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Abstract 

A scalable optical convolutional neural network (SOCNN) based on free-space optics and 

Koehler illumination was proposed to address the limitations of the previous 4f correlator 

system. Unlike Abbe illumination, Koehler illumination provides more uniform illumination 

and reduces crosstalk. SOCNN allows for scaling up of the input array and the use of incoherent 

light sources. Hence, the problems associated with 4f correlator systems can be avoided. We 

analyzed the limitations in scaling the kernel size and parallel throughput and found that 

SOCNN can offer a multilayer convolutional neural network with massive optical parallelism. 
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1. Introduction 

In recent times, the advent of artificial neural networks with 

deep learning algorithms has led to considerable advances in 

applications such as image and speech recognition and natural 

language processing [1,2]. The convolutional neural network 

(CNN) is a type of deep learning algorithm that is particularly 

effective in image and video analysis [3]. CNNs are 

specifically designed to automatically detect and extract 

features such as edges, corners, and textures from images; 

these features can be used to classify the images into different 

categories. These applications involve processing an input 

image by applying convolution operations using kernels of 

different sizes. The results of these convolutions are then 

pooled, passed through a nonlinear activation function, and 

sent to the next layer of convolutional operations. Although 

CNNs are excellent at solving classification and recognition 

problems, they require a massive amount of computation, 

especially when dealing with large images and kernels. When 

an input image with n × n pixels is convolved with a kernel of 

size k × k, the amount of computation is proportional to (n2 × 

k2). The computational requirement grows further with an 

increasing number of layers, resulting in high latency and 

large power consumption in the case of forward inference in 

the pretrained network. Although the use of graphics 

processing units can alleviate the issue of latency, real-time 

inference may still remain a challenge [4]. 

Currently, researchers are exploring the use of free-space 

optics to implement CNNs in an optical form owing to the 

high parallelism and energy efficiency of these optics [5–8]. 

Optical convolutional neural networks (OCNNs) based on 

free-space optics traditionally use the well-known 4f 

correlator system to exploit the Fourier transform property. 

Although these types of OCNNs have some advantages, they 

cause several inherent problems because of the use of Fourier 

optics. The first issue is the limitation in the scalability of the 

input image array; a lens is used for Fourier transformation, 

and the lens has a finite space–bandwidth product (SBP) 

owing to its geometric aberration. The second issue is the 
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latency caused by the time taken to generate the input array. 

In a Fourier transform-based system, a laser and a spatial light 

modulator (SLM) are required to generate a coherent input. 

However, the currently available SLMs are mostly slow and 

serially addressable, thereby causing remarkable latency. This 

latency diminishes the advantages of the massive parallelism 

of the optical neural network. Additionally, this latency makes 

it challenge to build a cascaded system for a multilayer neural 

network. The third problem is the difficulty in reconfiguring 

the kernels. The kernel pattern on the 4f system is the Fourier 

transform of the kernel pattern; obtaining the Fourier 

transform requires computation and can lead to significant 

delays in renewal. 

To address these issues, we propose a scalable optical 

convolutional neural network (SOCNN) based on free-space 

optics and Koehler illumination, which uses lens arrays and a 

SLM. The SOCNNs proposed herein are a variation of the 

previously reported optical neural network. They 

accommodate the CNN architecture in the context of a linear 

combination optical engine (LCOE) [9]. The goal of the 

LCOE was full interconnection; in contrast, the goal of the 

SOCNNs was partial connection with an unlimited input array 

size. 

 

2. Theory 

In a typical 4f correlator system, a mask is located at the 

focal plane of two lenses, as shown in Fig. 1. Lens1 performs 

the Fourier transform, while Lens2 performs inverse Fourier 

transform. The mask represents the complex-valued Fourier 

transform of a kernel, which is multiplied by the Fourier 

transform of an input pattern. Thus, the output plane displays 

the convolution of the input array and kernel. 

