eukaryotes (especially yeast and protists), and archaea 
10

, might act as a gatekeeper that provides 

resistance to infection on the mucosal surface 
11,12

. Under normal physiological conditions, the 

diverse community of commensal microorganisms maintains a mutualistic relationship with the 

host, acting as the prime educator and maintainer of the airway's innate and adaptive immune 

functions 
5,10

. Classifying healthy versus diseased individuals based on their airway microbiome 

has been done successfully for ruminants 
13–22

, pigs 
23–26

, horses 
27

, and chickens 
28–30

. However, 

we can take one step further and broaden our view of the dynamics of respiratory diseases in 

livestock to include an additional aspect of the complex system: the respiratory mucus.  
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While mucus has historically been viewed as a simple physical barrier, recent work has 

suggested that mucins, the major gel-forming components of mucus, have many structural and 

functional roles in the respiratory system 
31–36

. Mucins are high-molecular-weight glycosylated 

proteins with hundreds of branching chain sugar (O-linked glycans), representing up to 80% of 

mucin weight. Through this rich biochemistry, O-linked glycans on mucins (collectively termed 

glycome) confer a wealth of physical and functional properties in the respiratory tract 
37

. First, 

the glycans on mucins provide a physical barrier that traps and clears inhaled particles and a 

chemical barrier that neutralizes toxins, allergens, pollutants, and pathogens 
32,33,38–41

. This limits 

the growth and colonization of pathogens and their adhesion and invasion of the respiratory 

epithelium. Thus, in addition to their role as a physical and chemical barrier, glycans on mucins 

have also been shown to have immune-modulating properties and may regulate inflammation 
35

. 

However, mucins' glycans are considered a double-edged sword, as they can aid invading 

pathogens to subvert host immune machinery. On top of these protective properties, mucin 

glycome affects the respiratory microbiota composition and functionality while serving as an 

environmental niche and a carbon and nitrogen source 
42–44

. Reciprocally, the respiratory tract 

microbiota's composition and activity can influence mucins' production and quality while 

stimulating the immune system and protecting against pathogen infection 
45

. Any disruption in 

the display or function of mucins and the glycosylation pattern of their glycans can lead to 

dysbiosis and respiratory diseases and potentially increase the risk of respiratory infections in 

livestock. 

 

The next complexity is that mucin production, secretion, and glycosylation are highly regulated 

by noncoding ncRNAs (ncRNAs) at the genomic level. The glycans on mucins are products of 

multiple glycosyltransferases and glycosidases working in a coordinated manner to synthesize 

structures appended to proteins 
46

. Increasing evidence shows that ncRNAs are critical regulators 

of cellular and biological processes in living organisms, including mucin modifications  
46,47

. The 

research community has classified the ncRNAs based on their length: small ncRNAs (sncRNAs) 

and long ncRNAs (lncRNAs) 
48

. One type of ncRNA implicated in mucin glycome regulation is 

microRNAs (miRNAs)
 46,47,49

. miRNAs are small (~22 nucleotides) RNA molecules that bind to 

messenger RNAs (mRNAs) and regulate their translation and stability into proteins. Several 

miRNAs have been identified to fine-tune the glycan biosynthetic enzymes and regulate the 

expression of mucin genes in the respiratory tract of humans, including miR-34b/c 
50

, miR-146a 
51

, miR-378 
52

, and miR-141 
53

.  

 

Determining the underlying causes of complex respiratory disease in farm animals is 

complicated. Species of veterinary interest are subjected to different host variables, 

environments, and pathogens, which could all play a role in disease, alone or in concert. From a 

One-Health-One Welfare perspective, this opinion paper aims to give insights into the potential 

avenues of complex respiratory disease, building on the surge of recent primary research to 

debate different aspects of the complex and intricate relationships between pathogens, the 

holobiont, mucins, and their genetic regulation. Underpinning these mechanisms will be crucial 

to determine how these can be harnessed to develop novel interventions to prevent disease 

infection and improve animal health and welfare. 

