Lucas Meyer

Marc Schouler

Robert Alexander Caulk

Alejandro Ribés

Bruno Raffin

Alejandro Ribes

Training Deep Surrogate Models with Large Scale Online Learning

Keywords:

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

PDEs are powerful mathematical tools commonly used to describe the dynamics of complex phenomena. Although these tools remain foundational to scientific advancements in fluid dynamics, mechanics, electromagnetism, biology, chemistry or geosciences, running classical PDEs solvers, based on numerical techniques such as Finite Elements, Finite Volumes, or Spectral Methods, can be computationally prohibitive [START_REF] Burden | Numerical analysis[END_REF].

Training deep surrogate models of PDEs emerges as an alternative and complementary approach [START_REF] Stevens | Ai for science: Report on the department of energy (doe) town halls on artificial intelligence (ai) for science[END_REF]. In most cases, scientists introduce physical knowledge to machine learning algorithms by developing surrogate models [START_REF] Raissi | Physicsinformed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF] or shaping neural network architectures to mimic traditional solvers [START_REF] Li | Fourier neural operator for parametric partial differential equations[END_REF][START_REF] Pfaff | Learning mesh-based simulation with graph networks[END_REF][START_REF] Brandstetter | Message passing neural PDE solvers[END_REF]. Other studies developed models to improve the approximation obtained by a solver at a coarse resolution, faster than it would take to run the solver directly at the desired resolution [START_REF] Um | Solver-in-the-loop: Learning from differentiable physics to interact with iterative pde-solvers[END_REF][START_REF] Kochkov | Machine learning-accelerated computational fluid dynamics[END_REF]. Most deep-learning algorithms proposed in the literature are supervised; they are trained on simulations generated by the same solvers they intend to replace or accelerate. Meanwhile, training deep surrogate models that can approximate the solution for a family of parameterized PDEs, requires generating large datasets for a good coverage of the parameter space.

In its general form, a PDE describes the evolution of a quantity u defined in space and time as below:

u : Ω × T -→ Ω (x, t) -→ u(x, t) Du = f (1) u(x, t = 0) = u 0 (2) u(x ∈ ∂Ω, t) = u ∂Ω (3)
where Ω ⊂ R din , Ω ⊂ R dout and T ⊂ R + . D is a differential operator and f is referred to as a forcing term accounting for external forces applied to the system. u 0 and u ∂Ω are respectively the initial and boundary conditions. All these variables contribute to the parametrization of PDEs and are 1 represented by a vector λ. It encompasses the variability in the boundary conditions, initial conditions, the geometry of the domain, or even the coefficients of the PDE itself appearing in the operator D.

Most deep surrogate approaches currently found in the literature have been applied to less complex PDEs focused on lower spatial dimensions or reduced resolutions. To our knowledge, it is uncommon to address highly parameterized problems. When done, it is difficult to introduce a wide range of parameters that exhibit much diversity. As a result, these deep surrogates are not as versatile as traditional solvers. The gap between the simplicity of the problems considered by deep learning approaches and the complexity of common PDE-based research and application can be partly explained by the difficulty in obtaining comprehensive datasets [START_REF] Brunton | Machine learning for fluid mechanics[END_REF]. Indeed, the training of those algorithms suffers the exact flaw that motivated their development: the data generation with traditional solvers is a slow process with a high memory and storage footprint.

This paper proposes a framework to orchestrate large-scale parallelized data generation and training. The present approach suppresses the I/O and storage bottleneck associated with disk-loaded datasets in traditional training approaches. It enables a shift towards a potentially endless data generation only bounded by computational resource availability. Specifically, the presented framework:

• enables the complete automation of large-scale workflow deployment encompassing the parallel execution of many solver instances (which may also be parallelized) sending data directly to a parallel training server;

• mitigates the potential bias inherently caused by the direct streaming of generated data to the training process;

• demonstrates increased generalization capacity for surrogate models, compared to a traditional "offline" training based on the repetition of samples over several epochs.

Related Work

Deep Learning for Numerical Simulations

The approaches applying deep learning to accelerate numerical simulations are many and various [START_REF] Brunton | Machine learning for fluid mechanics[END_REF][START_REF] Hennigh | Nvidia simnet™: An ai-accelerated multiphysics simulation framework[END_REF][START_REF] Karniadakis | Physics-informed machine learning[END_REF]. Most of them involve supervised training, relying on the simulation output of traditional solvers. However, unsupervised models can be trained in a data-free regime [START_REF] Raissi | Physicsinformed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF][START_REF] Sirignano | A deep learning algorithm for solving partial differential equations[END_REF][START_REF] Wandel | Learning incompressible fluid dynamics from scratch -towards fast, differentiable fluid models that generalize[END_REF]. They follow the elegant idea introduced by Raissi et al.

