
HAL Id: hal-04102400
https://hal.science/hal-04102400

Submitted on 28 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Training Deep Surrogate Models with Large Scale
Online Learning

Lucas Meyer, Marc Schouler, Robert Alexander Caulk, Alejandro Ribés,
Bruno Raffin

To cite this version:
Lucas Meyer, Marc Schouler, Robert Alexander Caulk, Alejandro Ribés, Bruno Raffin. Training Deep
Surrogate Models with Large Scale Online Learning. International Conference on Machine Learning,
Jul 2023, Honolulu (Hawai’i), United States. pp.24614-24630. �hal-04102400�

https://hal.science/hal-04102400
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Training Deep Surrogate Models with Large Scale Online Learning

Lucas Meyer 1 2 Marc Schouler 1 Robert A. Caulk 1 Alejandro Ribes 2 Bruno Raffin 1

Abstract

The spatiotemporal resolution of Partial Differ-
ential Equations (PDEs) plays important roles in
the mathematical description of the world’s phys-
ical phenomena. In general, scientists and engi-
neers solve PDEs numerically by the use of com-
putationally demanding solvers. Recently, deep
learning algorithms have emerged as a viable al-
ternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data gen-
erated by solvers, stored on disk and read back
for training. This paper advocates that relying
on a traditional static dataset to train these mod-
els does not allow the full benefit of the solver
to be used as a data generator. It proposes an
open source online training framework1 for deep
surrogate models. The framework implements
several levels of parallelism focused on simul-
taneously generating numerical simulations and
training deep neural networks. This approach sup-
presses the I/O and storage bottleneck associated
with disk-loaded datasets, and opens the way to
training on significantly larger datasets. Exper-
iments compare the offline and online training
of four surrogate models, including state-of-the-
art architectures. Results indicate that exposing
deep surrogate models to more dataset diversity,
up to hundreds of GB, can increase model gen-
eralization capabilities. Fully connected neural
networks, Fourier Neural Operator (FNO), and
Message Passing PDE Solver prediction accuracy
is improved by 68%, 16% and 7%, respectively.

1Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG
2Industrial AI Laboratory SINCLAIR, EDF Lab Paris-Saclay. Cor-
respondence to: Lucas Meyer <lucas.meyer@inria.fr>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1Code and documentation are respectively available at https:
//gitlab.inria.fr/melissa/melissa and https:
//melissa.gitlabpages.inria.fr/melissa/

1. Introduction
PDEs are powerful mathematical tools commonly used to
describe the dynamics of complex phenomena. Although
these tools remain foundational to scientific advancements
in fluid dynamics, mechanics, electromagnetism, biology,
chemistry or geosciences, running classical PDEs solvers,
based on numerical techniques such as Finite Elements, Fi-
nite Volumes, or Spectral Methods, can be computationally
prohibitive (Burden et al., 2015).

Training deep surrogate models of PDEs emerges as an alter-
native and complementary approach (Stevens et al., 2020).
In most cases, scientists introduce physical knowledge to
machine learning algorithms by developing surrogate mod-
els (Raissi et al., 2019) or shaping neural network architec-
tures to mimic traditional solvers (Li et al., 2021; Pfaff et al.,
2021; Brandstetter et al., 2022). Other studies developed
models to improve the approximation obtained by a solver
at a coarse resolution, faster than it would take to run the
solver directly at the desired resolution (Um et al., 2020;
Kochkov et al., 2021). Most deep-learning algorithms pro-
posed in the literature are supervised; they are trained on
simulations generated by the same solvers they intend to
replace or accelerate. Meanwhile, training deep surrogate
models that can approximate the solution for a family of
parameterized PDEs, requires generating large datasets for
a good coverage of the parameter space.

In its general form, a PDE describes the evolution of a
quantity u defined in space and time as below:

u : Ω× T −→ Ω′

(x, t) 7−→ u(x, t)

Du = f (1)
u(x, t = 0) = u0 (2)

u(x ∈ ∂Ω, t) = u∂Ω (3)

where Ω ⊂ Rdin , Ω′ ⊂ Rdout and T ⊂ R+. D is a differential
operator and f is referred to as a forcing term accounting
for external forces applied to the system. u0 and u∂Ω are
respectively the initial and boundary conditions. All these
variables contribute to the parametrization of PDEs and are

1

https://gitlab.inria.fr/melissa/melissa
https://gitlab.inria.fr/melissa/melissa
https://melissa.gitlabpages.inria.fr/melissa/
https://melissa.gitlabpages.inria.fr/melissa/

represented by a vector λ. It encompasses the variability
in the boundary conditions, initial conditions, the geometry
of the domain, or even the coefficients of the PDE itself
appearing in the operator D.

Most deep surrogate approaches currently found in the lit-
erature have been applied to less complex PDEs focused
on lower spatial dimensions or reduced resolutions. To our
knowledge, it is uncommon to address highly parameterized
problems. When done, it is difficult to introduce a wide
range of parameters that exhibit much diversity. As a re-
sult, these deep surrogates are not as versatile as traditional
solvers. The gap between the simplicity of the problems
considered by deep learning approaches and the complex-
ity of common PDE-based research and application can be
partly explained by the difficulty in obtaining comprehen-
sive datasets (Brunton et al., 2020). Indeed, the training of
those algorithms suffers the exact flaw that motivated their
development: the data generation with traditional solvers
is a slow process with a high memory and storage footprint.

This paper proposes a framework to orchestrate large-scale
parallelized data generation and training. The present ap-
proach suppresses the I/O and storage bottleneck associated
with disk-loaded datasets in traditional training approaches.
It enables a shift towards a potentially endless data gener-
ation only bounded by computational resource availability.
Specifically, the presented framework:

• enables the complete automation of large-scale work-
flow deployment encompassing the parallel execution
of many solver instances (which may also be paral-
lelized) sending data directly to a parallel training
server;

• mitigates the potential bias inherently caused by the
direct streaming of generated data to the training pro-
cess;

• demonstrates increased generalization capacity for sur-
rogate models, compared to a traditional "offline" train-
ing based on the repetition of samples over several
epochs.

2. Related Work
2.1. Deep Learning for Numerical Simulations

The approaches applying deep learning to accelerate nu-
merical simulations are many and various (Brunton et al.,
2020; Hennigh et al., 2021; Karniadakis et al., 2021). Most
of them involve supervised training, relying on the simula-
tion output of traditional solvers. However, unsupervised
models can be trained in a data-free regime (Raissi et al.,
2019; Sirignano & Spiliopoulos, 2018; Wandel et al., 2021).
They follow the elegant idea introduced by Raissi et al.