 

Food-producing animal complexes: holobionts in a polymicrobial environment 
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Respiratory complex diseases constitute a significant cause of morbidity and mortality in 

livestock, in which prevention and prompt diagnosis, and targeted treatments are essential 
1–5

. 

For example, the bovine respiratory disease complex (BRDC) is a leading cause of morbidity 

and economic losses in wealthy countries, especially for newly feedlot calves, ranging from 30% 

in Belgium, 
54

 to 49% in Switzerland, and up to 90% in the U.S.A. 
55

. Similarly, sheep 

respiratory disease affects many animals 
56

, leading to significant indirect losses, such as carcass 

condemnations, treatments, and decreased production 
57

. Analogously, the prevalence of the 

porcine respiratory disease complex (PRDC) in finishing pigs continues to grow 
58

, with a 

morbidity rate ranging from 10% in Denmark 
59

 to 40% in the U.S.A 
60

. As for common 

livestock animals, the respiratory disease complex in commercial birds remains widespread 
61,62

. 

It has become endemic in different countries, causing subclinical infections, mild respiratory 

symptoms, and high production losses in birds raised for meat or eggs 
63–66

.  

 

Complex respiratory diseases involve interactions among holobionts and multispecies synergistic 

etiological agents 
5
. More than one pathogen-one disease paradigm is needed to explain complex 

respiratory disorders 
67

. Synergistic interactions between pathogens often occur through 

mechanisms such as chemical signaling influencing gene expression or metabolic 

exchange/complementarity to avoid competition for nutrients and improve the metabolic ability 

of microbial consortium (Mach and Clark 2017b; Mazel-Sanchez et al. 2019).  A plethora of 

examples in ruminants and swine illustrates the framework for co-infection between pathogens 

(Gaudino et al. 2023), especially under intensive production, where animal density and stressing 

conditions are increased, and breeding programs are overly focused on enhancing traits related to 

production instead of robustness and disease resistance. In this context, multiple viral agents can 

contribute to the development of BRDC 
13,15,17,18,70

, including bovine viral diarrhea virus 

(BVDV), bovine respiratory syncytial virus (BRSV), bovine herpes virus 1 (BHV-1), influenza 

D virus (IDV) (Oliva et al. 2019; Lion et al. 2021), bovine coronavirus (BCoV) 
73

  and 

parainfluenza three virus (PI3V) 
74

. In particular, IDV increases the susceptibility to the 

respiratory pathogen Mycoplasma bovis (Lion et al. 2021; Gaudino et al. 2023). Mannheimia 

haemolytica is the primary causative pathogen leading to lung damage in sheep 
77

. Yet, 

Mycoplasma ovipneumoniae and PI3V combined with adverse physical and physiological effects 

of stress predispose Mannheimia haemolytica infection 
78,79

. The swine influenza virus also 

compensates for the lack of suilysin (cytotoxic protein secreted by Streptococcus suis) in the 

adherence and invasion process of suilysin-negative Streptococcus suis 
80

. A synergism between 

nasal Staphylococcus aureus and pathobionts such as Pasteurella multocida and Klebsiella spp. 

has also been reported in pigs 
81

. Co-occurrence between the porcine reproductive and 

respiratory syndrome virus (PRRSV), Haemophilus parasuis, and Mycoplasma hyorhinis in pig 

lungs is repeatedly observed 
82

. The swine influenza virus enhances the morbidity of 

Streptococcus suis infection by decreasing mucociliary clearance, damaging epithelial cells, and 

facilitating its adherence, colonization, and invasion in the lungs 
83

. Another case in point is the 

low pathogenic avian influenza viruses (LPAIV) that, during outbreaks, are coupled with co-

infections by Mycoplasma gallisepticum, Mycoplasma synoviae, Ornithobacterium 

rhinotracheale, avian pathogenic Escherichia coli (APEC) and Staphylococcus aureus, 

increasing the mortality rate (Much et al. 2002; Umar et al. 2020; Filaire et al. 2022) and a 

marked reduction in egg production of laying hens (Umar et al. 2016). Frequently, these 

polymicrobial infections significantly hamper therapy, prognosis, and overall disease 

management. Under such circumstances, prevention is essential.  
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The untapped potential of airway mucins: the frontline defense of the respiratory tract  

The respiratory tract is resistant to environmental injury, despite continuous exposure to 

pathogens, particles, and toxic chemicals in inhaled air 
89

. Such resistance primarily depends on a 

highly effective defense provided by mucus 
89

, a discontinuous, thin, and viscoelastic complex 

biological fluid that shields the lungs from environmental insults through a process known as 

mucociliary clearance 
90

.  