(2019): the model directly predicts the quantity u described by the PDE. This physics informed neural network (PINN) is subsequently trained by minimizing the residual of the equations at random collocation points: Equation 1, Equation 2, and Equation 3 respectively on the domain, initial and boundary points. Though a promising approach, some studies have reported difficulties in training PINNs, even on simple problems [START_REF] Krishnapriyan | Characterizing possible failure modes in physics-informed neural networks[END_REF]. Some of these difficulties are alleviated by using relevant gradient computation techniques [START_REF] Rackauckas | Universal differential equations for scientific machine learning[END_REF]. PINNs training can also integrate generated data [START_REF] Raissi | Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations[END_REF]. It has proven successful in reconstructing high-fidelity simulation by using a subset of data generated with a computationally intensive solver [START_REF] Lucor | Simple computational strategies for more effective physics-informed neural networks modeling of turbulent natural convection[END_REF].

While most of the models are trained with the supervision of data obtained from traditional solvers, the data ingestion techniques distinguish direct prediction models from autoregressive ones. Direct prediction models take the time as an input to predict the corresponding state of u (Equation 4). [START_REF] Raissi | Physicsinformed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF]; [START_REF] Lu | Learning nonlinear operators via deeponet based on the universal approximation theorem of operators[END_REF] provide examples of such models. These direct approaches suffer from generalization when extrapolating to times outside of their training range.

f θ (t) ≈ u t (4)
Autoregressive models replicate the iterative process of traditional solvers: they predict the next time step from previous ones (Equation 5).

f θ (u t) ≈ u t+δt (5)
Autoregressive surrogate models come in different flavors.

If the spatial grid used by the solver is regular, each time step can be seen as an image, and classical deep learning algorithms like U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] can be employed [START_REF] Wang | Towards physics-informed deep learning for turbulent flow prediction[END_REF]. However, most solvers rely on irregular grids. To overcome the dependency on a fixed grid, scientists proposed to work in the Fourier space [START_REF] Li | Fourier neural operator for parametric partial differential equations[END_REF], while others rely on graph neural networks [START_REF] Pfaff | Learning mesh-based simulation with graph networks[END_REF][START_REF] Brandstetter | Message passing neural PDE solvers[END_REF].

Autoregressive networks tend to accumulate errors along the trajectory they reconstruct. [START_REF] Brandstetter | Message passing neural PDE solvers[END_REF] introduced a push forward trick to minimize these errors. The network is trained not on a single transition between two consecutive time steps, but rather on an extended rollout trajectory. This training procedure improves the stability of the predictions [START_REF] Takamoto | An extensive benchmark for scientific machine learning[END_REF] but its implementation requires access to the full trajectories.

Prior works, especially involving super-resolution, already integrate the solver to the training loop [START_REF] Um | Solver-in-the-loop: Learning from differentiable physics to interact with iterative pde-solvers[END_REF][START_REF] Rackauckas | Universal differential equations for scientific machine learning[END_REF][START_REF] Kochkov | Machine learning-accelerated computational fluid dynamics[END_REF]. Solvers are implemented using frameworks that support automatic differentiation. It allows the backpropagation through the solver during the training of the network. These inline approaches remain sequential: reference simulations are generated beforehand. The online characterization of the presented framework, which is also compatible with such approaches, denotes the generation of reference simulations occurring in parallel to the training.

Data Efficiency

Deep learning has benefited from large datasets widely adopted by the community [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF][START_REF] Merity | Pointer sentinel mixture models[END_REF]. Datasets dedicated to physics and numerical simulations are emerging [START_REF] Otness | An extensible benchmark suite for learning to simulate physical systems[END_REF][START_REF] Takamoto | An extensive benchmark for scientific machine learning[END_REF][START_REF] Bonnet | AirfRANS: High fidelity computational fluid dynamics dataset for approximating reynolds-averaged navier-stokes solutions[END_REF]. They are much welcomed as they allow to benchmark models on standard PDEs. Nonetheless, physical systems and PDEs exhibit patterns as diverse as the world itself. The sole Navier-Stokes equations present a rich variety of dynamics depending on the compressibility of the fluid, its monophasic or multiphasic nature, etc. Dedicated solvers are even developed to tackle these specificities individually [START_REF] Ferziger | Computational methods for fluid dynamics[END_REF]. No dataset can encompass all the variety of physical phenomena. Consequently, training a model on a specific problem demands a dedicated dataset.