(2019): the model directly predicts the quantity u described
by the PDE. This physics informed neural network (PINN)
is subsequently trained by minimizing the residual of the
equations at random collocation points: Equation 1, Equa-
tion 2, and Equation 3 respectively on the domain, initial
and boundary points. Though a promising approach, some
studies have reported difficulties in training PINNs, even on
simple problems (Krishnapriyan et al., 2021). Some of these
difficulties are alleviated by using relevant gradient compu-
tation techniques (Rackauckas et al., 2020). PINNs training
can also integrate generated data (Raissi et al., 2020). It has
proven successful in reconstructing high-fidelity simulation
by using a subset of data generated with a computationally
intensive solver (Lucor et al., 2022).

While most of the models are trained with the supervision
of data obtained from traditional solvers, the data ingestion
techniques distinguish direct prediction models from autore-
gressive ones. Direct prediction models take the time as an
input to predict the corresponding state of u (Equation 4).

fθ(t) ≈ ut (4)

Raissi et al. (2019); Lu et al. (2021) provide examples of
such models. These direct approaches suffer from general-
ization when extrapolating to times outside of their training
range.

Autoregressive models replicate the iterative process of tradi-
tional solvers: they predict the next time step from previous
ones (Equation 5).

fθ(ut) ≈ ut+δt (5)

Autoregressive surrogate models come in different flavors.
If the spatial grid used by the solver is regular, each time
step can be seen as an image, and classical deep learning
algorithms like U-Net (Ronneberger et al., 2015) can be
employed (Wang et al., 2020). However, most solvers rely
on irregular grids. To overcome the dependency on a fixed
grid, scientists proposed to work in the Fourier space (Li
et al., 2021), while others rely on graph neural networks
(Pfaff et al., 2021; Brandstetter et al., 2022).

Autoregressive networks tend to accumulate errors along
the trajectory they reconstruct. Brandstetter et al. (2022) in-
troduced a push forward trick to minimize these errors. The
network is trained not on a single transition between two
consecutive time steps, but rather on an extended rollout tra-
jectory. This training procedure improves the stability of the
predictions (Takamoto et al., 2022) but its implementation
requires access to the full trajectories.

Prior works, especially involving super-resolution, already
integrate the solver to the training loop (Um et al., 2020;

2

Rackauckas et al., 2020; Kochkov et al., 2021). Solvers
are implemented using frameworks that support automatic
differentiation. It allows the backpropagation through the
solver during the training of the network. These inline
approaches remain sequential: reference simulations are
generated beforehand. The online characterization of the
presented framework, which is also compatible with such
approaches, denotes the generation of reference simulations
occurring in parallel to the training.

2.2. Data Efficiency

Deep learning has benefited from large datasets widely
adopted by the community (Russakovsky et al., 2015; Mer-
ity et al., 2017). Datasets dedicated to physics and numerical
simulations are emerging (Otness et al., 2021; Takamoto
et al., 2022; Bonnet et al., 2022). They are much wel-
comed as they allow to benchmark models on standard
PDEs. Nonetheless, physical systems and PDEs exhibit
patterns as diverse as the world itself. The sole Navier-
Stokes equations present a rich variety of dynamics depend-
ing on the compressibility of the fluid, its monophasic or
multiphasic nature, etc. Dedicated solvers are even devel-
oped to tackle these specificities individually (Ferziger et al.,
2002). No dataset can encompass all the variety of physical
phenomena. Consequently, training a model on a specific
problem demands a dedicated dataset.

In addition, as the PDE parameters vary it requires a massive
data to capture all its richness. To improve the accuracy
of solver simulations one can increase the grid resolution,
which increases the size of individual trajectories. The
size of a dataset composed of such trajectories may soon
reach the current memory capacity of the hardware. Deep
learning techniques to train a model with fewer data while
maintaining the accuracy that would be obtained with a
comprehensive dataset have been scarcely applied in the
context of numerical simulations. Transfer learning has
been studied to solve the same PDEs at different resolutions
(Chakraborty, 2021). Satorras et al. (2021) proposed to use
equivariance models to capture the symmetries of a problem
that would otherwise require much more training data.

2.3. Parallel Training Frameworks

The growing size of datasets and models, along with the
quest for always faster training has driven the machine learn-
ing community towards a regular use of high performance
computing (HPC) (Sergeev & Del Balso, 2018; You et al.,
2020). Today support for multi-GPU parallel training, com-
bining data and model parallelism, has become common and
integrated into major deep learning frameworks (Li et al.,
2020). Reciprocally, scientists working on numerical simu-
lations, the traditional users of HPC, have started consider-
ing deep learning to accelerate their simulations. Workflows

coupling large-scale and parallel simulations with machine
learning have started to emerge (Peterson et al., 2022). Lee
et al. (2021); Brace et al. (2022) apply such approach to
molecular dynamics, Stiller et al. (2022) to plasma physics.
Notice that having simulation runs in lockstep with training
opens the door to active learning (Ren et al., 2021). The
parameterization of the next set of simulations to run can
be chosen according to the current state of training. These
works explore early versions of adaptive training.

Deep reinforcement learning (Deep RL) relies on similar
workflows where concurrent actors, running one simulation
instance controlled by the current policy, are generating
state/actions trajectories sent to the learner to compute a bet-
ter policy. Frameworks running such workflows on clouds
or supercomputers are available (Espeholt et al., 2018; Hor-
gan et al., 2018; Liang et al., 2018). But these frameworks
are specialized for Deep RL, addressing its specificities like
off-policy issues. Moreover, to our knowledge, Deep RL is
working with simulation codes of intermediate complexity
that run on a single node, potentially using several cores or
one GPU (Berner et al., 2019). The Deep RL frameworks
do not support massively multi-node parallel solvers, typ-
ically parallelized with MPI and OpenMP, that we target
here. Additionally, they do not support the direct streaming
of data generated by external programs.