The SBP of the 4f imaging system is approximately (
𝐷2

𝜆𝑓
)

2

, 

where D, λ, and f are the diameter of the lens, wavelength of 

the light source, and focal length of the lens, respectively. The 

SBP can be expressed as (
𝐷

𝜆 𝑓/#
)

2

 using the f-number (f/#) of 

the lens. If the fixed wavelength and f/# are used, the SBP can 

increase infinitely with D. However, this SBP arises from the 

diffraction limit of the lens used in the system. As D increases, 

it becomes difficult for the system to reach the diffraction limit. 

A larger system requires less geometric aberration and more 

elements and tighter alignment tolerance to reach the 

diffraction limit. The SBP of the system is about (
𝐷

2 𝑓 𝛿
)

2

=

(
1

2 𝑓/# 𝛿
)

2

 where is the angular aberration of the lens. When 

a triplet lens has a f-number of 2, the angular aberration is 

approximately 3 mrad and the SBP is about 83 × 83. Since a 

lens system can worsen alignment problems during assembly 

with an increase in the number of elements, the practical 

scaling limit of the 4f system can be about 250 × 250 if the 

angular aberration is 1 mrad.

 

 
Fig. 1 Example of a 4f correlator system that uses Fourier transform to implement an existing optical convolutional neural 

network (OCNN). The mask represents the Fourier transform of the kernel used in the CNN. 

 



 

 3  
 

 
 

Fig. 2 Example of a simple OCNN with corresponding mathematical formula; ai
(l) represents the i-th input or output node 

in the l-th layer; wij indicates the weight connecting the j-th input node and the i-th output node; bi is the i-th bias; Nm is the 

number of weights connected to an input/output or the size of a kernel; σ is a sigmoid function 

 

To understand the architecture of the proposed SOCNN, it 

is essential to grasp the concept of CNN. An example of a 

CNN is shown in Figure 2; it shows four input nodes, four 

output nodes, and their synaptic connections along with 

mathematical representations. The CNN operates by receiving 

input signals through the input nodes, which are then 

transmitted through synaptic connections to the output nodes 

for processing; thus, the output is obtained. The strengths of 

the synaptic connections are modeled using mathematical 

representations that assign weights to each connection. In 

contrast to the full connection optical neural network such as 

the LCOE, in the CNN, each input or output node has local or 

partial connections whose weights are called kernels. 

The concept of the SOCNN proposed herein is illustrated 

in Fig. 3(a). The CNN shown in Fig. 2 was transformed into a 

hardware schematic, containing laser diodes (LDs), lenses, a 

liquid crystal display (LCD), detectors, and electronics. The 

input node was replaced by an LD that sent three rays to lens 

array 1. The LD used in this architecture can be a multimode 

laser diode or a light-emitting diode (LED) because, unlike the 

traditional 4f correlator system, this system accommodates 

incoherent light sources. 

 Lens array 1 collimates the rays and sends them to the LCD, 

where each pixel transmits the corresponding ray according to 

a pretrained kernel in the CNN. The rays from the LCD pass 

through lens array 2, which focuses the rays and generates 

different ray angles depending on the distance of the LCD 

pixel from the optical axis of the individual lenses in the array. 

A detector collects or adds the optical power of the rays 

arriving at different angles from different neighboring LDs or 

inputs with preset weights. In this scheme, the summed light 

is mathematically a convolution of the inputs and the kernel 

specified by the weights. These SOCNN can perform the 

calculations in parallel and, most importantly, in one step with 

the speed of light if the weights and inputs are preset. This type 

of calculation is called “inference” in the neural network 

community. Although the SOCNNs based on an LCD are 

reconfigurable, they are more suitable for inference 

applications owing to the low switching speed.  

Detailed examination of the optical system, as shown in Fig. 

3-(a), indicates that lens2 and lens3 form a relay imaging 

system in which the LCD is typically positioned at the focal 

plane of lens2, while the detector is placed at the focal plane 

of lens3. This arrangement ensures that the LCD and detector 

planes are conjugated—in other words, each pixel on the LCD 

forms an image on the detector plane. By establishing this 

conjugate condition, the illumination area of each ray is more 

clearly defined, and the crosstalk between channels is reduced.  