In addition, as the PDE parameters vary it requires a massive data to capture all its richness. To improve the accuracy of solver simulations one can increase the grid resolution, which increases the size of individual trajectories. The size of a dataset composed of such trajectories may soon reach the current memory capacity of the hardware. Deep learning techniques to train a model with fewer data while maintaining the accuracy that would be obtained with a comprehensive dataset have been scarcely applied in the context of numerical simulations. Transfer learning has been studied to solve the same PDEs at different resolutions [START_REF] Chakraborty | Transfer learning based multi-fidelity physics informed deep neural network[END_REF]. [START_REF] Satorras | equivariant graph neural networks[END_REF] proposed to use equivariance models to capture the symmetries of a problem that would otherwise require much more training data.

Parallel Training Frameworks

The growing size of datasets and models, along with the quest for always faster training has driven the machine learning community towards a regular use of high performance computing (HPC) [START_REF] Sergeev | Horovod: fast and easy distributed deep learning in tensorflow[END_REF][START_REF] You | Large batch optimization for deep learning: Training BERT in 76 minutes[END_REF]. Today support for multi-GPU parallel training, combining data and model parallelism, has become common and integrated into major deep learning frameworks [START_REF] Li | Pytorch distributed: Experiences on accelerating data parallel training[END_REF]. Reciprocally, scientists working on numerical simulations, the traditional users of HPC, have started considering deep learning to accelerate their simulations. Workflows coupling large-scale and parallel simulations with machine learning have started to emerge [START_REF] Peterson | Enabling machine learning-ready hpc ensembles with merlin[END_REF]. [START_REF] Lee | Scalable hpc & ai infrastructure for covid-19 therapeutics[END_REF]; [START_REF] Brace | Coupling streaming ai and hpc ensembles to achieve 100-1000× faster biomolecular simulations[END_REF] apply such approach to molecular dynamics, [START_REF] Stiller | Continual learning autoencoder training for a particle-in-cell simulation via streaming[END_REF] to plasma physics. Notice that having simulation runs in lockstep with training opens the door to active learning [START_REF] Ren | A survey of deep active learning[END_REF]. The parameterization of the next set of simulations to run can be chosen according to the current state of training. These works explore early versions of adaptive training.

Deep reinforcement learning (Deep RL) relies on similar workflows where concurrent actors, running one simulation instance controlled by the current policy, are generating state/actions trajectories sent to the learner to compute a better policy. Frameworks running such workflows on clouds or supercomputers are available [START_REF] Espeholt | IMPALA: scalable distributed deep-rl with importance weighted actor-learner architectures[END_REF][START_REF] Horgan | Distributed prioritized experience replay[END_REF][START_REF] Liang | Rllib: Abstractions for distributed reinforcement learning[END_REF]. But these frameworks are specialized for Deep RL, addressing its specificities like off-policy issues. Moreover, to our knowledge, Deep RL is working with simulation codes of intermediate complexity that run on a single node, potentially using several cores or one GPU [START_REF] Berner | Dota 2 with large scale deep reinforcement learning[END_REF]. The Deep RL frameworks do not support massively multi-node parallel solvers, typically parallelized with MPI and OpenMP, that we target here. Additionally, they do not support the direct streaming of data generated by external programs.

Method

The traditional training from synthetic data consists in 1) generating the dataset 2) storing it on disk 3) reading it back for training (Figure 1). At scale, I/Os and storage become major constraints, limiting the size and representativeness of a training dataset. We propose a file-avoiding framework that trains a deep surrogate model simultaneously on data streams generated from solver instances executed in parallel (Figure 1). The I/Os and storage are drastically reduced.

The training dataset becomes only limited by the amount of computing resources available. To put numbers in perspective, GPT-3 was trained on a main dataset of 570GB (plus 4 additional significantly smaller ones) [START_REF] Brown | Language models are few-shot learners[END_REF], while the proposed workflow has been used for computing iteratively statistics for sensitivity analysis on 288TB of data generated and processed on-the-fly [START_REF] Ribés | Unlocking Large Scale Uncertainty Quantification with In Transit Iterative Statistics[END_REF]. This opens the possibility to train on perpetually new data, while also allowing for sampling repetition as in classical training based on epochs.

Framework Overview

The framework is implemented as an extension of the open source project Melissa, initially designed to handle largescale ensemble runs for sensitivity analysis [START_REF] Terraz | large scale in transit sensitivity analysis avoiding intermediate files[END_REF] and data assimilation [START_REF] Friedemann | An elastic framework for ensemble-based large-scale data assimilation[END_REF].