3. Method
The traditional training from synthetic data consists in 1)
generating the dataset 2) storing it on disk 3) reading it back
for training (Figure 1). At scale, I/Os and storage become
major constraints, limiting the size and representativeness
of a training dataset. We propose a file-avoiding framework
that trains a deep surrogate model simultaneously on data
streams generated from solver instances executed in parallel
(Figure 1). The I/Os and storage are drastically reduced.
The training dataset becomes only limited by the amount of
computing resources available. To put numbers in perspec-
tive, GPT-3 was trained on a main dataset of 570GB (plus 4
additional significantly smaller ones) (Brown et al., 2020),
while the proposed workflow has been used for computing
iteratively statistics for sensitivity analysis on 288TB of data
generated and processed on-the-fly (Ribés et al., 2022). This
opens the possibility to train on perpetually new data, while
also allowing for sampling repetition as in classical training
based on epochs.

3.1. Framework Overview

The framework is implemented as an extension of the open
source project Melissa, initially designed to handle large-
scale ensemble runs for sensitivity analysis (Terraz et al.,
2017) and data assimilation (Friedemann & Raffin, 2022).
The goal is to enable the online (no intermediate storage in

3

Training

Time

a) Classical Sequential Training

b) Simultaneous Data Generation and Training

Data Generation

Only Once

M
M

N

Storage

write read

Figure 1. Classical I/O and storage intensive workflow for deep
learning experiment (a) using M samples presented several times
through different epochs. (b) A file-free concurrent data generation
and online training workflow processing N samples. N �M .

files) training of a neural model from data generated through
different simulation executions. These simulations are ex-
ecuted with different input parameters (parameter sweep),
making the different members of the ensemble. We target
executions on supercomputers where simulations can be
large parallel solver codes executed on several nodes and
the training parallelized on several GPUs. Compared to
the original Melissa framework, the extension presented
here provides deep learning support while addressing the
specificities of online training, and implements new com-
munication patterns.

The framework consists of three main elements: several
clients, one server, and one launcher (Figure 2):

• The clients execute the same partial differential equa-
tions solver but each instance with a different set of
parameters λ. Once started, each client connects to the
server and directly streams the generated data to the
server.

• The server is in charge of the training. It receives
data from connected clients. At any time, a subset
of the entire data received so far is kept in a memory
buffer. Batches are assembled from this memory buffer
to feed the network. The server also chooses the set of
parameters λ for each client to run, and forwards them
to the launcher.

• The launcher orchestrates and monitors the execution.
On supercomputers, it requests resource allocations
to the machine job scheduler (e.g. Slurm (Yoo et al.,
2003) or OAR (Capit et al., 2005)). On these alloca-
tions, the server starts first then the clients.

Appendix A provides details about the framework imple-
mentation.

Clients

generate data
in parallel2

submit simulation parameters
to run1

build batches for
online training3

L
au

nc
he

r

request
allocation0

submit

jobs

track job

statuses

S
ch

ed
ul

er

S
er

ve
r

B
uf

fe
r

G
P

U
1

G
P

U
2

B
uf

fe
r

Round Robin

Node1

Core2 Core1

Core3 Core4

Node2

Core2 Core1

Core3 Core4

Node3

Core2 Core1

Core3 Core4

run jobs

run job

Figure 2. Framework architecture and workflow. The specific com-
ponents introduced by the framework are colored in purple (e.g.
the server). The different stages of the workflow are highlighted
in blue. 2 and 3 occur simultaneously. In the depicted example, 6
clients run concurrently on 3 nodes. They are themselves paral-
lelized on 2 cores. The training is performed in a data-distributed
manner on 2 GPUs.

3.2. Data Flow

The server can be executed on several GPUs, located or not
on the same nodes, for data parallel training. Each GPU is
associated with its own memory buffer of fixed size.

When a new client starts a simulation, it establishes con-
nections with each of the server processes. As soon as the
running simulation produces new data, they are sent to the
server. Data are distributed between GPUs in a Round Robin
fashion. No data are ever stored on disk, hence avoiding
costly I/O operations.

The paper focuses on one-way data transfer. The clients
transmit all the data required for training: the field of in-
terest ut and possibly additional information the solver can
provide like the adjoint. Nonetheless, the framework can
also support bidirectional communications where the server
communicates data back to the clients (Friedemann & Raf-
fin, 2022). This is for instance necessary for applications
based on backpropagation through the solver (Um et al.,
2020; Rackauckas et al., 2020) or Deep RL for which up-
dates of the policy network must be passed to the actors.

3.3. Data Management

Assembling batches with enough diversity is critical to apply
stochastic gradient descent algorithm (Bottou et al., 2018).
Biased batches can otherwise lead to catastrophic forgetting
(Kemker et al., 2018) marked by decreased performances of

4

Time

Client 1

Client 2

Client 3

a) Data Generation with Parallel Clients

Memory Buffer

b) Memory Buffer in case of Time Step Samples

batch batch

Memory Buffer

c) Memory Buffer in case of Full Trajectory Samples

batch

Figure 3. Flow of the generated simulation data. In a, 3 processes
run 6 simulations in parallel. Groups of concurrent simulations are
executed sequentially. In b, as soon as a simulation time step utλi

is computed it is passed to the memory buffer. In c, the training
requires access to the full trajectory and so the unit element in the
buffer is a full trajectory. The content of the memory buffer is
repesented a two different times τ1 and τ2. At time τ1 no batch
can be extracted for c as no full trajectory is available yet.

the trained network.

The online training workflow comes with specific possible
sources of bias:

• Intra-simulation bias: Solvers produce dynamics as
time series by discretizing time and progressing itera-
tively. After T time steps, only the data utλ, 0 ≤ t ≤ T
for the simulation parameter λ are available for train-
ing.

• Inter-simulation bias: Computational resources are
limited and so often not all simulation instances can
be executed concurrently. Let’s assume that only c
simulations can be executed concurrently at any time.
At the end of the execution of the c first simulations,
training only has access to the data utλi

, 0 < i ≤ c.

• Memory bias: The set of data available for training
is not only limited to the already generated data, it is
further reduced due to memory constraints. At most, a
rolling subset of the generated data that fits the given
memory budget can be kept and used for training.

The management of the memory buffer is key to counter-
act these biases (Figure 3). Different management policies
are available ranging from simple queues to reservoir sam-
pling (Efraimidis & Spirakis, 2006). The one used in the

experiments of this paper allows writing incoming data on
free slots only, while each (random) read suppresses the
corresponding data. So each data is seen only once dur-
ing training. A watermark is also used to prevent the data
loader from extracting samples from the buffer when too few
are present. This also ensures bigger diversity in batches
randomly taken from the buffer population.