 

The mucus is mostly water (usually > 97%), mucins, non-mucin proteins, ions, lipids, and 

immunological factors 
89,91,92

. The major macromolecular mucus components are the mucin O-

linked glycoproteins 
93

. Mucins have a unique structure that distinguishes them from other 

proteins. First, they have a central protein core rich in Ser, Pro, or Thr- repetitive and non-

repetitive sequences 
93,94

. Second, these repeated sequences allow for extensive post-translational 

modifications, including adding glycans and their glycosylation 
95

. The glycans attached to 

mucins are highly O-glycosylated 
93

. O-glycosylation is increasingly revealed as a sophisticated 

informational system that underlies essential biological functions at the cellular and organismal 

levels 
96

. Glycomics, one of the latest omics system science fields, evaluate the structures and 

function of glycoproteins in a biological system 
97

. The study of the glycome is metaphorically 

akin to forestry; each glycoprotein comprises glycans (leaves) conjugated to a protein (tree 

trunk) 
98

.  These O-glycans are primarily built from five O-linked monosaccharide components: 

galactose, N-acetylglucosamine (GlcNAc), and N-acetylgalactosamine (GalNAc), fucose, and 

sialic acid 
93,94

 attached to the protein backbone through an oxygen atom. The process of O-

glycosylation leads to remarkable O-linked glycan heterogeneity and diversity, with over 200 

distinct forms identified on mucins, representing a wealth of biochemical information in a 

minimum of space. The mucin glycome is analogous to the genome, transcriptome, and 

proteome but even more dynamic, and it has higher structural complexity that has yet to be fully 

defined. The human and mouse airway mucin glycome has started to be determined through 

different omic technologies 
37,99,100

. However, information needs to be created for livestock. Only 

two studies have described the N-glycan patterns in pig
 101

 or chicken 
102

 lungs, with no 

information about the O-glycome.  

 

Broadly, there are two classes of mucins, those that remain tethered to cell membranes and those 

secreted, usually by the goblet cells. The cell-tethered mucins form the basis of a gel-like layer 

surrounding the cilia (periciliary layer) essential for regular ciliary action to move mucus out of 

the airways 
93

 and help control the mucus hydration 
103

. In contrast, the secreted mucins 

constitute the mobile mucus layer 
103

. Currently, 22 mucins (from MUC1 to MUC21) are 

identified in humans (denoted with capital letters), and 16 are found in the respiratory tract 
104

. 

The major mucins produced in the airways are the secreted polymeric mucins MUC5AC and 

MUC5B 
105

 and the cell-tethered mucins MUC1, MUC4, MUC16, and MUC20 
106

. MUC5AC 

and MUC5B are large (5–50 Mda) polymeric mucins and underpin the structure and organization 

of the airway’s mucus gel 
93

. MUC5AC is mainly produced in epithelial surface goblet cells in 

the upper airways, whereas MUC5B is primarily secreted from mucous cells in submucosal 

glands 
105

. Similar conformation is observed in pigs 
107,108

.  

 

Most of the physical properties and functions of MUC5B and MUC5AC are governed by the 

glycosylation patterns of their O-linked glycan structures 
93

. Indeed, mucin glycosylation 
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patterns are partially responsible for mucus's ability to set protective physical barriers against 

mechanical and chemical damage from the external environment (Goto et al. 2016) and harmful 

microorganisms 
109

. They also prevent opportunistic microbes' virulence 
110,111

, aggregation, and 

biofilm formation, interfering with pathogen adhesion and cell receptor binding 
111

. Glycans on 

mucins also possess antimicrobial properties and modulate and maintain immune homeostasis 
38–

41
. Most of these actions in health are regulated by MUC5B, the major gel-forming mucin in the 

lung 
105

. Conversely, MUC5AC production is much lower in healthy airways but is upregulated, 

for example, in response to viral infections 
93

. It acts as a decoy for viral receptors and is 

essential for an allergic inflammatory challenge 
31,93,108

.   