The goal is to enable the online (no intermediate storage in The framework consists of three main elements: several clients, one server, and one launcher (Figure 2):

• The clients execute the same partial differential equations solver but each instance with a different set of parameters λ. Once started, each client connects to the server and directly streams the generated data to the server.

• The server is in charge of the training. It receives data from connected clients. At any time, a subset of the entire data received so far is kept in a memory buffer. Batches are assembled from this memory buffer to feed the network. The server also chooses the set of parameters λ for each client to run, and forwards them to the launcher.

• The launcher orchestrates and monitors the execution. On supercomputers, it requests resource allocations to the machine job scheduler (e.g. Slurm [START_REF] Yoo | Slurm: Simple linux utility for resource management[END_REF] or OAR [START_REF] Capit | A batch scheduler with high level components[END_REF]). On these allocations, the server starts first then the clients.

Appendix A provides details about the framework implementation.

Data Flow

The server can be executed on several GPUs, located or not on the same nodes, for data parallel training. Each GPU is associated with its own memory buffer of fixed size.

When a new client starts a simulation, it establishes connections with each of the server processes. As soon as the running simulation produces new data, they are sent to the server. Data are distributed between GPUs in a Round Robin fashion. No data are ever stored on disk, hence avoiding costly I/O operations.

The paper focuses on one-way data transfer. The clients transmit all the data required for training: the field of interest u t and possibly additional information the solver can provide like the adjoint. Nonetheless, the framework can also support bidirectional communications where the server communicates data back to the clients [START_REF] Friedemann | An elastic framework for ensemble-based large-scale data assimilation[END_REF]. This is for instance necessary for applications based on backpropagation through the solver [START_REF] Um | Solver-in-the-loop: Learning from differentiable physics to interact with iterative pde-solvers[END_REF][START_REF] Rackauckas | Universal differential equations for scientific machine learning[END_REF] or Deep RL for which updates of the policy network must be passed to the actors.

Data Management

Assembling batches with enough diversity is critical to apply stochastic gradient descent algorithm [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF].

Biased batches can otherwise lead to catastrophic forgetting [START_REF] Kemker | Measuring catastrophic forgetting in neural networks[END_REF] marked by decreased performances of the trained network.

The online training workflow comes with specific possible sources of bias:

• Intra-simulation bias: Solvers produce dynamics as time series by discretizing time and progressing iteratively. After T time steps, only the data u t λ , 0 ≤ t ≤ T for the simulation parameter λ are available for training.

• Inter-simulation bias: Computational resources are limited and so often not all simulation instances can be executed concurrently. Let's assume that only c simulations can be executed concurrently at any time.

At the end of the execution of the c first simulations, training only has access to the data u t λi , 0 < i ≤ c. • Memory bias: The set of data available for training is not only limited to the already generated data, it is further reduced due to memory constraints. At most, a rolling subset of the generated data that fits the given memory budget can be kept and used for training.

The management of the memory buffer is key to counteract these biases (Figure 3). Different management policies are available ranging from simple queues to reservoir sampling [START_REF] Efraimidis | Weighted random sampling with a reservoir[END_REF]. The one used in the experiments of this paper allows writing incoming data on free slots only, while each (random) read suppresses the corresponding data. So each data is seen only once during training. A watermark is also used to prevent the data loader from extracting samples from the buffer when too few are present. This also ensures bigger diversity in batches randomly taken from the buffer population.

The modality of training also impacts data management.

The training may work with individual time steps, an interval of successive time steps or the full trajectory (Figure 3). Autoregressive models (Equation 5) require at least two successive time steps: the input and the target of the model. However, the implementation of the push forward trick introduced by [START_REF] Brandstetter | Message passing neural PDE solvers[END_REF] to stabilize long-term prediction of the network requires access to the full trajectory. This paper experiments with different situations. When the full trajectory is needed, the unit sample in the memory buffer encompasses the full trajectory.

The sampling strategy implemented by the server for selecting the parameters λ to run also has an impact on the inter-simulation bias. Classical Monte Carlo sampling is used throughout the paper. Nonetheless, the framework provides the abstraction to implement more advanced sampling strategies.

Experiments

The experiments consist in evaluating the performance of the framework in training state-of-the-art deep surrogate architectures on classical PDEs.

Dataset Size Impact

A first motivational experiment examines the impact of the number of trajectories in the dataset on model performance in a classical offline training.