The modality of training also impacts data management.
The training may work with individual time steps, an inter-
val of successive time steps or the full trajectory (Figure 3).
Autoregressive models (Equation 5) require at least two suc-
cessive time steps: the input and the target of the model.
However, the implementation of the push forward trick in-
troduced by Brandstetter et al. (2022) to stabilize long-term
prediction of the network requires access to the full trajec-
tory. This paper experiments with different situations. When
the full trajectory is needed, the unit sample in the memory
buffer encompasses the full trajectory.

The sampling strategy implemented by the server for se-
lecting the parameters λ to run also has an impact on the
inter-simulation bias. Classical Monte Carlo sampling is
used throughout the paper. Nonetheless, the framework pro-
vides the abstraction to implement more advanced sampling
strategies.

4. Experiments
The experiments consist in evaluating the performance of
the framework in training state-of-the-art deep surrogate
architectures on classical PDEs. Table 1 lists the different
experiments, with the model that is trained, the equations
ruling the use case, and the source of the model or solver. Ex-
cept stated otherwise, the hyper-parameters of the training
(e.g. the batch size) are kept identical to the original paper.
Data generation details are provided in Appendix B. Ex-
periments are run on NVIDIA V100 GPUs and Intel Xeon
2.5GHz processors. Table 2 synthesizes the experimental
resources and the results obtained.

4.1. Dataset Size Impact

A first motivational experiment examines the impact of the
number of trajectories in the dataset on model performance
in a classical offline training.

The Message Passing Neural PDE Solver is trained on the
mixed advection-diffusion dataset consisting of a training
set and a test set of respectively 2,048 and 128 trajectories
as in Brandstetter et al. (2022). The trajectories differ only
by the initial conditions of the PDE (λ = u0). Smaller train-
ing datasets are extracted from the original one. For each
of these datasets, the model is always trained on 640,000
batches, and tested on the same test set. Table 3 shows the
error decreases with the number of trajectories available.

5

Table 1. Combinations of models and PDE use cases in the different experiments performed with the online training framework.

EXPERIMENT PDE MODEL SOURCE

E1 HEAT EQUATION FULLY CONNECTED —
E2 LORENZ’S SYSTEM FULLY CONNECTED LORENZ (1963)
E3 NAVIER-STOKES U-NET TAKAMOTO ET AL. (2022)
E4 NAVIER-STOKES FNO LI ET AL. (2021)
E5 MIXED ADVECTION-DIFFUSION MESSAGE PASSING PDE SOLVER BRANDSTETTER ET AL. (2022)

Table 2. Comparison of the training modes for the different experiments. RESOURCES column indicates computing resources used for
data generation.

EXPERIMENT RESOURCES GENERATION
(HOURS)

TOTAL
(HOURS)

DATASET
(GB)

UNIQUE SAMPLES
(N)

RMSE ↓ GAIN
(%)

E1 OFFLINE 10 CORES 0.079 0.284 0.08 1E4 2.46 —
E1 ONLINE 10 CORES — 0.710 80.0 1E6 0.766 68.9

E3 OFFLINE 10 CORES 3 3.82 0.328 1E3 0.1455 —
E3 ONLINE 1200 CORES — 6.39 328 5E5 0.1463 -0.549
E4 OFFLINE 10 CORES 2.4 4.13 0.328 1E3 0.0876 —
E4 ONLINE 160 GPUS — 3.95 328 5E5 0.0739 15.6

E5 OFFLINE 1 GPU 7.41 9.80 1.17 2.048E3 7.64 —
E5 ONLINE 400 CORES — 2.50 82.4 4.96E5 7.18 6.02

Table 3. Test error of the Message Passing Neural PDE Solver
trained on datasets of the mixed advection-diffusion with different
numbers of training trajectories.

TRAINING SIMULATIONS SIZE (MB) RMSE ↓
409 240 4.13

1024 600 2.55
1638 960 2.13
2048 117 1.89

FNO is trained with 5 datasets of different sizes from the
simple advection data. Trajectories differ by the initial
conditions of the equation (λ = u0). We also test different
training strategies combining an input of 1 or 10 consecutive
time steps and a single time step or full rollout prediction.
Figure 4 shows the error of the different trained models
on the same test dataset of 100 unseen trajectories. All
modalities benefit from larger datasets, except the history of
1 and full rollout that likely suffers from overfitting at 2000
trajectories. The benefit of a larger dataset is particularly
noticeable when using the default configuration from (Li
et al., 2021) (history of 10 and a full trajectory rollout) with
a gain of 96%.

The experiment shows that state-of-the-art models make
lower errors in inference when trained on more trajectories.
It corroborates similar results obtained for FNO on the
Navier-Stokes equation (Li et al., 2021). Although the
datasets considered presently are still relatively small (up

50 100 500 1000 2000

Training Simulations

10−4

10−3

10−2

10−1

100

L
os

s

1/one-step
1/rollout
10/one-step
10/rollout

Figure 4. Test error of FNO trained on datasets of the simple ad-
vection with different numbers of trajectories. The different train-
ing strategies are noted history/rollout length.

to 1.6 GB), generating much more trajectories for training,
which would help generalization, would soon be prohibitive
in terms of memory. The framework proposed in the present
article addresses this difficulty by avoiding writing any data
on the disk.

4.2. Online Learning with Single Step Samples

The heat equation example (E1) trains a fully connected
network to predict the entire 2D temperature field, given six
temperature inputs: four boundary conditions, one initial
condition, and the time step (λ = [u0, uBC], each randomly
sampled between 100K and 500K). The solver used to gener-

6

ate the data approximates the solution on a 100 x 100 spatial
grid for 100 time steps representing 1 second. It relies on
an implicit finite difference scheme. For the offline mode,
two training datasets of respectively 100 and 500 trajecto-
ries are generated. The initial and boundary temperature
conditions vary for each trajectory with values randomly
selected between 100K and 500K. For the online mode, 1
node executes 5 clients to generate 10,000 trajectories. Each
client runs the solver in parallel on 2 cores. Each time a new
time step is completed, the 2D temperature field is sent to
the memory buffer.

The model architecture consists of 3 layers of 1024 features,
followed by ReLU activation function except for the output
layer. The model performs direct prediction as described
in Equation 4. Both online and offline training procedures
follow the same learning rate schedule starting with a value
of 1E−3 and decaying exponentially. For offline training, the
number of epochs is adjusted to always train with 100,000
batches. The offline training dataset is repeated between
epochs.