 

Despite mucins' various defensive and tolerative properties, some pathogens have developed 

strategies to exploit or manipulate mucins while enhancing their survival and evasion of the 

immune system. Certain viruses have evolved surfaces that do not adhere to mucins 
112

. Other 

pathogens can degrade the mucus layer and penetrate, release toxins that disrupt the epithelial 

barrier or modify mucus pH, influencing its viscosity. This is possible thanks to mucin-degrading 

proteases, chemotaxis, and flagella, which allow pathogens to move inside the mucus, adhere to 

and produce infection 
113

. Once secreted mucus barrier is surpassed, pathogens recognize and 

target particular classes of cell receptors, such as sialylated glycans, glycosaminoglycans, and 

cell adhesion molecules, to mediate cellular attachment and entry 
96,114

. Several RNA and DNA 

viruses use sialylated glycans, e.g., sialic acids (Sia), to access the host cells as initial anchors 
115

. 

In particular, influenza and coronaviruses, two of the most critical zoonotic threats, use sialic 

acids as cellular entry receptors 
116

. More than 60 different Sias are known, which differ in sugar 

structural modifications 
117–119

. 

The presence or absence of an appropriate Sia receptor is a significant determinant of the host 

tropism of a pathogen. Indeed, studying the glycan structures in the chicken trachea and lung, 

Suzuki et col 
102,120

 reported that IAVs bind preferentially to terminal Sia on glycans that possess 

Sia α2-3Gal, with or without fucosylation and 6-sulfation but not to α2,6-Sia. At the same time, 

horses' Sia α2,3-Gal is predominantly expressed on the surface of ciliated epithelial cells of the 

nasal mucosa, trachea, and bronchus 
120

. In contrast, the trachea of cows is deficient in both Sia 

α2,6-Gal and SA α2,3-Gal receptors 
121

. All influenza viruses tested in pigs interacted with one 

or more sialylated N-glycans but not O-glycans or glycolipid-derived glycans 
101

.  

In addition to serving as receptors for viral attachment, sialic acids can also play a role in viral 

evasion of the host immune system. Pathogens can mimic or mask their surface glycans to 

resemble those of host cells, making it difficult for the immune system to recognize and target 

them, otherwise called molecular mimicry. Other pathogens often carry glycan structures on their 

surface, e.g., sialic acid-specific glycans, to decorate their cell surfaces, aid in host cell 

attachment, and assist in evading host immunity 
40,117,122–125

. In summary, pathogens exploit their 

own and host mucin glycans to establish infection and survival.  

 

Airway mucins: sweet and well-coated partners for microbiota 

Interestingly, mucins also contain, feed, and dictate the airway microbiome ecosystem 
96

 while 

tolerating their enormous diversity 
42,126

 and dictating their relationship (Varki 2007a. The 

respiratory tract microbiome is less diverse than the gut, with Bacteroidetes and Firmicutes as the 

dominant phyla in mammals 
5
. High microbial biomass colonizes the mammal upper respiratory 

tract 
10

. Conversely, the lower respiratory tract exhibits low biomass, with a significant role in 

lower airway mucosal immunology 
127

. The colonization of the airways occurs shortly after birth, 
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with the maturation of the microbiome occurring fast 
5
. The airway microbiota composition is 

mediated mainly by microbial immigration, microbial elimination, and the proliferation rate of 

bacteria 
5
. The airway microbiota has been shown to have essential roles in lung development 

128
 

and maintaining homeostasis 
10,129

. 