Additionally, if an LD is placed at the focal plane of lens1, 

lens1 and lens2 form a relay system, and an image of the LD 

is formed at lens3. Overall, the lens configuration shown in 

Fig. 3-(a) constitutes a Koehler illumination system [10, 11]. 

Figure 3(a) shows dotted magenta lines that represent the chief 

rays from the perspective of the condenser system and 

marginal rays from the perspective of the projection system. 

The red dotted rectangular block located at lens3 represents 

the image of the light source. Lens2 and lens3 work together 

to form a projection lens in the Koehler illumination system. 

In contrast, the rays originating from  the LD point of emission 

spread out over the detector plane, providing uniform 

illumination. Koehler illumination-based optical computers 

have several advantages over previously reported 
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architectures based on Abbe illumination in terms of 

uniformity of the illumination and control of the beam 

divergence of light sources [9]. 

The key difference between this SOCNN and the previous 

LCOE is that each input of the SOCNN has a relatively small 

number of connections to the output array, whereas the LCOE 

has a full interconnection. The feature of partial connection 

greatly relieves the constraint on the size of the input array. In 

fact, unlike the traditional 4f correlator system, this SCONN 

does not have any theoretical limit of input array size. Only 

the size of the kernel array is limited, since the SLM pixels 

used for the kernel are imaged through lenses that impose a 

constraint on SBP; this topic will be explained in detail in the 

discussion section.  

In the example shown in Fig. 3, the number of LCD pixels 

belonging to each input node is equal to the number of output 

nodes to which the input is connected. The LCD pixels 

belonging to each input node can be called a subarray of the 

SLM. The size of the subarray is the same as that of the 

receptive field from the viewpoint of the output node. In the 

case shown in Fig. 3-(b), the subarray comprises a 3 × 3 array 

where the spacing between the pixels is d. Given that the 

spacing between the detectors is a, the magnification of the 

projection system should match the size of the SLM subarray. 

The magnification of the projection system in SOCNN is 

written as f3 / f2 using the notations shown in Fig. 3-(b). 

If an 8 × 8 pixel area on the LCD is assigned to a single 

kernel, it can be connected to 64 output nodes. For instance, 

an LCD with 3840 × 2160 resolution can accommodate up to 

480 × 270 input nodes, which translates to 129,600 inputs. 

Considering the parallelism of the SOCNN, its performance is 

equal to the number of pixels in the LCD. If the system has N 

× N inputs and an M × M kernel, it can perform N2 × M2 

multiplications and N2 × (M2 − 1) additions in a single step. If 

the SOCNN takes the full advantage of the LCD resolution, 

(N × M)2 equals the total number of pixels in the LCD, and 

this number is immensely large in modern devices. This LCD 

can be replaced by other types of SLM arrays for achieving 

high speeds if a fast refresh rate of weights is required. 

Furthermore, since the transmission of SLM pixels in the 

SOCNN is proportional to the weight of the kernel, extra 

calculations for Fourier transform are not required, unlike in 

the 4f correlator system—this is another advantage of 

SOCNNs for use as reconfigurable OCNNs in the future.

 

 

 
(a) 
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(b) 

 

 
(c) 

 

Fig. 3 Scalable optical convolutional neural network (SOCNN) based on Koehler illumination and free-space optics using 

lens arrays and a spatial light modulator: (a) Schematics and the corresponding mathematical formula; (b) three-dimensional 

(3D) view of an example of the system with 3 × 3 inputs and 3 × 3 outputs; (c) the structural parameters of the SLM pixels and 

its subarrays 

 

After the optical process, the detector converts the light into 

current, and the remaining steps such as signal amplification, 

bias addition, and application of nonlinear functions (e.g., 

sigmoid, rectified linear units, local response normalization, 

and max-pooling) are performed electronically. These 

nonlinear functions are better handled by electronics than by 

optics because of their inherent properties. However, when 

electronics are used, interconnections between far-

neighboring electronics should be minimized to avoid traffic 

congestion. As long as  the electronics employed are local and 

distributed, the optical parallelism of the system remains 

unaffected. The electronic part, including the detectors, is 

similar to the concept of smart pixels [12]. 