The Message Passing Neural PDE Solver is trained on the mixed advection-diffusion dataset consisting of a training set and a test set of respectively 2,048 and 128 trajectories as in [START_REF] Brandstetter | Message passing neural PDE solvers[END_REF]. The trajectories differ only by the initial conditions of the PDE (λ = u 0). Smaller training datasets are extracted from the original one. For each of these datasets, the model is always trained on 640,000 batches, and tested on the same test set. Table 3 shows the error decreases with the number of trajectories available. FNO is trained with 5 datasets of different sizes from the simple advection data. Trajectories differ by the initial conditions of the equation (λ = u 0). We also test different training strategies combining an input of 1 or 10 consecutive time steps and a single time step or full rollout prediction.

Figure 4 shows the error of the different trained models on the same test dataset of 100 unseen trajectories. All modalities benefit from larger datasets, except the history of 1 and full rollout that likely suffers from overfitting at 2000 trajectories. The benefit of a larger dataset is particularly noticeable when using the default configuration from [START_REF] Li | Fourier neural operator for parametric partial differential equations[END_REF] (history of 10 and a full trajectory rollout) with a gain of 96%.

The experiment shows that state-of-the-art models make lower errors in inference when trained on more trajectories. It corroborates similar results obtained for FNO on the Navier-Stokes equation [START_REF] Li | Fourier neural operator for parametric partial differential equations[END_REF]. Although the datasets considered presently are still relatively small (up to 1.6 GB), generating much more trajectories for training, which would help generalization, would soon be prohibitive in terms of memory. The framework proposed in the present article addresses this difficulty by avoiding writing any data on the disk.

Online Learning with Single Step Samples

The heat equation example (E1) trains a fully connected network to predict the entire 2D temperature field, given six temperature inputs: four boundary conditions, one initial condition, and the time step (λ = [u 0 , u BC], each randomly sampled between 100K and 500K). The solver used to gener-ate the data approximates the solution on a 100 x 100 spatial grid for 100 time steps representing 1 second. It relies on an implicit finite difference scheme. For the offline mode, two training datasets of respectively 100 and 500 trajectories are generated. The initial and boundary temperature conditions vary for each trajectory with values randomly selected between 100K and 500K. For the online mode, 1 node executes 5 clients to generate 10,000 trajectories. Each client runs the solver in parallel on 2 cores. Each time a new time step is completed, the 2D temperature field is sent to the memory buffer.

The model architecture consists of 3 layers of 1024 features, followed by ReLU activation function except for the output layer. The model performs direct prediction as described in Equation 4. Both online and offline training procedures follow the same learning rate schedule starting with a value of 1E -3 and decaying exponentially. For offline training, the number of epochs is adjusted to always train with 100,000 batches. The offline training dataset is repeated between epochs.

Figure 5 shows, for 5 repetitions of the experiment, the training and validation losses for the two offline training datasets and the online training. The mean is plotted in solid lines and bold colors. The online training presents more diversity to the network which is correlated with better generalization. The online example enables a deeper exploration of the problem resulting in about 70% improved validation error compared to 100 simulations and 100 epochs offline. Additionally, the gap between the decreasing training loss and the plateaued validation loss of the model trained in the offline settings is symptomatic of overfitting. The model trained with the online framework is less prone to such overfitting. In the example of the Lorenz's system (E2) the goal is to train a fully connected autoregressive model composed of 3 layers of 512 features followed by SiLU activation to recover the chaotic dynamics of the system. The model takes as input ρ, the parameter of the equation that varies across the simulations, and X t the position at the current time step (λ = [u 0 , ρ]). It predicts the next position X t+δt . The trajectory generation is detailed in subsection B.2. Three different offline training datasets are used for the experiment. They respectively count 100, 10 and 10,000 trajectories. The trajectories of the latter are subsampled every 100 time steps. 10 and 10,000 datasets are symbolic of more complex systems for which storage limitations impose a scarcity of data. For each dataset, the model is trained for 100, 1000, and 100 epochs respectively. For the online dataset, we generate 10000 trajectories. The u 0 parameter is randomly sampled. In the streaming online training, the memory buffer is a simple FIFO queue and the trajectories are generated from simulations with increasing values of ρ, creating an inter-simulation bias not altered by the FIFO queue. The Sampling + Buffer online training randomly samples ρ and uses the default memory buffer introduced in subsection 3.3. For all training strategies, the batch size is 1024. The validation dataset consists of 10 trajectories.