The significance of microbial research, especially when the world is trying to combat deadly 

infectious viral diseases and microbial resistance, has opened possibilities to explore diseased 

individuals based on their airway microbiome with much ease. Progress in this branch of science 

has helped elucidate the holobiont dynamics under respiratory infections in ruminants 
13–22

, pigs 
23–26

, horses 
27

, and chickens 
28,29,130

.  

 

Being both an environmental niche and a food source 
131

, respiratory mucins are essential drivers 

of microbiota composition, diversity, stability, and functionality, which can, in turn, influence 

microbial behavior and community structure under respiratory infection. Mucins create 

ecosystem heterogeneity by binding certain nutrients, leading to gradient formation and spatial 

niche partitioning. This is especially true for the airway microbiota, which primarily extracts 

nutrients from the respiratory mucins because nutrients are scarce 
131

. Many Bacteroides spp and 

Akkermansia muciniphila encode an extensive repertoire of carbohydrate-active enzymes 

(CAZymes) that sequentially cooperate in metabolizing the host mucins 
132,133

. The first targets 

for CAZymes are the terminal residues on the O-glycans, such as sialic acid, fucose, and 

glycosulfate 
134

. The complete degradation of mucin polysaccharides can be done by combining 

enzymes that a diverse range of microbes can express. Insight into the enzymatic capacity of the 

microbiota is essential to predict how glycans on mucin landscapes contribute to the microbiota 

assembly and to host-microbiome symbiosis in eubiosis
 135

 and how we can use them to prevent 

complex diseases. Notably, the first insights into the respiratory mucin-microbiome axis in the 

livestock show how microbiota modifications (due to different levels of ammonia 

concentrations) in growing pigs impacted the thickness and viscosity of the mucus layer and 

increased the colonization of harmful bacteria 
136

. Enriching the upper respiratory tract with the 

probiotic Bacillus amyloliquefaciens in chicken increased the sIgA levels, the count of goblet 

cells, and the expression of the MUC2 gene in the tracheal epithelium and the overall respiratory 

mucosal barrier function 
137

.  

 

Yet, the relationship between the microbiome and the mucins in the respiratory tract is 

mutualistic and implies a two-way traffic. Thus, reciprocally, airway microbiotas have a 

pervasive impact on the composition and functionality of mucins. Microbiota is required to 

synthesize large gel-forming mucins completely, including encapsulation, glycosylation, changes 

in fucosylation and sialidation patterns, and thickness 
134,138,139

. Looking deeper at the sheer 

amount of data we have gathered from the mucin-microbiome axis in the gut, we know that 

microbiota metabolites regulate gut mucin synthesis at the transcriptional and epigenetic levels. 

Indeed, butyrate and propionate epigenetically regulate MUC2 gene expression in the human 

goblet cell-like LS174T cells 
140

 and help maintain intestinal barrier function. In line with these 

findings, an elegant study by Bergstrom and Xia 
141

 showed that the SCFAs resulting from O-

glycan fermentation regulated intestinal mucin barrier function. Bioactive SCFA administration 

(primary butyrate) also promotes MUC2 and MUC5AC gene expression and increases epithelial 

cell integrity after damage 
142

. A study in piglets concluded that gastric infusions of SCFAs 

maintained intestinal barrier function by increasing the expression of intestinal tight junction 

proteins occludin and claudin-1 genes and decreasing the gene and protein abundances of IL-1 in 
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the colon, coupled with reduced intestinal epithelial cell apoptosis 
143

. Interestingly, co-culturing 

experiments of A. muciniphila with non-mucus-degrading butyrate-producing bacteria 
144

 

indirectly stimulated intestinal butyrate levels near the intestinal epithelial cells with potential 

health benefits to the host. The mucin-microbiome axis study undoubtedly opens possibilities to 

explore terra incognita in health and disease contexts for animals of veterinary interest.  