The proposed system is a cascading system, and it can be 

extended in the direction of beam propagation. The signal 

from the output node is directly connected to the 

corresponding input of the next layer, allowing a detector, its 

corresponding electronics, and an LD in the next layer to form 

a synaptic node in an artificial neural network. If the system 

has L layers, N2 × M2 × L calculations can be performed in 

parallel in a single step; this ability greatly increases the 

SOCNN throughput for continuous input flow. 

In fact, the addition of incoherent light by a detector and an 

LCD cannot represent the negative weight of a kernel in a 

CNN. If coherent light and interference effects are used, the 

system can represent subtraction between inputs. However, 
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the use of coherent light may complicate the system and 

increase noise. The previous OCNN based on a 4f correlator 

system used a coherent light source and an SLM to generate 

an input array. As mentioned in the introduction, this coherent 

source entails many problems such as latency, 

noncascadability, and noise. Handling negative weights with 

incoherent light sources in this study can be solved by using 

the “difference mode” as described in previous references [9, 

13].  

To implement the difference mode in SOCNN, two 

detectors are required for each output node, or lens3 with two 

separate channels indicated by a red dotted circle, as shown in 

Fig. 4, is required. The two optical channels separate the 

inputs with positive weights from those with negative weights. 

Each channel adds input values multiplied by their respective 

weights using optical means. Subsequently, subtraction 

between the two channels is performed electronically through 

the communication between  neighboring electronics. Note 

that the weight in the negative channel should be zero when 

the corresponding positive weight is used and vice versa. For 

example, if 𝑤20 and 𝑤02 are positive, and 𝑤11 is negative, as 

shown in Figure 3-(a), then Eq. 1 and Eq. 2 are used to 

represent the positive and negative weight calculations, 

respectively, as shown in Fig. 4. 

 

𝑤200 = 𝑤20 , 𝑤002 = 𝑤02 ,  𝑤101 = 0 (Eq. 1) 

𝑤210 = 0 =  𝑤012 ,  𝑤111 = −𝑤11  (Eq. 2) 

 

This subtraction scheme simplifies the structure but requires 

an additional channel. 

To implement other functions such as multiple kernels for 

the same input array, more than two detectors can be used for 

a single lens3. The number of detectors corresponding to each 

lens is denoted as Np in Fig. 4. For easy reference, the detectors 

associated with each lens 3 can be referred to as a “page of 

detectors.” Since Fig. 4 represents a one-dimensional 

configuration, Nm and Np can be generalized into M × M and 

P × P, respectively, in a two-dimensional configuration. In this 

case, the array size of the subarray corresponding to one input 

node becomes (M × P)2. Suppose that the spacing between 

pixels and that between the subarrays are denoted as d and a, 

respectively. The side length of the subarray is  MPd. Since P 

detectors are arranged along length a, the detector spacing d2 

is equal to Md. This means that the magnification of the 

projection system consisting of lens2 and lens3 should  be M. 

Thus, a page of detectors can be implemented for difference 

mode or multiple kernels. 

 

 
Fig. 4 Difference mode configuration of the SOCNN; this mode can also be used for calculating multiple kernels for a single 

input array; a generalized mathematical formula is given, where Np represents the number of detectors corresponding to a single 

lens3. 

 

 



3. Discussion 

Although theoretically, the SOCNN has no limit on the 

input array size, scaling the size of the kernel is limited due to 

lens3. The limit on the scaling can be analyzed using the 

method described in a previous report [9]. This analysis 

involves calculating the image spreading of the SLM pixel 

through the projection system in terms of geometric imaging, 

diffraction, and geometric aberration. The overlap between the 

images of neighboring pixels and the required alignment 

tolerance can be estimated from the calculated image size. The 

analysis begins by examining an example system with an 

SOCNN architecture, and this is followed by an exploration of 

the factors that limit the system scale-up and how diffraction 

and geometric aberration affect this scaling. 