Figure 6 shows the training dynamics for the different offline and online settings. The offline training with 10 trajectories and the one with 10,000 subsampled trajectories present signs of overfitting, indicating that more data are necessary to properly capture the chaotic dynamic of the system.

Online training with 10,000 performs as well as offline training with 100 trajectories over 100 epochs. The streaming training presents the worse validation curve which can be explained by catastrophic forgetting [START_REF] Kemker | Measuring catastrophic forgetting in neural networks[END_REF]. These results highlight the importance of the bias mitigation strategy and the ability of the framework to outperform classical training with scarce data. The efficiency of the bias mitigation strategy from the perspective of the batch statistics is further discussed in Appendix C.

Online Training on Full Trajectories

This subsection focuses on the online training of FNO (E4), U-Net (E3), and Message Passing Neural PDE Solver (E5).

The FNO (in its 2-D version) and U-Net architectures are trained on a use case ruled by the Navier-Stokes equations, as in [START_REF] Li | Fourier neural operator for parametric partial differential equations[END_REF][START_REF] Takamoto | An extensive benchmark for scientific machine learning[END_REF]. For the offline mode, the training dataset consists of 1,000 trajectories repeated over 500 epochs with a batch size of 20 (λ = u 0). For the online mode, data generation is either performed on 30 nodes of 40 cores each, or on 40 nodes of 4 GPUs each (in this case clients run on GPU). This allows running 31,250 clients each generating 16 trajectories for a total of 500,000 simulations. The same validation dataset is used to evaluate the performance of both training sessions. It consists of 200 trajectories generated offline. Both FNO and U-Net architectures are trained as autoregressive models following the original procedure [START_REF] Li | Fourier neural operator for parametric partial differential equations[END_REF]. The experiment E5 tests the impact of the online training framework on the Message Passing PDE Solver with the use case of the mixed advection-diffusion (λ = [u 0 , α, β, γ]). The solver generates trajectories by groups of 4. The equation parameters α, β, and γ vary from one group to another. Only the initial conditions vary within a group. For offline data generation, the solver is used as it is. For the online mode, it is only modified to send the data to the server relying on the framework API, instead of writing the data on disk.

Conclusion

A. Framework Details

A.1. Implementation

The framework is mainly implemented in Python. The server supports data parallel training for Pytorch and Tensorflow models. Supporting an existing parallel solver (MPI+X parallelization supported) requires 1) instrumenting the code to call the API (for C, C++, Fortran or Python) enabling to connect and ship the data to the server, 2) instructing the server on how to perform the training and 3) defining the experimental design, i.e. how to draw the input parameter set for each instance.

This paper focuses on full online training, but the framework can start from a pre-trained model, and data provided for training can mix some read from files using a proxy client. This enables to reduce repetitive data generation during the hyper-parameterization process.

Communications are implemented with ZeroMQ [START_REF] Hintjens | ZeroMQ: messaging for many applications[END_REF]. ZeroMQ manages asynchronous data transfers, stored when necessary in internal buffers on the client and server sides to absorb network variability. If these buffers fill up the simulation is suspended. On the server side a thread associated to each GPU is dedicated to data reception and insertion into the memory buffer. Data formatting occurs at this stage when required. Another thread builds batches from the content of the buffer and trains the model with them.

A.2. Fault Tolerance

The framework is designed for application on large clusters. It is made resilient to different faults that can occur on such infrastructure. Failing clients are automatically restarted. The server keeps track of the received time steps u t λ and discards already received ones. If the server fails, it is restarted with all the running clients. In case of launcher failure, the currently running clients will run up to completion and the server will finish and checkpoint. A manual restart of the full application is then needed to restart from that checkpoint. The scheduler of the cluster (e.g. Slurm [START_REF] Yoo | Slurm: Simple linux utility for resource management[END_REF]) comes with its own fault tolerance mechanism. A failing request of the scheduler is simply resubmitted later.

A.3. Reproducibility

The stochastic components of the framework (the model's weights initialization, the simulation parameter sampler, and the buffer policy) are seeded. The framework operates with configuration files which also contributes to the reproducibility of training experiments. However, the distributed execution on a cluster comes with inevitable variability which makes identical reproducibility challenging. Indeed, the execution of the clients is subject to the workload of the cluster, which impacts the order of the data received by the server and may ultimately lead to variations in the training.