 

The mucin-microbiome axis in respiratory infections 

The importance and problems mucus and mucins encounter are evident for the general public 

during upper respiratory tract colds 
94

. Persistent mucus accumulation and plugging of the 

airways pervasively impair microbial clearance, enhance the transition from the microbiome to 

the pathobiome 
31,89

, and inflammation 
43,145

. Thus, excessive mucin production can no longer 

attenuate microbial virulence and pacify opportunistic pathogens 
146

. The conversion from 

healthy to pathologic mucus occurs through multiple mechanisms 
89

, including abnormal 

secretion of salt and water, increased submucosal gland mucus secretion 
147

, mucus infiltration 

with inflammatory cells, and heightened broncho-vascular permeability with respiratory distress 
89

.  

 

In line with this, a first study in pigs indicates that infections primarily drive changes in the 

quantity and physicochemical properties of airway mucins and may enhance pathogen biofilm 

formation and promote survival in nutrient-limited conditions, as reported for Streptococcus 

mutans in pigs 
148

. Similarly, the expression of MUC5AC has been induced in cells exposed to a 

wide variety of Gram-negative and Gram-positive bacteria, including P. aeruginosa and 

Staphylococcus aureus, evoking that mucin secretion is a host defense response to infection 
149,150

.  Viruses can prominently stimulate MUC5AC expression in vitro or in vivo on airway 

epithelial cells 
36

.  

 

Beyond mucin expression alterations, glycan glycosylation patterns have also been linked to 

respiratory physiopathology 
37,151

. For instance, mucin glycans exhibit reduced chain length, 

sulfation, fucosylation, and increased sialylation during inflammation 
146

.  It is important to note 

that seemingly minor differences in glycan structures may result in significant 

pathophysiological outcomes. As an illustration, a shift in the nine-carbon backbone 

monosaccharides of the sialic acid might enhance the virus binding and infection of cells or can 

act as decoy receptors that bind virions and block viruses 
152

 or bacteria, facilitating increased 

colonization and the development of lung disease 
153,154

. The specific roles of mucins and the 

glycome during infections can vary depending on the pathogen, tissue, and host factors involved 
155

. Yet, these early results give states good reason to continue investigating how respiratory 

pathogens shift host mucins and their associated glycome and the microbiome.  

 

Given the intertwined relationship between pathogens, the airway microbiota, and mucins, and 

the considerable malleability of the microbiota relative to host genomes, the possibility of 

influencing respiratory tract health via microbiota manipulation seems possible 
151

. Today, 

controlling pathogens’ access to glycans on mucins via microbiome modifications has proven to 

be a promising method to prevent infection
151

. Elegantly, Pereira et al. 
156

 demonstrated that the 

administration of a synthetic bacterial consortium could decrease the availability of sialic acid 

from mucins by cross-feeding microbes and, thereby, protect against an infection caused by 

microbial pathogens that use these sugar groups as binding sites, e.g., Clostridiodes difficile 
156
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or viruses such as influenza virus, reovirus, adenovirus, and rotavirus 
114

. Therefore, synthetic 

microbial communities expressing sialidase activity might improve mucosal health and prevent 

complex respiratory diseases 
157

. Complementary to this approach, nebulizing heparan sulfate-

consuming commensal bacteria consistently contained SARS-CoV-2 attachment in higher-risk 

individuals 
158 

. At the same time, nebulized fucose has been shown to reduce bacterial adhesion 

and improve lung function in animal models of respiratory infections 
159

. Determining the ideal 

microbial composition for optimal respiratory health and immune function in livestock is still a 

topic of ongoing research 
14,17,18,26,70,160–166

.
 
The nature and the mechanisms behind respiratory 

microbiome and its interactions with the mucins and glycome profiles in livestock are not 

understood. Yet, it seems likely that there is a substantial amount of untapped potential 

concerning the airway microbiome-mucin axis in livestock and how external factors, such as the 

administration of nebulized synthetic bacterial consortium or the use of food containing synthetic 

and natural dietary glycans designed to target microbial activity at the mucosa. In the gut, such 

approaches have shed light on how alterations to the biochemistry of mucins and mucus impact 

their protective capacity and restore healthy mucosal function 
135,167,168

. 