To simplify the analysis, we investigated the architecture 

shown in Fig. 3-(a) instead of that shown in Fig. 4. The scaling 

analysis can be easily generalized into a page detector scheme. 

The proposed SOCNN is a system with two-dimensional (2D) 

input and output and a four-dimensional (4D) kernel such that 

the numbers of pixels are N2, N2M2, and N2 for the input array, 

SLM array, and output array, respectively, where N and M are 

the number of rows in the square input array and the kernel 

array, respectively. 

If all the three array components have the same size, the 

densest part is the SLM array. Therefore, it is better to initially 

design an array of SLM or LCD pixels for an example system. 

For the example system, we assumed a 5 × 5 array for the 

kernel. We assumed that the SLM had 5 μm square pixels, 

which were placed with a period of 20 μm in a rectangular 

array. According to the notations of Fig.3 (c), ε and d are 5 and 

20 μm, respectively. 

The 5 × 5 SLM subarray accepts light from a single light 

source through a single lens. The diameter of each lens in the 

lens array and the side length of the SLM subarray are both 

100 μm, and it is denoted by a in Fig. 3-(b) and (c). The 

distance a is also the pitch of lens array 1, lens array 2, and the 

detector. Lens2 is supposed to have an f/# of 2. Because the 

SLM pixel was at the front focus of lens2 and the detector was 

at the back focus of lens3, the image of the SLM pixel was 

formed at the detector plane. Since detector pitch a = 5d, the 

magnification of the projection system should be 5. In general, 

if the subarray size of the kernel is M × M, a is equal to Md, 

and the magnification should  be M. 

The magnification of this projection relay system was a 

ratio of the focal length (f3) of lens3 to the focal length (f2) of 

lens2, i.e. f3/f2 = M. Therefore, the geometric image size of a 

pixel without aberrations and diffraction was Mε. Because the 

pitch of the SLM pixel array was magnified to the pitch of the 

detector array, the duty cycle of the image of the SLM pixel 

was ε/d or 25% of the detector pitch, which is the same as in 

the SLM pixel pitch. Therefore, the duty cycle of the 

geometric image in the detector pitch remains the constant 

regardless of M, which is the kernel size. 

The real image of one SLM pixel was enlarged by 

diffraction and aberration in addition to the geometric image 

size. The beam diameter that determined the diffraction limit 

was the image size of the light source for the condenser system 

composed of lens1 and lens2 according to Koehler 

illumination concept. However, because the image size of the 

light source could be as large as the diameter of lens1 or lens2, 

the beam diameter of the relay system comprising these lenses 

should be assumed to be the diameter of lens2 (D = a). The 

spot diameter attributed to diffraction was 2 λ f3/D = 2 λ M 

f2/D = 2 λ M f2/#, which was approximately 10 μm for a 

wavelength of 0.5 μm. The duty cycle of the diffraction spread 

in the detector pitch can be obtained by dividing the size of the 

diffraction spot by the detector pitch Md. The duty cycle of 

the diffraction spread corresponds to (2 λ f2/#)/d or 10% in 

terms of either the SLM pixel pitch or the detector pitch. The 

general formula for the duty cycle of diffraction spread is 

independent of M. Hence, the duty cycle of the diffraction 

origin is kept constant for a fixed f2/# when scaling up. 

The effect of geometric aberration on the image spread can 

be investigated by assuming that f2/# is fixed during scaling  

Since f3/# = M f2/#, f3/# increases with the scaling factor M. 