Figure 5 shows, for 5 repetitions of the experiment, the train-
ing and validation losses for the two offline training datasets
and the online training. The mean is plotted in solid lines
and bold colors. The online training presents more diversity
to the network which is correlated with better generaliza-
tion. The online example enables a deeper exploration of the
problem resulting in about 70% improved validation error
compared to 100 simulations and 100 epochs offline. Addi-
tionally, the gap between the decreasing training loss and the
plateaued validation loss of the model trained in the offline
settings is symptomatic of overfitting. The model trained
with the online framework is less prone to such overfitting.

0 20000 40000 60000 80000 100000

Batches

10−1

100

101

L
os

s

Training
Validation
Offline (100)

Offline (500)
Online (10,000)

Figure 5. Comparison of the online and offline training on the
Heat Equation (E1). Solid lines represent the mean values of
five realizations. Vertical lines represent the first epoch of the
corresponding offline training, after which the dataset is repeated
while the online setting always processes new data.

In the example of the Lorenz’s system (E2) the goal is to
train a fully connected autoregressive model composed of

3 layers of 512 features followed by SiLU activation to re-
cover the chaotic dynamics of the system. The model takes
as input ρ, the parameter of the equation that varies across
the simulations, and Xt the position at the current time step
(λ = [u0, ρ]). It predicts the next position Xt+δt. The
trajectory generation is detailed in subsection B.2. Three
different offline training datasets are used for the experi-
ment. They respectively count 100, 10 and 10,000 trajec-
tories. The trajectories of the latter are subsampled every
100 time steps. 10 and 10,000 datasets are symbolic of
more complex systems for which storage limitations impose
a scarcity of data. For each dataset, the model is trained
for 100, 1000, and 100 epochs respectively. For the online
dataset, we generate 10000 trajectories. The u0 parameter
is randomly sampled. In the streaming online training, the
memory buffer is a simple FIFO queue and the trajectories
are generated from simulations with increasing values of
ρ, creating an inter-simulation bias not altered by the FIFO
queue. The Sampling + Buffer online training randomly
samples ρ and uses the default memory buffer introduced in
subsection 3.3. For all training strategies, the batch size is
1024. The validation dataset consists of 10 trajectories.

Figure 6 shows the training dynamics for the different offline
and online settings. The offline training with 10 trajectories
and the one with 10,000 subsampled trajectories present
signs of overfitting, indicating that more data are neces-
sary to properly capture the chaotic dynamic of the system.
Online training with 10,000 performs as well as offline train-
ing with 100 trajectories over 100 epochs. The streaming
training presents the worse validation curve which can be
explained by catastrophic forgetting (Kemker et al., 2018).
These results highlight the importance of the bias mitiga-
tion strategy and the ability of the framework to outperform
classical training with scarce data. The efficiency of the
bias mitigation strategy from the perspective of the batch
statistics is further discussed in Appendix C.

0 2500 5000 7500 10000 12500 15000 17500 20000

Batches

10−2

10−1

100

101

102

103

L
os

s

Training
Validation

Offline (100)
Offline (10)

Offline (10,000 Subsampled)
Online (Sampling + Buffer)

Streaming

Figure 6. Comparison between the training and validation losses
for different training strategies on the Lorenz’s system (E2).

7

4.3. Online Training on Full Trajectories

This subsection focuses on the online training of FNO (E4),
U-Net (E3), and Message Passing Neural PDE Solver
(E5).

The FNO (in its 2-D version) and U-Net architectures are
trained on a use case ruled by the Navier-Stokes equations,
as in Li et al. (2021); Takamoto et al. (2022). For the offline
mode, the training dataset consists of 1,000 trajectories
repeated over 500 epochs with a batch size of 20 (λ = u0).
For the online mode, data generation is either performed
on 30 nodes of 40 cores each, or on 40 nodes of 4 GPUs
each (in this case clients run on GPU). This allows running
31,250 clients each generating 16 trajectories for a total of
500,000 simulations. The same validation dataset is used
to evaluate the performance of both training sessions. It
consists of 200 trajectories generated offline. Both FNO
and U-Net architectures are trained as autoregressive models
following the original procedure (Li et al., 2021).

Figure 7 compares the training and validation loss for the
two architectures and for the two different ways of training.
Each experiment was repeated five times. For the U-Net
architecture, the online framework leads to similar results
to offline training after 15,000 batches. On average, perfor-
mances are similar but the online training is characterized
by strong variations around the mean value. This instability
echoes the observations of Takamoto et al. (2022), where
the so called pushforward trick was used to stabilize the
architecture. On the other hand, the online framework has
a clear positive impact on the performance of FNO, which
outperforms U-Net. Online training is indeed characterized
by a lower validation loss compared to offline training.

0 5000 10000 15000 20000 25000

Batches

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

L
os

s

Training
Validation
FNO offline

UNet offline
FNO online
UNet online

Figure 7. Comparison between the offline and online training of
the FNO and U-Net architectures on the Navier-Stokes Equations
(E3,E4). The vertical line represents the first epoch accounting for
50 batches of 20 full trajectories each.

The experiment E5 tests the impact of the online train-
ing framework on the Message Passing PDE Solver with
the use case of the mixed advection-diffusion (λ =

[u0, α, β, γ]). The solver generates trajectories by groups of
4. The equation parameters α, β, and γ vary from one group
to another. Only the initial conditions vary within a group.
For offline data generation, the solver is used as it is. For
the online mode, it is only modified to send the data to the
server relying on the framework API, instead of writing the
data on disk. The offline training dataset consists of 2,048
trajectories. The model is trained for 20 epochs. The online
data generation is performed over 10 nodes of 40 cores each.
It executes sequentially two ensembles of 400 clients. Each
client generates 128 batches of 4 simulations. In total, on-
line data generation produces 409,600 trajectories. Online
training is achieved on 2 GPUs (data parallelism). Clients
feed iteratively each memory buffer associated with each
GPU in a Round Robin fashion. Both training methods are
validated on the same dataset consisting of 128 trajectories.

Figure 8 compares the training and validation losses. Online
training presents an almost constantly lower validation loss.
Evaluation on a test set shows that training the model with
the online framework improves the performance by 7%
compared to the offline training.