  

The non-coding RNAs: an engaged control of the mucin production and glycome patterns 

Next to the use of microbial consortia or dietary glycans to control mucins glycome, 

understanding the genetic regulation of mucin production and glycosylation patterns offers a way 

to modulate mucin levels, affecting specific signaling pathways or transcription factors involved 

in mucin synthesis, glycosylation inhibitors, and glycosyltransferases, among others. However, 

transmembrane and secreted mucins have a complex glycosylated nature and extreme size 
169

. 

They are products of an orchestrated collection of enzymes working in a coordinated manner to 

synthesize structures appended to proteins and lipids 
95,170

.  

 

As conserved regulatory agents, ncRNAs have started to gain attention as crucial regulators of 

mucin and glycome regulators at the transcriptional, post-transcriptional, and translational levels. 

The ncRNAs are RNA molecules that do not encode proteins but have regulatory or structural 

functions within cells 
171

. ncRNAs are mainly divided into small ncRNAs and long non-coding 

RNAs. microRNAs, circular RNAs, and their precursor pri-miRNAs are sncRNAs ranging from 

~22 bp in their mature form to ~70 bp in their premature stem-loop form. LncRNAs are 

noncoding RNAs transcribed by RNA polymerase II (RNA Pol II) and are longer than 200 

nucleotides. Like miRNAs, lncRNAs have emerged as new regulators of gene expression and 

have become a focal point of biomedical and veterinary research 
172

. MiRNAs regulate gene 

expression at the post-transcriptional level by binding (usually with imperfect complementarity) 

to the 3-UTR of a target mRNA, resulting in translation degradation or inhibition. A single 

miRNA can have hundreds of target genes, and multiple miRNAs can converge on a single 

mRNA. Unlike transcriptional regulators, the role of miRs is not to turn a gene on or off but 

instead to tune protein expression 
46

. The lncRNAs regulate the genomic output at many levels, 

from transcription to translation 
173

. The effect of lncRNAs is mainly achieved by interfering 

with the expression of downstream genes, supplementing or interfering with the mRNA splicing 

process, and regulating protein activity 
174

. Besides, a growing body of research has found that 

lncRNAs can regulate gene transcription through the function of competing endogenous RNAs 

(ceRNAs) 
174

. An individual transcriptome contains more lncRNAs than mRNA molecules
 

175
. For livestock, the most significant number of identified lncRNA transcripts is available for 

pigs and cattle 
175

. Poultry is represented by less than half of the records. Genomic annotation of 



 9 

lncRNAs showed that most are assigned to introns (pig, poultry) or intergenic (cattle) 
176

. The 

number of detected miRNAs in farm animal species is lower than lncRNs, from 1064 in cattle to 

267 in goats and 406 in pigs (miRbase release 22 (http://www.mirbase.org/).  

 

Given the emerging importance of ncRNAs in conditions and their potential to identify genes 

that underlie specific biological processes, it is clear that more attention should be paid to 

ncRNA and mucins interactions. To this point, data on the roles of ncRNAs in mucin regulation 

has been mainly generated by well-controlled murine models and humans. For instance, several 

miRNAs have been identified that regulate the expression of mucin genes in the respiratory tract 

of humans, namely miR-34b/c 
50

, miR-146a 
51

, miR-378 
52

, and miR-141 
53

. Additionally, 

modifications of miRNA expression can result in significant alterations of glycosyltransferases 

and glycome 
47,170

. Jame-Chenarboo et al. (2022) established that miRNAs are substantial 

regulators of cell glycosylation. Therefore, changes to mucin glycosylation patterns, such as 

increased sialylation, will likely alter mucin's binding properties with pathogens and their 

protective functions. miRNAs also play a crucial role in regulating mucin barrier functions, 

which has mainly been studied in the gut and the context of inflammatory bowel diseases 
177–179

. 