The spherical aberration, coma, astigmatism, and field 

curvature are proportional to the third power, second power, 

first power, and first power of 1/(f/#), respectively [11, 14]. In 

other words, angular aberration 3 of lens3 decreases with 

scaling  However, because f2/# remains constant, the angular 

aberration due to lens2 becomes dominant. If lens2 has an f-

number of 2 and comprises three elements, the angular 

aberration 2 is about 3 mrad. The image spread due to the 

geometric aberration is f3 2 = M f22 = M D2 (f22 = M2 d 

(f22. Since the detector pitch is M d, the duty cycle of the 

image spread in the detector pitch due to geometric aberration 

is M (f22. This value increases with scaling  When M and 

f2are 5 and 2, respectively, the geometric aberration of lens 

2 with 3 elements accounts for 3% of the duty cycle. If the 

maximum duty cycle of the image spread is 40%, the 

maximum M is about 66. In this case, the alignment tolerance 

is a duty cycle of 25% because the geometric image size and 

the diffraction spread are 25% and 10%, respectively. The 

duty cycle of 25% corresponds to 5 m in SLM plane—this 

value is usually feasible to achieve in terms of optomechanics.  

As more elements are used for lens3, the angular aberration 

can be reduced, and the maximum M can be increased. 

However, for a larger number of elements, tighter alignment 
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tolerance and higher difficulty for the assembly of the lens unit 

are necessary. From the viewpoint of a full connection optical 

neural network such as the LCOE, an M value of 66 may be 

small. However, from the viewpoint of OCNN, which aims for 

partial connection, an M value of 66 is very large.  

In addition, if M is a relatively small number, as is usually 

the case for kernels in practice, the burden of optics and their 

alignment can be drastically reduced. For instance, if M = 5, a 

simple planoconvex lens can be used for lens2. For a 

planoconvex lens with an f-number of 8, the angular 

aberration is only 3 mrad, which is the same as that of an f/2 

lens with three elements. In this case, when using the 

abovementioned SLM pixels, lens2 and lens3 have focal 

lengths of 800 μm and 4.0 mm, respectively, with a diameter 

of 100 μm. Generally, a larger M value results in a substantial 

increase in the focal length of lens3 since f3 = M2 (f2/#) d. 

However, for small M values, f3 is within a reasonable length 

and may simplify the  optics. 

Further, the tangent to the half-field angle of lens3 can be 

obtained by dividing a half-field size M a/2 by f3. Since f3 = 

M f2, the tangent of the half-field angle is a/(2 f2) = 1/(2 f2/#); 

thus, it is independent of scaling factor M. When f2/# = 2, the 

half-field angle is about 14°, which is within a reasonable 

range. The half-field angle decreases as f2/# increases, 

implying less aberration and less of a burden for optics related 

to the field angle. 

The concepts used in the proposed SOCNN architecture are 

related to those of lenslet array processors (LAP) [13]. A 

pseudoconvolution LAP in direct configuration was reported 

in [13]. The primary distinction between LAP and SOCNN is 

that SOCNN uses three layers of lens arrays with more 

emphasis on distributed electronics and neural network 

applications, while LAP uses only a single-layer lens array. 

From the viewpoint of illumination, the SOCNN is based on 

Koehler illumination, whereas the LAP is based on Abbe 

illumination [10, 11]. Koehler illumination provides better 

uniformity in the detector area than Abbe illumination; this 

uniformity is especially beneficial when dealing with 

nonuniform sources such as the LED and multimode LDs. 

Unfortunately, a detailed description or design of the 

illumination scheme is not provided in [13]; such a description 

or design  is critical to the convolution performance. The 

divergence of the light sources and their control are not 

specified for the input array in the pseudoconvolution LAP 

scheme, though they determine the coverage of convolution or 

the size of the kernel. 