0 5000 10000 15000 20000 25000

Batches

100

101

102

L
os

s

Offline Validation
Offline Training
Online Validation
Online Training

Figure 8. Comparison between the offline and online training of the
Message Passing PDE Server on the mixed advection-diffusion
(E5). The vertical line represents the limit of the first epoch.

subsection 4.1 showed that, offline, bigger datasets generally
improve surrogate model performances. The different on-
line experiments indicate the framework sustains this trend
despite the online setting. During training, it exposes the
model to more unique samples which results in better gener-
alization compared to offline training for the same number
of processed batches. The different experiments also exhibit
the versatility of the framework. Several models are trained
on multiple PDE use cases. Several degrees of parallelism
are presented for the data generation.

5. Conclusion
Deep surrogate models are promising candidates to acceler-
ate the numerical simulations of PDEs, unlocking faster

8

engineering processes and further scientific discoveries.
The proposed online training framework leverages HPC
resources to expose these models to bigger datasets, with
more diverse trajectories, than it would otherwise be pos-
sible with classical offline training, due to I/O and storage
limitations. By relying on simple techniques like a memory
buffer and Monte Carlo sampling, the framework mitigates
the inherent bias of streaming learning. Our framework en-
abled to process online datasets up to 328 GB and improve
the generalization of fully connected neural networks by
68%, FNO by 16%, and Message Passing PDE Solver by
7%. In future work, such improvement could be further
enhanced by relying on active learning.

Acknowledgement
This work was performed using HPC/AI resources from
GENCI-IDRIS (Grant 2022-[AD010610366R1]), and re-
ceived funding from the European High-Performance Com-
puting Joint Undertaking (JU) under grant agreement No
956560.

References
Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P.,

Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse,
C., et al. Dota 2 with large scale deep reinforcement
learning. ArXiv preprint, abs/1912.06680, 2019.

Bonnet, F., Mazari, J. A., Cinnella, P., and Gallinari,
P. AirfRANS: High fidelity computational fluid dy-
namics dataset for approximating reynolds-averaged
navier–stokes solutions. In Thirty-sixth Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track, 2022.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. Siam Review,
60(2):223–311, 2018.

Brace, A., Yakushin, I., Ma, H., Trifan, A., Munson, T.,
Foster, I., Ramanathan, A., Lee, H., Turilli, M., and Jha,
S. Coupling streaming ai and hpc ensembles to achieve
100–1000× faster biomolecular simulations. In 2022
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 806–816. IEEE, 2022.

Brandstetter, J., Worrall, D. E., and Welling, M. Message
passing neural PDE solvers. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022, 2022.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,

J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Brunton, S. L., Noack, B. R., and Koumoutsakos, P. Ma-
chine learning for fluid mechanics. Annual review of fluid
mechanics, 52:477–508, 2020.

Burden, R. L., Faires, J. D., and Burden, A. M. Numerical
analysis. Cengage learning, 2015.

Capit, N., Da Costa, G., Georgiou, Y., Huard, G., Martin,
C., Mounié, G., Neyron, P., and Richard, O. A batch
scheduler with high level components. In CCGrid 2005.
IEEE International Symposium on Cluster Computing
and the Grid, 2005., volume 2, pp. 776–783. IEEE, 2005.

Chakraborty, S. Transfer learning based multi-fidelity
physics informed deep neural network. Journal of Com-
putational Physics, 426:109942, 2021.

Efraimidis, P. S. and Spirakis, P. G. Weighted random
sampling with a reservoir. Information processing letters,
97(5):181–185, 2006.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V.,
Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I.,
Legg, S., and Kavukcuoglu, K. IMPALA: scalable dis-
tributed deep-rl with importance weighted actor-learner
architectures. In Dy, J. G. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 1406–1415. PMLR,
2018.

Ferziger, J. H., Perić, M., and Street, R. L. Computational
methods for fluid dynamics, volume 3. Springer, 2002.

Friedemann, S. and Raffin, B. An elastic framework for
ensemble-based large-scale data assimilation. The inter-
national journal of high performance computing applica-
tions, 36(4):543–563, 2022.

Hennigh, O., Narasimhan, S., Nabian, M. A., Subramaniam,
A., Tangsali, K., Fang, Z., Rietmann, M., Byeon, W., and
Choudhry, S. Nvidia simnet™: An ai-accelerated multi-
physics simulation framework. In International Confer-
ence on Computational Science, pp. 447–461. Springer,
2021.

Hintjens, P. ZeroMQ: messaging for many applications. "
O’Reilly Media, Inc.", 2013.

9

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel,
M., van Hasselt, H., and Silver, D. Distributed prioritized
experience replay. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Pro-
ceedings, 2018.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,
P., Wang, S., and Yang, L. Physics-informed machine
learning. Nature Reviews Physics, 3(6):422–440, 2021.

Kemker, R., McClure, M., Abitino, A., Hayes, T. L., and
Kanan, C. Measuring catastrophic forgetting in neural net-
works. In McIlraith, S. A. and Weinberger, K. Q. (eds.),
Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative Ap-
plications of Artificial Intelligence (IAAI-18), and the 8th
AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pp. 3390–3398. AAAI Press, 2018.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner,
M. P., and Hoyer, S. Machine learning–accelerated com-
putational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021.

Krishnapriyan, A. S., Gholami, A., Zhe, S., Kirby, R. M.,
and Mahoney, M. W. Characterizing possible failure
modes in physics-informed neural networks. In Ran-
zato, M., Beygelzimer, A., Dauphin, Y. N., Liang, P., and
Vaughan, J. W. (eds.), Advances in Neural Information
Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, De-
cember 6-14, 2021, virtual, pp. 26548–26560, 2021.

Lee, H., Merzky, A., Tan, L., Titov, M., Turilli, M., Alfe,
D., Bhati, A., Brace, A., Clyde, A., Coveney, P., et al.
Scalable hpc & ai infrastructure for covid-19 therapeutics.
In Proceedings of the Platform for Advanced Scientific
Computing Conference, pp. 1–13, 2021.

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P., Li,
T., Paszke, A., Smith, J., Vaughan, B., Damania, P., et al.
Pytorch distributed: Experiences on accelerating data
parallel training. Proceedings of the VLDB Endowment,
13(12), 2020.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A. M., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021, 2021.

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Gold-
berg, K., Gonzalez, J., Jordan, M. I., and Stoica, I. Rllib:
Abstractions for distributed reinforcement learning. In

Dy, J. G. and Krause, A. (eds.), Proceedings of the 35th
International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80 of Proceedings of Machine Learning
Research, pp. 3059–3068. PMLR, 2018.

Lorenz, E. N. Deterministic nonperiodic flow. Journal of
atmospheric sciences, 20(2):130–141, 1963.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via deeponet based on the
universal approximation theorem of operators. Nature
Machine Intelligence, 3(3):218–229, 2021.