Although these studies have elegantly displayed the impact of the regulatory ncRNAs on mucin 

structure and function, much work is needed to see whether these outcomes directly reflect 

livestock's complexity (genetic, environmental, comorbidities). The proposed mechanisms and 

results based on laboratory animals have yet to be validated in animals of veterinary interest due 

to the limitations regarding obtaining samples and the complexity of production systems, hosts, 

biotic and abiotic stressors, and infectious etiology. This complicates the application of human 

and laboratory animal-based findings to livestock. Therefore, the role of ncRNA on mucin 

glycome remains an open question in livestock. Coupled with this heterogeneity, the disease is 

known to change ncRNA behavior in livestock. For instance, PRRSV, one of the most important 

viral pathogens in the swine industry, affects host homeostasis through changes in miRNA 

expression 
180–182 183

(reviewed elsewhere 
184

). Profiles of lncRNA expression in disease were also 

affected by porcine circovirus-associated disease 
185,186

.    

 

An extra difficulty lies in the fact that the presence and activity of microbiota might also regulate 

the host ncRNAs 
187,188

. Indeed, the microbiomes and microbial metabolites such as secondary 

bile acids and SCFAs have been shown to regulate the expression of miRNAs 
189

 and lncRNAs 

in the intestine epithelial cells 
190

, macrophages 
191

,  and other metabolic organs 
190

 in adult mice 

or in vitro 
192

, evoking that the gut microbiome regulates the expression of both coding RNAs 

and ncRNAs regionally and systemically 
193

, especially during pathogen infection 
194

. For 

instance, a study investigating early rumen development in neonatal dairy calves revealed that 

nearly 46% of miRNAs expressed in the rumen are responsive to SCFA 
195

. Analouglsy, another 

study focused on rumen microbiota 
196

 suggested that the microbiota influences the host’s 

miRNA expression pattern and that the host potentially helps shape the gut bacterial profile by 

producing specific miRNAs. Minimal knowledge exists about the ncRNA regulatory 

mechanisms behind mucin-microbiome interactions. Still, these emerging nuances illustrate that 

microbiome interacts with the host directly (direct modulation of transcriptome) and indirectly 

via the expression of ncRNA 
173

. 

 

Concluding remarks 

http://www.mirbase.org/
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In livestock pathology, there is a growing awareness that infectious agents frequently do not 

operate alone, and their virulence can be likely affected by their interaction with the microbiome-

mucin axis. Therefore, the microbiome-mucin axis is a significant player in the health of the 

respiratory tract. As such, they contain signals that can be used to forecast airway 

pathophysiology. There are fundamental gaps for species of veterinary interest, yet, these signals 

can be harnessed by combining microbial and glycomics omics, two fields that have 

tremendously developed in recent years. Based on the emerging evidence evaluated in this 

opinion paper, ncRNAs may play a vital role in the microbiota-mucin crosstalk via modifying 

the holobiont. The next phase in the livestock research area should focus on understanding 

whether particular microbiome-mucin glycome structures confer resistance and resilience to 

microbial infection and which are the critical factors controlling the mucin-microbiome axis, 

including the role of ncRNA. It is now time to harness the forecasting power of the microbiome-

mucin axis. 
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Figures 

Figure 1. The microbiome-mucin axis in the respiratory tract: mucin damage matters 

Upper panel: The mutualistic relationship between the airway mucins and the microbiota and 

derived metabolites under eubiosis. On the one hand, the microbiota and their metabolism induce 

the synthesis of large gel-forming mucins, including encapsulation, glycosylation, changes in 

fucosylation and sialidation patterns, and thickness. On the other hand, the mucin layer serves as 

an environmental niche and a food source for the microbiota. The high diversity of gut mucins 

impacts the gut microbiota composition, diversity, and stability but also influences immune 

homeostasis. 

 

Bottom panel: The mutualistic relationship between the mucin glycome and the microbiota under 

a disrupted airway ecosystem and environment. The deterioration of the respiratory mucosal 

barrier enables virus binding to the cells, and the translocation of bacteria and 

lipopolysaccharides (LPS) outside the respiratory tract, triggering immune and inflammatory 

responses, often resulting in increased permeability and, eventually, endotoxemia. Changes in 
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the respiratory barrier integrity involve changes in the abundance, expression, and glycosylation 

of mucins, and thus immune dysregulation, dysbiosis, and risk of disease onset.  
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