The parallel throughput of SOCNN depends on the size of 

the SLM, as mentioned in the theory. The SLM array can be 

divided into subarrays, depending on the size of the kernel 

array. For a given size of the SLM array, a smaller kernel size 

leads to a larger input array size. Additionally, the SLM can 

be divided to accommodate multiple kernels by copying the 

input array into multiple sections. In fact, each section of the 

SLM can handle different kernels and perform convolution in 

parallel [5]. Therefore, the number of calculations per 

instruction cycle is equal to the number of SLM pixels. If the 

SLM has a resolution of 3840 × 2160, the total number of 

connections is approximately 8.3 × 106, which is also the 

number of multiply and accumulate (MAC) operations in one 

instruction cycle. If electronic processing is assumed to be the 

main source of delay, with a delay time of 10 ns, the proposed 

optical computer in this study can achieve a throughput of 8.3 

× 1014 MAC/s. This throughput can be further increased by 

using multiple layers. Although multiple layers may cause 

delay in data processing, all layers perform calculations 

simultaneously similar to the pipelining technique used in 

digital computers. As the number of layers increases, the total 

throughput can also increase. Therefore, the proposed optical 

computer can achieve a throughput of 8.3 × 1015 MAC/s when 

10 layers are used. 

To achieve massive parallel throughput, it is crucial to input 

2D data in parallel at every instruction cycle. If the 2D input 

is generated by serially reconfiguring individual pixels of the 

SLM, the parallelism of the optical computer is considerably 

reduced, similar to the case of the 4f correlator system. The 4f 

correlator system suffers from serialization between layers 

when used in a cascading configuration because the input of 

the next layer can be generated by a single coherent source and 

SLM array. However, in the SOCNN architecture, this 

serialization problem occurs only in the first layer, not 

between the layers, as it can use incoherent, independent light 

sources for input. 

One way to solve the issue of serialization is to start the first 

layer with a detector array and generate the 2D input using a 

real-time optical image, as suggested in a previous study [9]. 

For instance, imaging optics can form images of a moving 

object on the detector array. These images serve as the first 

layer of an optical computer. Thus, serialization or 

deserialization of input data is unnecessary throughout the 

entire system because all the inputs in the following layers are 

fed from local electronics. This approach is similar to that of 

the human eye and brain, where the eye forms an image of the 

object on the retina, which is the first layer of the neural 

network that is connected to the brain. Since the SOCNN is 

used for the front-end of the optical neural network, this 

approach appears very reasonable. 

4. Conclusions 

Traditionally, 4f correlator systems have been used in 

optical computing to perform convolution by performing  

Fourier transforms using two lenses. However, these systems 

have limitations with regard to the scaling up of the input array 
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because of geometric aberrations, and a single coherent light 

source together with an SLM is required to generate the input. 

This adds complexity and latency to the implementation of the 

multilayer OCNN with cascading configurations. In addition, 

the Fourier-transformed kernel used in the mask between two 

lenses requires extra calculation time and can cause latency in 

future systems that require higher refresh rates. 

To address these issues, the SOCNN architecture was 

proposed. This architecture takes advantage of the Koehler 

illumination and comprises three lens arrays that form images 

of SLM pixels on the detector plane. The Koehler illumination 

scheme offers advantages over the previous Abbe 

illumination-based LAP architecture by providing more 

uniform illumination and lower crosstalk between the 

detectors. 

The key advantages of the SOCNN are the scalability of the 

input array and the use of an incoherent light source. These 

advantages help avoid many problems inherent to the use of 

coherent sources, as in case of the 4f system. As a partial 

connection version of LCOE, the SOCNN inherits many 

advantages of LCOE, which is also based on free-space optics 

and Koehler illumination. Compared with the LCOE, the 

SOCNN has a smaller coverage of connection to the output; 

in the SOCNN, the use of the last lens limits only the kernel 

size, not the size of the input array. This is the major advantage 

of SOCNN over the existing 4f systems in terms of scaling up 

and parallel throughput of the system. Another advantage of 

the SOCNN is that the weights of the kernel are directly set by 

the proportional transmission of SLM pixels, unlike the 4f 

system, which requires Fourier transform and causes latency 

in the future reconfigurable system. 