Lucor, D., Agrawal, A., and Sergent, A. Simple compu-
tational strategies for more effective physics-informed
neural networks modeling of turbulent natural convection.
Journal of Computational Physics, 456:111022, 2022.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings, 2017.

Otness, K., Gjoka, A., Bruna, J., Panozzo, D., Peherstorfer,
B., Schneider, T., and Zorin, D. An extensible bench-
mark suite for learning to simulate physical systems. In
Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round 1),
2021.

Peterson, J. L., Bay, B., Koning, J., Robinson, P., Sem-
ler, J., White, J., Anirudh, R., Athey, K., Bremer, P.-T.,
Di Natale, F., et al. Enabling machine learning-ready hpc
ensembles with merlin. Future Generation Computer
Systems, 131:255–268, 2022.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. W. Learning mesh-based simulation with
graph networks. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Aus-
tria, May 3-7, 2021, 2021.

Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov,
K., Supekar, R., Skinner, D., Ramadhan, A., and Edelman,
A. Universal differential equations for scientific machine
learning. ArXiv preprint, abs/2001.04385, 2020.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019.

Raissi, M., Yazdani, A., and Karniadakis, G. E. Hidden
fluid mechanics: Learning velocity and pressure fields
from flow visualizations. Science, 367(6481):1026–1030,
2020.

10

Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Gupta,
B. B., Chen, X., and Wang, X. A survey of deep active
learning. ACM computing surveys (CSUR), 54(9):1–40,
2021.

Ribés, A., Terraz, T., Fournier, Y., Iooss, B., and Raffin,
B. Unlocking Large Scale Uncertainty Quantification
with In Transit Iterative Statistics, pp. 113–136. Springer
International Publishing, Cham, 2022. ISBN 978-3-030-
81627-8.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-
tional networks for biomedical image segmentation. In In-
ternational Conference on Medical image computing and
computer-assisted intervention, pp. 234–241. Springer,
2015.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. Imagenet large scale visual recognition chal-
lenge. International journal of computer vision, 115(3):
211–252, 2015.

Satorras, V. G., Hoogeboom, E., and Welling, M. E(n)
equivariant graph neural networks. In Meila, M. and
Zhang, T. (eds.), Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pp. 9323–9332. PMLR,
2021.

Sergeev, A. and Del Balso, M. Horovod: fast and easy
distributed deep learning in tensorflow. ArXiv preprint,
abs/1802.05799, 2018.

Sirignano, J. and Spiliopoulos, K. Dgm: A deep learning al-
gorithm for solving partial differential equations. Journal
of computational physics, 375:1339–1364, 2018.

Stevens, R., Taylor, V., Nichols, J., Maccabe, A. B., Yelick,
K., and Brown, D. Ai for science: Report on the de-
partment of energy (doe) town halls on artificial intelli-
gence (ai) for science. Technical report, Argonne National
Lab.(ANL), Argonne, IL (United States), 2020.

Stiller, P., Makdani, V., Pöschel, F., Pausch, R., Debus, A.,
Bussmann, M., and Hoffmann, N. Continual learning
autoencoder training for a particle-in-cell simulation via
streaming. ArXiv preprint, abs/2211.04770, 2022.

Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D.,
Alesiani, F., Pflüger, D., and Niepert, M. Pdebench: An
extensive benchmark for scientific machine learning. In
Thirty-sixth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track, 2022.

Terraz, T., Ribes, A., Fournier, Y., Iooss, B., and Raffin, B.
Melissa: large scale in transit sensitivity analysis avoiding
intermediate files. In Proceedings of the international
conference for high performance computing, networking,
storage and analysis, pp. 1–14, 2017.

Um, K., Brand, R., Fei, Y. R., Holl, P., and Thuerey, N.
Solver-in-the-loop: Learning from differentiable physics
to interact with iterative pde-solvers. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020.

Wandel, N., Weinmann, M., and Klein, R. Learning in-
compressible fluid dynamics from scratch - towards fast,
differentiable fluid models that generalize. In 9th Inter-
national Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021, 2021.

Wang, R., Kashinath, K., Mustafa, M., Albert, A., and Yu,
R. Towards physics-informed deep learning for turbulent
flow prediction. In Gupta, R., Liu, Y., Tang, J., and
Prakash, B. A. (eds.), KDD ’20: The 26th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
Virtual Event, CA, USA, August 23-27, 2020, pp. 1457–
1466. ACM, 2020.

Yoo, A. B., Jette, M. A., and Grondona, M. Slurm: Simple
linux utility for resource management. In Workshop on
job scheduling strategies for parallel processing, pp. 44–
60. Springer, 2003.

You, Y., Li, J., Reddi, S. J., Hseu, J., Kumar, S., Bhojana-
palli, S., Song, X., Demmel, J., Keutzer, K., and Hsieh,
C. Large batch optimization for deep learning: Training
BERT in 76 minutes. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020, 2020.

11

A. Framework Details
A.1. Implementation

The framework is mainly implemented in Python. The server supports data parallel training for Pytorch and Tensorflow
models. Supporting an existing parallel solver (MPI+X parallelization supported) requires 1) instrumenting the code to call
the API (for C, C++, Fortran or Python) enabling to connect and ship the data to the server, 2) instructing the server on how
to perform the training and 3) defining the experimental design, i.e. how to draw the input parameter set for each instance.

This paper focuses on full online training, but the framework can start from a pre-trained model, and data provided for
training can mix some read from files using a proxy client. This enables to reduce repetitive data generation during the
hyper-parameterization process.

Communications are implemented with ZeroMQ (Hintjens, 2013). ZeroMQ manages asynchronous data transfers, stored
when necessary in internal buffers on the client and server sides to absorb network variability. If these buffers fill up the
simulation is suspended. On the server side a thread associated to each GPU is dedicated to data reception and insertion into
the memory buffer. Data formatting occurs at this stage when required. Another thread builds batches from the content of
the buffer and trains the model with them.

A.2. Fault Tolerance

The framework is designed for application on large clusters. It is made resilient to different faults that can occur on such
infrastructure. Failing clients are automatically restarted. The server keeps track of the received time steps utλ and discards
already received ones. If the server fails, it is restarted with all the running clients. In case of launcher failure, the currently
running clients will run up to completion and the server will finish and checkpoint. A manual restart of the full application is
then needed to restart from that checkpoint. The scheduler of the cluster (e.g. Slurm (Yoo et al., 2003)) comes with its own
fault tolerance mechanism. A failing request of the scheduler is simply resubmitted later.