B. Equations

B.1. The Heat Equation

Equation 6 describes the evolution of the temperature u in a 2D square domain of length L. α represents the thermal diffusivity of the medium. The system is fully determined by initial conditions (Equation 7) and boundary conditions (Equation 8). The solver used to generate the training data approximates the solution with an implicit Euler scheme of finite difference. It solves the equation on a 100 × 100 regular grid, with time steps of 0.01s for a total simulated time of 1s. The thermal diffusivity is fixed, α = 1 m 2 • s -1 . The initial temperature is considered uniform over the domain, while the temperatures at the edge of the domain are constant but not necessarily equal. All temperature conditions take random values in [100K, 500K].

∂u ∂t = α∆u (6) u(x, y, t = 0) = T IC (7) u(x = 0, y, t) = T x1 , u(x = L, y, t) = T x2 u(x, y = 0, t) = T y1 , u(x, y = L, t) = T y2 (8)

B.2. The Lorenz's System

Equation 9 describes the famous chaotic system introduced by Lorenz that serves as a simplified climate model [START_REF] Lorenz | Deterministic nonperiodic flow[END_REF]. An explicit Euler integration scheme allows the recovery of the trajectory of the system given an initial position. It approximates the solution with time steps of 0.01s for a total simulated time of 20s. For the dataset generation, the parameters σ and β are fixed to the respective values of 10 and 8/3. The initial position of each trajectory is randomly taken according to the normal distribution N (15, 30). ρ takes values in [0,20,40,60,80,100].

dx dt = σ(y -z) dy dt = x(ρ -z) -y dz dt = xy -βz (9)

B.3. Simple Advection

The Advection is a standard example of PDEs. The implementation of the example is directly taken from the PDEBench paper [START_REF] Takamoto | An extensive benchmark for scientific machine learning[END_REF] §D.1.

B.4. Mixed Advection-Diffusion

The Advection-Diffusion considers a combination of phenomena: the simple advection, and the diffusion of a quantity u. The implementation of the example is directly taken from the original paper of the Message Passing PDE Solver [START_REF] Brandstetter | Message passing neural PDE solvers[END_REF] experiment E3 in §4.1.

B.5. The Navier-Stokes Equations

The Navier-Stokes equations are canonical to describe the evolution of any fluid [START_REF] Ferziger | Computational methods for fluid dynamics[END_REF]. Equation 10, 11 and 12 describe the evolution of a 2D incompressible fluid on the surface of the unit torus, in terms of velocity u, and vorticity w where w = ∇ × u. ν denotes the viscosity of the fluid. It is set to 1E -5 m 2 • s -1 . f denotes the forcing term of the system. The equations are solved with a pseudo-spectral method for (x, t) ∈ [0, 1] 2 × [0, T] and periodic boundary conditions. The equations are discretized on a 64 x 64 regular mesh, with a time step of 1E -4 s for a total simulated time of 20s. The solver generating the training data is the same as for the original paper of FNO [START_REF] Li | Fourier neural operator for parametric partial differential equations[END_REF].

∂ t w(x, t) + u(x, t) • ∇w(c, t) = ν∆w(x, t) + f (x) (10)

∇ • u(x, t) = 0 (11) w(x, t = 0) = w 0 (x) (12)

C. Bias Mitigation

The online setting of the framework inherently induces biases in the data available for training (subsection 3.3). The efficiency of the bias mitigation strategy consisting of Monte Carlo sampling of the simulation parameters and mixing of the received data within the memory buffer is evaluated on the Lorenz's system described in subsection B.2. Figure 9 compares the batch statistics of the normalized inputs for different training settings identical to the ones presented in subsection 4.2. ρ is normalized between 0 and 1, using minimum and maximum values. Coordinates x, y, and z are standardized. The Offline (100) corresponds to classical offline training with data sampled randomly from 100 previously generated trajectories.

The sampling being uniform, the batches present an almost constant mean and standard deviation. It is assumed that representative and well-balanced batches with constant statistics will lead to faster stochastic gradient descent convergence and better generalization capabilities of the trained model. Streaming refers to the case where trajectories are generated by order of increasing ρ and batches are formed with data as soon as they are received by the server. Figure 9 highlights batch statistics are biased towards the simulation that has just been executed. For the online sampling, the parameter ρ is randomly

Figure 1 .

 1 Figure 1. Classical I/O and storage intensive workflow for deep learning experiment (a) using M samples presented several times through different epochs. (b) A file-free concurrent data generation and online training workflow processing N samples. N M .

Figure 2 .

 2 Figure 2. Framework architecture and workflow. The specific components introduced by the framework are colored in purple (e.g. the server). The different stages of the workflow are highlighted in blue. 2 and 3 occur simultaneously. In the depicted example, 6 clients run concurrently on 3 nodes. They are themselves parallelized on 2 cores. The training is performed in a data-distributed manner on 2 GPUs.