Although the SOCNN has an extensively scalable input 

array, there is a limit to scaling the kernel size because the 

kernel information spreads out through a lens. The scaling 

limit of the kernel array was analyzed by observing the effect 

of changes in geometric image size, diffraction, and geometric 

aberration on the final image size. As M, i.e., the number of 

rows in the kernel array, increases, the duty cycle of the 

geometric image size and diffraction spread in the detector 

pitch remain constant for a fixed f-number of lens2. In contrast, 

the duty cycle of image spread due to geometric aberration is 

proportional to M. When M is about 66, the duty cycle due to 

geometric aberration is equal to 40%, and the alignment 

tolerance has a duty cycle of 20%, which corresponds to 5 μm 

in the SLM plane. Usually, convolution does not require such 

a large array size, and hence, M = 66 seems sufficiently large 

for practical applications. 

To estimate the parallel throughput of the SOCNN 

architecture, an example system was considered. The number 

of calculations per instruction cycle is equal to the number of 

SLM pixels. Assuming that electronic processing requires 10 

ns and the system has 10 convolution layers, SLMs with a 

resolution of 3840 × 2160 can achieve a parallel throughput of 

8.3 × 1015 MAC/s. 

In summary, a SOCNN based on free-space optics and 

Koehler illumination was proposed to overcome the 

challenges in the previous 4f correlator system. The results 

reported herein imply that the SOCNN can offer a multilayer 

CNN with massive optical parallelism. 

 

Declarations 

The authors declare that no funds, grants, or other support 

were received during the preparation of this manuscript. 

 

The authors have no relevant financial or non-financial 

interests to disclose. 

 

The datasets generated during and/or analysed during the 

current study are available from the corresponding author on 

reasonable request. 

 

 

References 

[1] Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., 

Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., 

Kingsbury, B.: Deep neural networks for acoustic modeling in 

speech recognition: The shared views of four research groups 

IEEE Signal processing magazine 29, 82-97 (2012) 

[2] LeCun Y., Bengio Y., Hinton G.: Deep learning, Nature 521, 

436–444 (2015). 

[3] Lecun L., Bottou L., Bengio Y., Haffner P.: Gradient-based 

learning applied to document recognition Proceedings of the 

IEEE 86 2278-2324 (1998) 

[4] Chetlur S., Woolley C., Vandermersch P., Cohen J., Tran J., 

Catanzaro B., Shelhamer E.:cuDNN: efficient primitives for 

deep learning, arXiv:1410.0759v3 (2014). 

[5] Colburn, S., Chu, Y., Shilzerman, E., Majumdar, A.: Optical 

frontend for a convolutional neural network. Applied optics, 58 

3179-3186 (2019) 

[6] Chang, J., Sitzmann, V., Dun, X., Heidrich, W., Wetzstein, G.: 

Hybrid optical-electronic convolutional neural networks with 

optimized diffractive optics for image classification, Scientific 

reports 8, 12324 (2018) 

[7] Lin, X., Rivenson, Y., Yardimci, N.T., Veli, M., Luo, Y., 

Jarrahi, M., Ozcan, A.: All-optical machine learning using 

diffractive deep neural networks, Science 361, 1004-1008 

(2018) 

[8] Sui, X., Wu, Q., Liu, J., Chen, Q., Gu, G.: A review of optical 

neural networks, IEEE Access 8, 70773-70783 (2020) 

[9] Ju, Y.G., A scalable optical computer based on free-space optics 

using lens arrays and a spatial light modulator. Optical and 

Quantum Electronics, 55, 1-21 (2023) 

[10] Arecchi, A.V., Messadi, T.,  Koshel, R.J.: Field Guide to 

Illumination (SPIE Field Guides vol FG11), SPIE Press, 

Bellingham, p. 59 (2007) 



 

 10  
 

[11] Greivenkamp, J.E.: Field Guide to Geometrical Optics 

(SPIE Field Guides Vol. FG01), p.58,  SPIE press, Bellingham, 

p. 28, 73 (2004) 

[12] Seitz, P.: Smart Pixels, PROCEEDINGS EDMO 2001 / 

VIENNA, 229-234 (2001) 

[13] Glaser, I.: Lenslet array processors, Applied Optics 21, 

1271-1280 (1982) 

[14] Geary, J.M.: Introduction to lens design: with practical 

ZEMAX examples, Richmond: Willmann-Bell, p. 111 (2002) 

 