A.3. Reproducibility

The stochastic components of the framework (the model’s weights initialization, the simulation parameter sampler, and the
buffer policy) are seeded. The framework operates with configuration files which also contributes to the reproducibility
of training experiments. However, the distributed execution on a cluster comes with inevitable variability which makes
identical reproducibility challenging. Indeed, the execution of the clients is subject to the workload of the cluster, which
impacts the order of the data received by the server and may ultimately lead to variations in the training.

B. Equations
B.1. The Heat Equation

Equation 6 describes the evolution of the temperature u in a 2D square domain of length L. α represents the thermal
diffusivity of the medium. The system is fully determined by initial conditions (Equation 7) and boundary conditions
(Equation 8). The solver used to generate the training data approximates the solution with an implicit Euler scheme of
finite difference. It solves the equation on a 100× 100 regular grid, with time steps of 0.01s for a total simulated time of
1s. The thermal diffusivity is fixed, α = 1 m2 · s−1. The initial temperature is considered uniform over the domain, while
the temperatures at the edge of the domain are constant but not necessarily equal. All temperature conditions take random
values in [100K, 500K].

∂u

∂t
= α∆u (6)

u(x, y, t = 0) = TIC (7)
u(x = 0, y, t) = Tx1 , u(x = L, y, t) = Tx2

u(x, y = 0, t) = Ty1 , u(x, y = L, t) = Ty2 (8)

12

B.2. The Lorenz’s System

Equation 9 describes the famous chaotic system introduced by Lorenz that serves as a simplified climate model (Lorenz,
1963). An explicit Euler integration scheme allows the recovery of the trajectory of the system given an initial position.
It approximates the solution with time steps of 0.01s for a total simulated time of 20s. For the dataset generation, the
parameters σ and β are fixed to the respective values of 10 and 8/3. The initial position of each trajectory is randomly taken
according to the normal distribution N (15, 30). ρ takes values in [0, 20, 40, 60, 80, 100].

dx

dt
= σ(y − z)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

(9)

B.3. Simple Advection

The Advection is a standard example of PDEs. The implementation of the example is directly taken from the PDEBench
paper (Takamoto et al., 2022) §D.1.

B.4. Mixed Advection-Diffusion

The Advection-Diffusion considers a combination of phenomena: the simple advection, and the diffusion of a quantity
u. The implementation of the example is directly taken from the original paper of the Message Passing PDE Solver
(Brandstetter et al., 2022) experiment E3 in §4.1.

B.5. The Navier-Stokes Equations

The Navier-Stokes equations are canonical to describe the evolution of any fluid (Ferziger et al., 2002). Equation 10, 11 and
12 describe the evolution of a 2D incompressible fluid on the surface of the unit torus, in terms of velocity u, and vorticity w
where w = ∇× u. ν denotes the viscosity of the fluid. It is set to 1E−5m2 · s−1. f denotes the forcing term of the system.
The equations are solved with a pseudo-spectral method for (x, t) ∈ [0, 1]2 × [0, T] and periodic boundary conditions. The
equations are discretized on a 64 x 64 regular mesh, with a time step of 1E−4s for a total simulated time of 20s. The solver
generating the training data is the same as for the original paper of FNO (Li et al., 2021).

∂tw(x, t) + u(x, t) · ∇w(c, t) = ν∆w(x, t) + f(x) (10)
∇ · u(x, t) = 0 (11)
w(x, t = 0) = w0(x) (12)

C. Bias Mitigation
The online setting of the framework inherently induces biases in the data available for training (subsection 3.3). The
efficiency of the bias mitigation strategy consisting of Monte Carlo sampling of the simulation parameters and mixing of the
received data within the memory buffer is evaluated on the Lorenz’s system described in subsection B.2. Figure 9 compares
the batch statistics of the normalized inputs for different training settings identical to the ones presented in subsection 4.2.
ρ is normalized between 0 and 1, using minimum and maximum values. Coordinates x, y, and z are standardized. The
Offline (100) corresponds to classical offline training with data sampled randomly from 100 previously generated trajectories.
The sampling being uniform, the batches present an almost constant mean and standard deviation. It is assumed that
representative and well-balanced batches with constant statistics will lead to faster stochastic gradient descent convergence
and better generalization capabilities of the trained model. Streaming refers to the case where trajectories are generated by
order of increasing ρ and batches are formed with data as soon as they are received by the server. Figure 9 highlights batch
statistics are biased towards the simulation that has just been executed. For the online sampling, the parameter ρ is randomly

13

Figure 9. Statistics of the normalized inputs for the Lorenz’s system (E2) with different bias mitigation strategies.

sampled. It immediately improves the fluctuations of batch statistics. The addition of the memory buffer further improves
the batch statistics making them closer to the ones observed in the offline setting.

D. Prediction Results

x

−20−10
0

10
20

30

y−20

−10

0

10

20

z

10

20

30

40

Reference Offline (100) Online (Sampling + Buffer)

0

25

x

−25

0

25

y

0 2 4 6 8 10

t

20

40

z

Reference Offline (100) Online (Sampling + Buffer)

Figure 10. Comparison of the predictions for the Lorenz’s system and a trajectory never seen during training with ρ = 28.

14

0

25

50

Ta
rg

et

time step: 1 time step: 4 time step: 7 time step: 10

3

2

1

0

1

2

3

Vo
rti

ci
ty

 (1
/s

)

0

25

50FN
O

 o
ffl

in
e

0

25

50U
N

et
 o

ffl
in

e

0

25

50FN
O

 o
nl

in
e

0 50

0

25

50U
N

et
 o

nl
in

e

0 50 0 50 0 50

Figure 11. Visual comparison of Navier-Stokes predictions from U-Net and FNO

15

0

25

50

Ta
rg

et

time step: 1 time step: 4 time step: 7 time step: 10

0

25

50FN
O

 o
ffl

in
e

0

25

50U
N

et
 o

ffl
in

e

0

25

50FN
O

 o
nl

in
e

0 50

0

25

50U
N

et
 o

nl
in

e

0 50 0 50 0 50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
bs

ol
ut

e
er

ro
r (

1/
s)

Figure 12. Visual comparison of Navier-Stokes prediction error from U-Net and FNO

16

Figure 13. Visual comparison of Message Passing PDE Solver predictions on mixed advection-diffusion

17