Figure 4 .

 4 Figure 4. Test error of FNO trained on datasets of the simple advection with different numbers of trajectories. The different training strategies are noted history/rollout length.

Figure 5 .

 5 Figure 5. Comparison of the online and offline training on the Heat Equation (E1). Solid lines represent the mean values of five realizations. Vertical lines represent the first epoch of the corresponding offline training, after which the dataset is repeated while the online setting always processes new data.

Figure 6 .

 6 Figure 6. Comparison between the training and validation losses for different training strategies on the Lorenz's system (E2).

Figure 7 Figure 7 .

 77 Figure 7 compares the training and validation loss for the two architectures and for the two different ways of training.Each experiment was repeated five times. For the U-Net architecture, the online framework leads to similar results to offline training after 15,000 batches. On average, performances are similar but the online training is characterized by strong variations around the mean value. This instability echoes the observations of[START_REF] Takamoto | An extensive benchmark for scientific machine learning[END_REF], where the so called pushforward trick was used to stabilize the architecture. On the other hand, the online framework has a clear positive impact on the performance of FNO, which outperforms U-Net. Online training is indeed characterized by a lower validation loss compared to offline training.

Figure 8 .

 8 Figure 8. Comparison between the offline and online training of the Message Passing PDE Server on the mixed advection-diffusion (E5). The vertical line represents the limit of the first epoch.subsection 4.1 showed that, offline, bigger datasets generally improve surrogate model performances. The different online experiments indicate the framework sustains this trend despite the online setting. During training, it exposes the model to more unique samples which results in better generalization compared to offline training for the same number of processed batches. The different experiments also exhibit the versatility of the framework. Several models are trained on multiple PDE use cases. Several degrees of parallelism are presented for the data generation.

Figure 9 .Figure 10 .Figure 11 .Figure 12 .

 9101112 Figure 9. Statistics of the normalized inputs for the Lorenz's system (E2) with different bias mitigation strategies.

 Table 1 lists the different experiments, with the model that is trained, the equations ruling the use case, and the source of the model or solver. Except stated otherwise, the hyper-parameters of the training (e.g. the batch size) are kept identical to the original paper. Data generation details are provided in Appendix B. Experiments are run on NVIDIA V100 GPUs and Intel Xeon 2.5GHz processors. Table 2 synthesizes the experimental resources and the results obtained.

Table 1 .

 1 Combinations of models and PDE use cases in the different experiments performed with the online training framework.

	EXPERIMENT	PDE	MODEL	SOURCE
	E1 E2 E3 E4 E5	HEAT EQUATION LORENZ'S SYSTEM NAVIER-STOKES NAVIER-STOKES MIXED ADVECTION-DIFFUSION MESSAGE PASSING PDE SOLVER BRANDSTETTER ET AL. (2022) FULLY CONNECTED -FULLY CONNECTED LORENZ (1963) U-NET TAKAMOTO ET AL. (2022) FNO LI ET AL. (2021)

Table 2 .

 2 Comparison of the training modes for the different experiments. RESOURCES column indicates computing resources used for data generation.

	EXPERIMENT RESOURCES GENERATION (HOURS)	TOTAL (HOURS)	DATASET (GB)	UNIQUE SAMPLES (N)	RMSE ↓	GAIN (%)
	E1 OFFLINE E1 ONLINE	10 CORES 10 CORES	0.079 -	0.284 0.710	0.08 80.0	1E4 1E6	2.46 0.766	-68.9
	E3 OFFLINE E3 ONLINE E4 OFFLINE E4 ONLINE	10 CORES 1200 CORES 10 CORES 160 GPUS	3 -2.4 -	3.82 6.39 4.13 3.95	0.328 328 0.328 328	1E3 5E5 1E3 5E5	0.1455 0.1463 0.0876 0.0739	--0.549 -15.6
	E5 OFFLINE E5 ONLINE	1 GPU 400 CORES	7.41 -	9.80 2.50	1.17 82.4	2.048E3 4.96E5	7.64 7.18	-6.02

Table 3 .

 3 Test error of the Message Passing Neural PDE Solver trained on datasets of the mixed advection-diffusion with different numbers of training trajectories.

	# TRAINING SIMULATIONS SIZE (MB) RMSE ↓
	409 1024 1638 2048	240 600 960 117	4.13 2.55 2.13 1.89

Acknowledgement

This work was performed using HPC/AI resources from GENCI-IDRIS (Grant 2022-[AD010610366R1]), and received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 956560.